JPH036419A - Noncontact method for measuring displacement - Google Patents
Noncontact method for measuring displacementInfo
- Publication number
- JPH036419A JPH036419A JP14176289A JP14176289A JPH036419A JP H036419 A JPH036419 A JP H036419A JP 14176289 A JP14176289 A JP 14176289A JP 14176289 A JP14176289 A JP 14176289A JP H036419 A JPH036419 A JP H036419A
- Authority
- JP
- Japan
- Prior art keywords
- light
- optical fiber
- measured
- distance
- receiving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 8
- 239000013307 optical fiber Substances 0.000 claims abstract description 129
- 238000005259 measurement Methods 0.000 claims abstract description 24
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 238000000691 measurement method Methods 0.000 claims 1
- 238000012545 processing Methods 0.000 abstract description 9
- 239000000835 fiber Substances 0.000 abstract description 8
- 230000006866 deterioration Effects 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract 3
- 238000010586 diagram Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 5
- 230000003321 amplification Effects 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
Landscapes
- Measurement Of Optical Distance (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、被測定物と投光用、受光用光ファイバの先端
との距離の変位を非接触により測定する非接触変位測定
方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a non-contact displacement measuring method for non-contactly measuring the displacement of the distance between an object to be measured and the tips of optical fibers for projecting and receiving light.
従来、被測定物と投光用、受光用光ファイバの先端の距
離を非接触により測定する方法として、本願出願人が以
前提案した特願昭61−259464号の出願明細書及
び図面に記載の方法がある。Conventionally, as a non-contact method for measuring the distance between the object to be measured and the tips of the light emitting and light receiving optical fibers, there has been a method described in the specification and drawings of Japanese Patent Application No. 1983-259464 previously proposed by the applicant. There is a way.
これは、第10図に示すように、投光用光ファイバ(1
)の先端と受光用光ファイバ(2)の先端とが被測定物
(3)の表面から同一距離になるように両光ファイバf
i+ 、 (2+を配設し、投光用光ファイバを一部分
岐して受光用補助光ファイバ(4)を形成している。As shown in FIG.
) and the tip of the receiving optical fiber (2) are at the same distance from the surface of the object to be measured (3).
i+, (2+) are disposed, and a light-emitting optical fiber is partially branched to form a light-receiving auxiliary optical fiber (4).
射光を受光用光ファイバ及び受光用補助光ファイバr4
]により受光し、受光用光ファイバ(2)の受光量と受
光用補助光ファイバ(4)の受光量との比を導出し、前
記比に基き、投光用光ファイバ(1)及び受光用光ファ
イバ(2)の先端と被測定物(3)の表面との距離りを
測定している。Optical fiber for receiving emitted light and auxiliary optical fiber for receiving light R4
], derive the ratio of the amount of light received by the light-receiving optical fiber (2) and the amount of light received by the auxiliary light-receiving optical fiber (4), and based on the ratio, the light emitting optical fiber (1) and the light receiving The distance between the tip of the optical fiber (2) and the surface of the object to be measured (3) is measured.
ところで、両光ファイバfl+ 、 (21の先端と被
測定物(3)の表面との距離りが小さい場合、投光用光
ファイバ(1)による被測定物(3)の表面における光
の投射スポットと、受光用光ファイバ(2)による被測
定物(3)の表面における受光視野とが重なることはな
く、距離りが大きくなるに連れ、投射スポットと受光視
野との重なシが次第に大きくなるだめ、距離りと受光用
光ファイバ(2)の受光量φ1との関係は第11図に示
すようになる。By the way, when the distance between the tips of both optical fibers fl+ and (21) and the surface of the object to be measured (3) is small, the projection spot of light on the surface of the object to be measured (3) by the light projection optical fiber (1) and the light receiving field of view on the surface of the object to be measured (3) by the light receiving optical fiber (2) do not overlap, and as the distance increases, the overlap between the projection spot and the light receiving field of view gradually increases. However, the relationship between the distance and the amount of light received by the light-receiving optical fiber (2) φ1 is as shown in FIG.
このとき、距離りの増加に伴う投射スポットと受光視野
との重なシの増加により、受光用光ファイバ(2)の受
光量φ1は次第に増加するが、距離りがある程度以上に
なると、反射光の減衰が大きくなって受光用光ファイバ
(2)の受光量は次第に減少する。At this time, the amount of light received by the light-receiving optical fiber (2) φ1 gradually increases due to the increase in overlap between the projection spot and the light-receiving field of view as the distance increases, but when the distance exceeds a certain level, the reflected light The amount of light received by the light-receiving optical fiber (2) gradually decreases as the attenuation of the light increases.
