JPH0364175B2 - - Google Patents

Info

Publication number
JPH0364175B2
JPH0364175B2 JP58101583A JP10158383A JPH0364175B2 JP H0364175 B2 JPH0364175 B2 JP H0364175B2 JP 58101583 A JP58101583 A JP 58101583A JP 10158383 A JP10158383 A JP 10158383A JP H0364175 B2 JPH0364175 B2 JP H0364175B2
Authority
JP
Japan
Prior art keywords
membrane
polymer
poly
oxide
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58101583A
Other languages
Japanese (ja)
Other versions
JPS5939304A (en
Inventor
Suushian Rii Jooji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Standard Oil Co
Original Assignee
Standard Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Standard Oil Co filed Critical Standard Oil Co
Publication of JPS5939304A publication Critical patent/JPS5939304A/en
Publication of JPH0364175B2 publication Critical patent/JPH0364175B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/522Aromatic polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ガス分離に関するものである。一面
においては、本発明は半透膜の使用によるガス分
離に関し、別の面においては本発明は少なくとも
1種の置換ポリ(アリーレンオキシド)重合体か
ら製造した半透膜の使用によるガスの分離法に関
するものである。 ガス混合物をその種々の成分部分(またはその
成分の少なくとも濃縮された画分)に分離するた
めに、半透膜を使うことは古くから知られてい
る。この目的のための半透膜の開発は米国特許第
4230463号の4〜6段によく総括的に記載されて
いる。そこに記載の膜の他に、米国特許第
3350844号および第3899309号に記載のものを含め
他の膜がこの種目的のために知られている。すべ
てではないにしても、これらの膜の大部分はその
意図する使用に対し有効なことを示すが、その何
れも完全に満足なものではない。一般に、この種
の分離に使われる膜は望ましいフラツクス
(flux)、選択率、寿命の一つまたはそれ以上に欠
けており、そこで工業界は別種のものを探し続け
ている。 化学プロセス工業にとつて特に興味のあるもの
は、炭化水素流(典型的には天然ガス)から二酸
化炭素および(または)硫化水素の分離に対し、
また空気から酸素濃縮に対し良好な特性を示すよ
うな膜である。商業的には、これらの方法は膜を
使わず、前者では吸収技術を、後者では低温技術
を用いる。この両技術は、エネルギーを要し、し
たがつて操作に費用がかかる。したがつて、別異
の方法を検証(identifying)しかつ充足する
(implementing)必要があり、膜技術を使う方法
は現在著しい経済的利点を与えると思われる。 しかし、現在までのところ、これらのプロセス
のどちらかに対し完全に適すると検証された膜は
ない。 本発明に従えば、二酸化炭素、酸素、硫化水素
の少なくとも一つを含むガス混合物を2画分に、
すなわち二酸化炭素、酸素、硫化水素の少なくと
も一つで濃縮された1画分と上記で枯かつした他
の画分に分離する方法が、分離ピークルとして、
次の構造式 の構造単位少なくとも約50モル%を含んでいる少
なくとも1種の置換ポリ(アリーレンオキシド)
重合体を膜の全重量基準で少なくとも約25重量%
含む半透膜を使うことにより改良される。ただし
各Rは独立に水素または脂肪族、脂環族、または