一方、受光用補助光ファイバ(4)は投光用光ファイバ
(1]を一部分岐して形成したため、光ファイバ(4)
の受光視野は投射スポットにほぼ完全に重なシ、距離り
の増加に伴う反射光の減衰にょシ、受光用補助光ファイ
バ(4)の受光量φ2は第11図に示すようになシ、距
離りが増加するに連れて受光量φ2は次第に減少する。On the other hand, since the light-receiving auxiliary optical fiber (4) is formed by partially branching the light-emitting optical fiber (1), the optical fiber (4)
The light receiving field of view almost completely overlaps the projection spot, the reflected light is attenuated as the distance increases, and the light receiving amount φ2 of the light receiving auxiliary optical fiber (4) is as shown in Fig. 11. As the distance increases, the amount of received light φ2 gradually decreases.
なお、被測定物(3)の反射率が高い場合には、受光量
φ1.φ2はそれぞれ第11図中の破線に示すように全
体的に増加し、逆に反射率が低い場合には全体的に減少
する。Note that when the reflectance of the object to be measured (3) is high, the amount of received light φ1. φ2 increases overall as shown by the broken line in FIG. 11, and conversely decreases overall when the reflectance is low.
そして、受光用光ファイバ(2)の受光量φ1と受光用
補助光ファイバ(4)の受光量φ2との比φ1/φ2は
、距離りに対して第12図に示すように変化する。The ratio φ1/φ2 of the amount of light received by the light-receiving optical fiber (2) φ1 and the amount of light received by the auxiliary light-receiving optical fiber (4) φ2 changes with distance as shown in FIG. 12.
従って、被測定物(3)と同一反射率のテストピースに
対する距離と受光量の比との関係曲線を予め求めておけ
ば、実際の被測定物(3)に対する受光量の比φ1/φ
2に相当する前記した関係曲線上の点から、両光ファイ
バfil 、 [2+の先端と被測定物(3)の表面と
の距離りを算出できる。Therefore, if the relationship curve between the distance to the test piece with the same reflectance as the object to be measured (3) and the ratio of the amount of received light is obtained in advance, the ratio of the amount of received light to the actual object to be measured (3) φ1/φ
From the point on the above-mentioned relationship curve corresponding to 2, the distance between the tips of both optical fibers fil, [2+ and the surface of the object to be measured (3) can be calculated.
ところで、この方法により、両光ファイバ(1)。By the way, by this method, both optical fibers (1).
(2)と被測定物(3)の表面との距離■)が例えばD
Iのときを基準としたときに、距離りが1)2に変化し
た場合の基準距離DIに対する変位δD (−D2−1
]、 )を求めるには、予め求めておいた関係曲線から
受光量の比φ1/φ2に基いて得られた距離D2とDI
との差を演算するだめの減算処理回路や電圧増幅回路な
どの付加回路が必要になる。For example, the distance ■) between (2) and the surface of the object to be measured (3) is D
Displacement δD (-D2-1) with respect to the reference distance DI when the distance changes to 1) 2 when
], ), the distance D2 and DI obtained based on the ratio φ1/φ2 of the amount of received light from the relationship curve determined in advance.
Additional circuits such as a subtraction processing circuit and a voltage amplification circuit are required to calculate the difference between the two.
従来の場合、基準の距離に対する変位を求めるには付加
回路を必要とするため、後段の回路構成が複雑になり、
しかもSN比の悪化を招き、信頼性に欠け、精度の高い
変位測定を行うことができないという問題点がある。In the conventional case, an additional circuit is required to determine the displacement relative to the reference distance, which complicates the subsequent circuit configuration.
Furthermore, there are problems in that the SN ratio deteriorates, the reliability is lacking, and highly accurate displacement measurement cannot be performed.
本発明は、前記の点に留意してなされ、従来のような付
加回路を設けることなく、投光用、受光用光ファイバの
先端と被測定物表面との距離の変位を測定できるように
することを目的とする。The present invention has been made with the above-mentioned points in mind, and makes it possible to measure the displacement of the distance between the tips of optical fibers for transmitting and receiving light and the surface of an object to be measured without providing an additional circuit as in the conventional method. The purpose is to
前記目的を達成するために、本発明では、投光用光ファ
イバの先端と受光用光ファイバの先端とが被測定物表面
から同一距離になるよう前記両光ファイバを配設し、
前記投光用光ファイバを一部分岐[7て受光用補助光フ
ァイバを形成し、
前記投光用光ファイバにより前記被測定物表面に光を照
射し、
前記被測定物表面からの反射光を前記受光用光ファイバ
及びfi前記受光用補助光ファイバにより受光し、
前記受光用光ファイバの受光量と前記受光用補助光ファ
イバの受光量との差を算出し、前記差が零のときにおけ
る前記受光用光ファイバの先端と前記被測定物表面との
測定距離を基準距離とし、
算出した前記差に基き、測定時の前記測定距離の前記基
準距離に対する変位を導出することを特徴としている。In order to achieve the above object, in the present invention, the optical fibers are arranged so that the tip of the light-emitting optical fiber and the tip of the light-receiving optical fiber are the same distance from the surface of the object to be measured, branching a part of the optical fiber for use [7] to form an auxiliary optical fiber for light reception, irradiating light onto the surface of the object to be measured using the optical fiber for projecting light, and converting light reflected from the surface of the object to light into the light reception light. Receive light with the auxiliary optical fiber for light reception, calculate the difference between the amount of light received by the auxiliary optical fiber for light reception, and calculate the difference between the amount of light received by the auxiliary optical fiber for light reception, and when the difference is zero, the optical fiber for light reception The measurement distance between the tip of the object and the surface of the object to be measured is taken as a reference distance, and the displacement of the measurement distance at the time of measurement with respect to the reference distance is derived based on the calculated difference.
また、投光用光ファイバの先端と受光用光ファイバの先
端とが被測定物表面から同一距離になるよう前記両光フ
ァイバを配設し、
III記投光投光用光フアイバ部分岐して受光用補助光
ファイバを形成し、
前記投光用光ファイバにより前記被測定物表面に光を照
射し、
前記被測定物表面からの反射光を前記受光用光ファイバ
及び前記受光用補助光ファイバにより受光し、
前記受光用光ファイバの受光量と前記受光用補助光ファ
イバの受光量との差を算出し、前記差が零のときにおけ
る前記受光用光ファイバの先端と前記被測定物表面との
測定距離を基準距離とし、
算出した前記差と前記受光用補助光ファイバの受光量と
の比を算出し、
算出した前記比に基き、測定時の前記測定距離の前記基
準距離に対する変位を導出するようにしてもよい。In addition, the above-mentioned optical fibers are arranged so that the tip of the optical fiber for light emission and the tip of the optical fiber for light reception are the same distance from the surface of the object to be measured, and the optical fiber for light emission described in III is branched. forming an auxiliary light-receiving optical fiber; irradiating light onto the surface of the object to be measured using the light-emitting optical fiber; and transmitting light reflected from the surface of the object to the light-receiving optical fiber and the auxiliary light-receiving optical fiber. receive light, calculate the difference between the amount of light received by the light receiving optical fiber and the amount of light received by the auxiliary light receiving optical fiber, and calculate the difference between the tip of the light receiving optical fiber and the surface of the measured object when the difference is zero. Using the measurement distance as a reference distance, calculating a ratio between the calculated difference and the amount of light received by the auxiliary optical fiber for light reception, and deriving a displacement of the measurement distance at the time of measurement with respect to the reference distance based on the calculated ratio. You can do it like this.
以上のような構成において、受光用光ファイバの受光量
と受光用補助光ファイバの受光量との差に基き、受光用
光ファイバと被測定物表面との測定距離の基準距離に対
する変位を導出するため、従来のような減算処理回路や
電圧増幅回路などの付加回路を新だに設ける必要がなく
、8N比の悪化やそれに伴う信頼性の低下が防止され、
精度の高い変位測定が行える。In the above configuration, the displacement of the measurement distance between the light-receiving optical fiber and the surface of the object to be measured with respect to the reference distance is derived based on the difference between the amount of light received by the light-receiving optical fiber and the amount of light received by the auxiliary light-receiving optical fiber. Therefore, there is no need to newly install additional circuits such as conventional subtraction processing circuits and voltage amplification circuits, and the deterioration of the 8N ratio and the accompanying decrease in reliability are prevented.
Highly accurate displacement measurement can be performed.
また、受光用光ファイバの受光量と受光用補助光ファイ
バの受光量との差と、受光量補助光ファイバの受光量と
の比を算出することにより、被測定物の表面性状が一様
でなく、被測定物表面の反射率が一様でない場合であっ
ても、受光用光ファイバと被測定物表面との測定距離の
基準距離に対する変位を導出できる。In addition, by calculating the ratio of the difference between the amount of light received by the light-receiving optical fiber and the amount of light received by the auxiliary light-receiving optical fiber, and the amount of light received by the auxiliary light-receiving optical fiber, it is possible to ensure that the surface texture of the object to be measured is uniform. Even if the reflectance of the surface of the object to be measured is not uniform, the displacement of the measured distance between the light receiving optical fiber and the surface of the object to be measured with respect to the reference distance can be derived.
実施例について第1図ないし第9・図を参照して説明す
る。Examples will be described with reference to FIGS. 1 to 9.
(実施例1)
まず、実施例1について第1図ないし第4図を参照して
説明する。(Example 1) First, Example 1 will be described with reference to FIGS. 1 to 4.
基本的な光ファイバの概略構成は前記した第10図と同
じで、詳細な構成は第1図に示すとおシであシ、第1図
において、(51は投光用光ファイバ、(6)は受光用
光ファイバ、(7)は投光用光ファイバC51が一部分
岐されて形成された受光用補助光ファイバ、(8)はモ
ニタ用光ファイバであわ、投光用光ファイバ(5)に入
射側が結束されて設けられ、投光用光ファイバC5)へ
の入射光量を一定に保持するために、入射光量のモニタ
用に用いられる。The basic schematic configuration of the optical fiber is the same as that shown in FIG. 10 above, and the detailed configuration is shown in FIG. 1. In FIG. (7) is a light receiving auxiliary optical fiber formed by partially branching the light emitting optical fiber C51, (8) is a monitoring optical fiber, and (5) is the light emitting optical fiber. The incident side is bundled and used for monitoring the amount of incident light in order to keep the amount of incident light to the projection optical fiber C5) constant.
このとき、投光用光ファイバ(51のファイバ素体の先
端が、第2図(a)に示すように分散して結束され、ガ
ラスロッド(9)を介して光ファイバ東GOに接続され
、光ファイバ束αOのファイバ素体0Q及び受光用光フ
ァイバ(61のファイバ素体(6)の先端が、第2図(
b)に示すように分散して結束されておシ、これによっ
て実質的に投光用、受光用光ファイバC5)。At this time, the tips of the fiber bodies of the light emitting optical fibers (51) are distributed and bundled as shown in FIG. 2(a), and connected to the optical fiber east GO via the glass rod (9). The tip of the fiber body 0Q of the optical fiber bundle αO and the receiving optical fiber (61) is shown in FIG.
As shown in b), the optical fibers C5) are dispersed and bundled, so that the optical fibers C5) are substantially used for light emission and light reception.
(6)の先端と被測定物ODの表面との距離が同一に保
持されている。The distance between the tip of (6) and the surface of the object to be measured OD is kept the same.
さらに、第1図において、02は投光用光ファイパ(5
1の入射側に設けられた発光ダイオード等の発光素子、
0.1〜α均はフォトダイオード等の受光素子であり、
それぞれ光ファイバ(6)〜(8)の出射側に設けられ
ている。Furthermore, in FIG. 1, 02 is an optical fiber for light projection (5
A light emitting element such as a light emitting diode provided on the incident side of 1,
0.1 to α average is a light receiving element such as a photodiode,
Each of them is provided on the output side of the optical fibers (6) to (8).
つぎに、信号処理回路を示す第3図において、αQは演
算増幅器であシ、両入力端子に、受光素子a’i 、
(14)が逆並列に接続されておシ、受光用光ファイバ
(6)の受光量に比例した受光素子α3の出力信号と受
光用補助光ファイバ(7)の受光量に比例した出力信号
とが差引されて演算増幅器Oeに入力され、演算増幅器
OQの出力端子07)から光ファイバ(61と(7)と
の受光量の差に比例した信号が出力される。Next, in FIG. 3 showing the signal processing circuit, αQ is an operational amplifier, and light receiving elements a'i,
(14) are connected in antiparallel, and the output signal of the light-receiving element α3 is proportional to the amount of light received by the light-receiving optical fiber (6), and the output signal is proportional to the amount of light received by the auxiliary light-receiving optical fiber (7). is subtracted and input to the operational amplifier Oe, and a signal proportional to the difference in the amount of light received by the optical fibers (61 and (7)) is output from the output terminal 07 of the operational amplifier OQ.
そして、被測定物0])と同一反射率のテヌトピスにつ
いて、光ファイバ束00の先端と被測定物圓との測定距
離を変化させたときの受光用光ファイバ(6)及び受光
用補助光ファイバ(7)の受光量の差に比例した演算増
幅器OQの出力の変化を導出し、測定距離に対する演算
増幅器Oeの出力の関係曲線を予め求めておく。For tenutopis with the same reflectance as the measured object 0]), the light-receiving optical fiber (6) and the light-receiving auxiliary optical fiber when the measurement distance between the tip of the optical fiber bundle 00 and the measured object circle is changed. (7) A change in the output of the operational amplifier OQ is derived in proportion to the difference in the amount of received light, and a relationship curve of the output of the operational amplifier Oe with respect to the measurement distance is determined in advance.
このとき、受光用光ファイバ(6)の受光量φ1及び受
光用補助光ファイバ(7)の受光量φ2は、測定距離に
対して前記した第1I図と同様に変化するため、両ファ
イバ(61、(7)の受光量の差(φ1−φ2)に比例
しだ演算増幅器αeの出力と距離との関係は、ある距離
において出力が零になシ、そのときの距離を基準距離D
fとすると、演算増幅器0・の出力は測定距離がこの基
準距離Drより大きいときには正、小さいときには負と
なり、基準距離Dfの近傍では基準距離Dfからの変位
にほぼ比例して出力が変化する。At this time, the amount of light received by the light-receiving optical fiber (6) φ1 and the amount of light received by the auxiliary light-receiving optical fiber (7) φ2 change with respect to the measurement distance in the same manner as shown in FIG. , (7) is proportional to the difference in the amount of received light (φ1-φ2).
f, the output of the operational amplifier 0 is positive when the measured distance is greater than the reference distance Dr, and negative when it is smaller, and the output changes approximately in proportion to the displacement from the reference distance Df in the vicinity of the reference distance Df.
つぎに、実際の被測定物Ql)に対する演算増幅器qQ
の出力に基き、予め求めた関係曲線から、光ファイバ束
aOの先端と被測定物0刀の表面との測定距離の基準距
離Dfに対する変位ΔDが求められる。Next, the operational amplifier qQ for the actual object under test Ql)
Based on the output of , the displacement ΔD of the measured distance between the tip of the optical fiber bundle aO and the surface of the object to be measured with respect to the reference distance Df is determined from the relational curve determined in advance.
例えば、演算増幅器00の出力がVaであるとき、この
出力Vaから、第4図に示すように、予め求めておいた
関係曲線上の出力Vaに対応する距離と基準距離Dfと
の変位ΔDが得られる。For example, when the output of the operational amplifier 00 is Va, from this output Va, as shown in FIG. can get.
このように、受光用光ファイバ(6)の受光量と受光用
補助光ファイバ(7)の受光量との差に比例した演算増
幅器OQの出力に基き、基準距離Dfに対する測定距離
の変位を導出できるだめ、変位を導出するのに従来のよ
うな減算処理回路や電圧増幅回路などの付加回路を設け
る必要がなく、SN比の悪化やそれに伴う信頼性の低下
を防止することができ、信頼性の高い変位測定を行うこ
とができる。In this way, the displacement of the measurement distance with respect to the reference distance Df is derived based on the output of the operational amplifier OQ which is proportional to the difference between the amount of light received by the light receiving optical fiber (6) and the amount of light received by the auxiliary light receiving optical fiber (7). As a result, there is no need to provide additional circuits such as conventional subtraction processing circuits and voltage amplification circuits to derive the displacement, and it is possible to prevent deterioration of the S/N ratio and the accompanying decrease in reliability, improving reliability. can perform high displacement measurements.
(実施例2)
つぎに、実施例2について第5図ないし第9図を参照し
て説明する。(Example 2) Next, Example 2 will be described with reference to FIGS. 5 to 9.
全体の概略構成を示す第5図において、第1図と同一記
号は対応するものを示し、0.8)は投光用光ファイバ
【5)が更に一部分岐されて形成されたもう1つの受光
用補助光ファイバである。In FIG. 5 showing the overall schematic configuration, the same symbols as in FIG. This is an auxiliary optical fiber for use.
一方詳細な構成は第6図に示すようになり、同図におい
て第1図と同一記号は同−若しくは相当するものを示し
、第1図と異なる点は、前記した如く投光用光ファイバ
(5)を更に一部分岐して他の受光用補助光ファイバα
(へ)を形成し、この光ファイバ08)の出射側にフォ
トダイオード等の受光素子(1!lftを設けた点であ
る。On the other hand, the detailed configuration is shown in FIG. 6, in which the same symbols as in FIG. 1 indicate the same or equivalent parts, and the difference from FIG. 5) is further branched into another auxiliary optical fiber α for receiving light.
(f) is formed, and a light receiving element (1!lft) such as a photodiode is provided on the output side of this optical fiber 08).
つぎに、信号処理回路を示す第7図において、第3図と
同一記号は同一のものを示し、(イ)は受光素子Q9の
出力を増幅する増幅器、■1Jは割算器であり、演算増
幅器α・の出力を増幅器(イ)の出力で割り、出力端子
(イ)から、受光用光ファイバ(6)と受光用補助光フ
ァイバ(7)の受光量の差と、受光量補助光ファイバα
8)の受光量との比に比例した信号が出力される。Next, in FIG. 7 showing the signal processing circuit, the same symbols as in FIG. Divide the output of the amplifier α by the output of the amplifier (a), and calculate from the output terminal (a) the difference in the amount of light received by the light receiving optical fiber (6) and the auxiliary light receiving optical fiber (7), and the amount of light received by the auxiliary optical fiber. α
8) A signal proportional to the amount of received light is output.
そして、実施例1の場合と同様に、被測定物01)と同
じ材質のテストピースについて、光ファイバ束00の先
端と被測定物a℃との測定距離を変化させたときの割算
器(21)の出力の変化を導出し、測定距離に対する割
算器(2])の出力の関係曲線を予め求めておく。As in the case of Example 1, for a test piece made of the same material as the object to be measured 01), the divider ( 21) is derived, and a relationship curve between the output of the divider (2]) and the measured distance is determined in advance.
このとき、両受光用補助光ファイバ(7) 、 Q8)
のファイバ素体数が同じであると、測定距離に対する両
受光用補助光ファイバ(7) 、 Q8)の受光量の変
化はほぼ同じ様になり、演算増幅器0・の出力を増幅器
(ホ)の出力で割ることにより、演算増幅器θ0の出力
が零になるときを基準距離Dfとして、割算器(21)
の出力は測定距離がこの基準距離Dfより大きいときに
は正、小さいときには負となシ、基準距離Dfの近傍で
は基準距離Dfからの変位にほぼ比例して出力が変化す
る。At this time, the auxiliary optical fiber for both light reception (7), Q8)
If the number of fiber elements is the same, the changes in the amount of light received by both light receiving auxiliary optical fibers (7) and Q8) with respect to the measurement distance will be almost the same, and the output of operational amplifier 0. By dividing by the output, the time when the output of the operational amplifier θ0 becomes zero is set as the reference distance Df, and the divider (21)
The output is positive when the measured distance is greater than the reference distance Df, and negative when it is smaller than the reference distance Df.In the vicinity of the reference distance Df, the output changes approximately in proportion to the displacement from the reference distance Df.
つぎに、実際の被測定物OBに対する割算器Q1)の出
力に基き、予め求めた関係曲線から、光ファイバ束QO
の先端と被測定物011の表面との測定距離の例えば、
割算器(21Jの出力がVbであるとき、この出力vb
から、第8図に示すように、予め求めておいた関係曲線
上の出力vbに対応する距離と基準距離Dfとの変位Δ
Dが得られる。Next, based on the output of the divider Q1) for the actual object to be measured OB, the optical fiber bundle QO
For example, the measurement distance between the tip of the object 011 and the surface of the object to be measured 011 is
When the output of the divider (21J is Vb, this output vb
As shown in FIG. 8, the displacement Δ between the distance corresponding to the output vb on the relational curve determined in advance and the reference distance Df
D is obtained.
ところで、このとき被測定物011の表面性状の変化に
よって反射率が変化する場合、反射率の変化による演算
増幅器αQの出力の変化と増幅器(ホ)の出力の変化と
が等しくなり、従って演算増幅器OQの出力と増幅器(
イ)の出力との比は反射率の変動に依存せず、測定距離
のみに依存して変化するため、表面性状の変化による反
射率が一様でない被測定物ODであっても、変位を導出
することができる。By the way, if the reflectance changes due to a change in the surface properties of the object to be measured 011, the change in the output of the operational amplifier αQ due to the change in reflectance will be equal to the change in the output of the amplifier (e), and therefore the change in the output of the operational amplifier OQ output and amplifier (
The ratio to the output of (a) does not depend on changes in reflectance, but only changes depending on the measurement distance, so even if the measured object OD has uneven reflectance due to changes in surface texture, the displacement can be derived.
なお、光ファイバ束00のファイバ素体ot及び受光用
光ファイバ(6)のファイバ素体(6)の先端は、第9
図(a、)に示すように断面を2分割する形で結束して
もよく、或いは同図(b)に示すように断面同心円状に
結束してもよい。Note that the fiber body ot of the optical fiber bundle 00 and the tip of the fiber body (6) of the light-receiving optical fiber (6) are the ninth
The cross section may be divided into two as shown in Figure (a), or the cross section may be concentrically bound as shown in Figure (b).
本発明は、以上説明したように構成されているので、以
下に記載する効果を奏する。Since the present invention is configured as described above, it produces the effects described below.
受光用光ファイバの受光量と受光用補助光ファイバの受
光量との差に基き、受光用光ファイバと被測定物表面と
の測定距離の基準距離に対する変位を導出するため、従
来のような減算処理回路や電圧増幅回路などの付加回路
を新たに設ける必要がなく、SN比の悪化やそれに伴う
信頼性の低下を防止することができ、精度の高い変位測
定を行うことができ、微小変位の高分解能測定が可能と
なる。Based on the difference between the amount of light received by the light-receiving optical fiber and the amount of light received by the auxiliary light-receiving optical fiber, conventional subtraction is used to derive the displacement of the measurement distance between the light-receiving optical fiber and the surface of the object to be measured relative to the reference distance. There is no need to newly install additional circuits such as processing circuits and voltage amplification circuits, and it is possible to prevent deterioration of the S/N ratio and associated reliability, and it is possible to perform highly accurate displacement measurements. High resolution measurement becomes possible.
また、受光用光ファイバの受光量と受光用補助光ファイ
バの受光量との差と、受光量補助光ファイバの受光量と
の比を算出することにょシ、被測定物の表面性状が一様
でなく1反射率が一様でない場合であっても、受光用光
ファイバと被測定物表面との測定距離の基準距離に対す
る変位を精度よく導出することができる。In addition, the difference between the amount of light received by the light-receiving optical fiber and the amount of light received by the auxiliary light-receiving optical fiber, and the ratio of the amount of light received by the auxiliary light-receiving optical fiber are calculated. Even if the reflectance is not uniform, the displacement of the measurement distance between the light-receiving optical fiber and the surface of the object to be measured relative to the reference distance can be derived with high accuracy.
第1図ないし第9図は本発明の非接触変位測定方法の実
施例を示し、第1図ないし第4図は実施例Iを示し1、
第1図は測定装置の模式図、第2図(a)、 (b)は
それぞれ異なる位置における一部の断面図、第3図は信
号処理回路の結線図、第4図は距離と演算増幅器の出力
との関係図、第5図ないし第9図は実施例2を示し、第
5図及び第6図はそれぞれ測定装置の概略図及び模式図
、第7図は信号処理回路の結線図、第8図は距離と割算
器の出力との関係図、第9図fa) 、 (b)は一部
の異なる状態の断面図、第10図ないし第12図は従来
例を示し、第10図は測定装置の概略図、第11図は距
離と受光量との関係図、第12図は距離と受光量比との
関係図である。
(5)投光用光ファイバ、(6)受光用光ファイバ、(
7) 、 0.8)・・・受光用補助光ファイバ、0]
)・・・被測定物。1 to 9 show embodiments of the non-contact displacement measuring method of the present invention, and FIGS. 1 to 4 show embodiment I.
Figure 1 is a schematic diagram of the measuring device, Figures 2 (a) and (b) are partial cross-sectional views at different positions, Figure 3 is a wiring diagram of the signal processing circuit, and Figure 4 is the distance and operational amplifier. FIGS. 5 to 9 show Example 2, FIGS. 5 and 6 are a schematic diagram and a schematic diagram of the measuring device, respectively, and FIG. 7 is a wiring diagram of the signal processing circuit. Fig. 8 is a diagram showing the relationship between distance and the output of the divider, Fig. 9 fa) and Fig. 9 (b) are cross-sectional views of some different states, Figs. 11 is a diagram showing the relationship between the distance and the amount of received light, and FIG. 12 is a diagram showing the relationship between the distance and the ratio of the amount of received light. (5) Optical fiber for light emission, (6) Optical fiber for light reception, (
7), 0.8)...Auxiliary optical fiber for light reception, 0]
)...Object to be measured.
Claims (2)
端とが被測定物表面から同一距離になるよう前記両光フ
ァイバを配設し、 前記投光用光ファイバを一部分岐して受光用補助光ファ
イバを形成し、 前記投光用光ファイバにより前記被測定物表面に光を照
射し、 前記被測定物表面からの反射光を前記受光用光ファイバ
及び前記受光用補助光ファイバにより受光し、 前記受光用光ファイバの受光量と前記受光用補助光ファ
イバの受光量との差を算出し、 前記差が零のときにおける前記受光用光ファイバの先端
と前記被測定物表面との測定距離を基準距離とし、 算出した前記差に基き、測定時の前記測定距離の前記基
準距離に対する変位を導出する ことを特徴とする非接触式変位測定方法。(1) Both optical fibers are arranged so that the tip of the light-emitting optical fiber and the tip of the light-receiving optical fiber are the same distance from the surface of the object to be measured, and part of the light-emitting optical fiber is branched to receive light. forming an auxiliary optical fiber for light reception, irradiating light onto the surface of the object to be measured using the optical fiber for projecting light, and receiving reflected light from the surface of the object to be measured by the optical fiber for light reception and the auxiliary optical fiber for light reception. and calculating the difference between the amount of light received by the light-receiving optical fiber and the light amount received by the auxiliary light-receiving optical fiber, and measuring the distance between the tip of the light-receiving optical fiber and the surface of the measured object when the difference is zero. A non-contact displacement measuring method, characterized in that the distance is used as a reference distance, and a displacement of the measured distance at the time of measurement with respect to the reference distance is derived based on the calculated difference.
端とが被測定物表面から同一距離になるよう前記両光フ
ァイバを配設し、 前記投光用光ファイバを一部分岐して受光用補助光ファ
イバを形成し、 前記投光用光ファイバにより前記被測定物表面に光を照
射し、 前記被測定物表面からの反射光を前記受光用光ファイバ
及び前記受光用補助光ファイバにより受光し、 前記受光用光ファイバの受光量と前記受光用補助光ファ
イバの受光量との差を算出し、 前記差が零のときにおける前記受光用光ファイバの先端
と前記被測定物表面との測定距離を基準距離とし、 算出した前記差と前記受光用補助光ファイバの受光量と
の比を算出し、 算出した前記比に基き、測定時の前記測定距離の前記基
準距離に対する変位を導出する ことを特徴とする非接触変位測定方法。(2) Both optical fibers are arranged so that the tip of the light-emitting optical fiber and the tip of the light-receiving optical fiber are the same distance from the surface of the object to be measured, and part of the light-emitting optical fiber is branched to receive light. forming an auxiliary optical fiber for light reception, irradiating light onto the surface of the object to be measured using the optical fiber for projecting light, and receiving reflected light from the surface of the object to be measured by the optical fiber for light reception and the auxiliary optical fiber for light reception. and calculating the difference between the amount of light received by the light-receiving optical fiber and the light amount received by the auxiliary light-receiving optical fiber, and measuring the distance between the tip of the light-receiving optical fiber and the surface of the measured object when the difference is zero. Using the distance as a reference distance, calculating a ratio between the calculated difference and the amount of light received by the light receiving auxiliary optical fiber, and deriving a displacement of the measured distance at the time of measurement with respect to the reference distance based on the calculated ratio. A non-contact displacement measurement method characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14176289A JPH036419A (en) | 1989-06-02 | 1989-06-02 | Noncontact method for measuring displacement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14176289A JPH036419A (en) | 1989-06-02 | 1989-06-02 | Noncontact method for measuring displacement |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH036419A true JPH036419A (en) | 1991-01-11 |
Family
ID=15299596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14176289A Pending JPH036419A (en) | 1989-06-02 | 1989-06-02 | Noncontact method for measuring displacement |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH036419A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5922017A (en) * | 1982-06-30 | 1984-02-04 | イ−ストマン コダック カンパニ− | Apparatus for determining distance of object |
JPS6230903A (en) * | 1985-08-02 | 1987-02-09 | Toshiba Corp | Optical displacement detecting apparatus and method for it |
-
1989
- 1989-06-02 JP JP14176289A patent/JPH036419A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5922017A (en) * | 1982-06-30 | 1984-02-04 | イ−ストマン コダック カンパニ− | Apparatus for determining distance of object |
JPS6230903A (en) * | 1985-08-02 | 1987-02-09 | Toshiba Corp | Optical displacement detecting apparatus and method for it |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0314124B2 (en) | ||
US9046349B2 (en) | Method and device for contactless determination of the thickness of a web of material, including correction of the alignment error | |
CN101000236A (en) | Reflection type optical sensor and method for detecting surface roughness | |
JPH0726806B2 (en) | Distance measuring device | |
JPH01235889A (en) | Light wave distance measuring instrument having linearity error correction function | |
JPH0345772B2 (en) | ||
JPS59762B2 (en) | displacement measuring device | |
CN105371755B (en) | A kind of optical maser wavelength modification method using wavelength amendment type multiple beam ladder planar reflector laser interference instrument | |
JPH036419A (en) | Noncontact method for measuring displacement | |
EP0238540A1 (en) | Reflectivity compensated fiber optic sensor | |
RU2292525C1 (en) | A fiber-optic sensor | |
CN205209430U (en) | Many laser angle of wavelength correction formula ladder speculum laser interferometer | |
JPH0282109A (en) | Optical sensor and measuring instrument using same | |
CN206990471U (en) | Detect the dual-wavelength coaxial fibre optical sensor of steel ball surface defect | |
KR20130080269A (en) | Displacement measuring apparatus, and displacement measuring method using the same | |
SU1767327A1 (en) | Optical displacement transducer | |
CN109119355A (en) | Section inclination angle detection device | |
JPS6147514A (en) | Reflective type optical fiber sensor | |
JPH0151124B2 (en) | ||
SU108861A1 (en) | Instrument for measuring the diameter of the thinnest wire | |
JPS63255607A (en) | Optical fiber sensor | |
JPS63121722A (en) | Temperature distribution detector | |
JPS62156515A (en) | Displacement measuring instrument | |
RU2115100C1 (en) | Optical method measuring force | |
JPS62237311A (en) | Automatic reflectivity correction type displacement gauge |