芳香族基、またはその不活性置換誘導体であり、
各Xは独立に少なくともクロロ基の大きさの基で
あり、aは0または1である。この方法は既知の
方法と実質上同一方式で操作する。すなわち、ガ
ス混合物の一部分が選択的に膜を通過して、濃縮
画分が膜の片側にあり、枯かつ画分が膜の他の側
に残るような方式で、ガス混合物を半透膜と接触
させる。この方法は井戸水頭(wellhead)に構
成する場合、天然ガス流から二酸化炭素および硫
化水素の分離に、および空気から濃縮酸素流の製
造に特に有用である。特にメタンから二酸化炭素
の分離および窒素から酸素の分離に関し、この法
はすぐれたフラツクスと選択率を特徴として示
す。 本発明の方法は、異なるガスを含む混合物から
多くの異なるガスのどれか一つを分離するのに適
している。本発明は天然ガスから二酸化炭素およ
び(または)硫化水素の分離および空気から酸素
の分離に特に有用である。ガス混合物を構成する
ガスの相対量は広く変化でき、そこで本発明は幅
広い種類の分離活動に応用できる。 本発明において使用する膜は、次の構造式 の構造単位を含む少なくとも1種の置換ポリ(ア
リーレンオキシド)重合体を少なくとも約25重量
%含んでいる。ただしR、X、aは上で定義した
通りである。好ましくは、各Rは独立にC1〜C6
脂肪族(さらに好ましくはアルキル)基、C5
C7脂環族(さらに好ましくはシクロアルキル)
基、またはアリール(さらに好ましくはフエニ
ル)基、またはこれら不活性置換誘導体である。
本発明で使用する「不活性置換」とは、当該基が
当該重合体を含む膜の選択率特性(その意図する
用途に対し)を実質上減少しないハロゲン、アル
キル、ニトロ、アルコキシなどの置換基を一つま
たはそれ以上含むことができることを意味する。 典型的なR基は、メチル、エチル、n−プロピ
ル、イソプロピル、ブチル、tert−ブチル、シク
ロヘキシル、フエニル、トリル、ブロモメチルな
どを含む。本発明で用いる「独立に」の用語は、
各置換基が所定の構造単位において同一かまたは
異なることができることを意味し、たとえば各R
がメチルであることができ、または一つがメチル
で他がエチルであることができる。 構造式()のX基は少なくとも一部分立体的
抑制物(steric inhibitors)として働らき、そこ
でかさ高および(または)極性である。「立体的
抑制物」とはこれらの基が隣接重合体鎖間のスペ
ーサーとして働く傾向のあることを意味する。こ
れらの基は膜の全体としての極性を増すような他
の機能も同様に果すこともできるが、その機能の
全域は現在のところ十分にはわかつていない。こ
れらの基は好ましくは少なくともブロモ基の大き
さである。これらの基の代表例は、ハロゲン(ク
ロロ、ブロモ、またはヨード)、アジド、ヒドロ
キシル、チオール、エーテル、チオエーテル、エ
ステル、チオエステル、リン酸、そのエステルま
たは塩、ニトロ、硝酸エステル、亜硝酸エステ
ル、アルキル、アリール、アシル、チオアシルな
どのような基である。これらの基のうち好ましい
ものは、ハロゲン基、特にブロモ基である。下つ
きaが零である式()の構造単位においては、
X基により満たされる以外の環原子価は水素原子
により満たされる。 本発明で使用する置換ポリ(アリーレンオキシ
ド)重合体は、ホモポリマーまたは共重合体であ
ることができ、後者の場合には少なくとも約50モ
ル%の、好ましくは少なくとも約75モル%の式
()の構造単位を含む。当該重合体が共重合体
の場合は、式()の単位以外のコモノマーは式
()の構造単位と共重合できるビスフエノール
A、ビスフエノールスルホンなどのような本質的
にどの構造単位からなることもできる。好ましく
は、本発明で使用する置換ポリ(アリーレンオキ
シド)重合体は、式()の構造単位から本質的
になるが、各構造単位は同一置換基(たとえば同
一のRまたはX基)を含まなくてもよい。環臭素
化ポリ(2、6−ジメチル−1、4−フエニレン
オキシド)および環臭素化ポリ(キシリレンオキ
シド)またはポリ(2、6−キシレノール)とし
ても知られている環臭素化ポリ(2、6−ジメチ
ル−p−フエニレンオキシド)が特に好ましい置
換ポリアリーレン重合体である。経済性、膜製造
の容易さなどのような実際的考慮が、これらの置
換ポリ(アリーレンオキシド)重合体の分子量に
対する唯一の重要な制限である。 本発明で使用する置換ポリ(アリーレンオキシ
ド)重合体は一般に既知の物質であり、そこでそ
の多くの製造法は当該技術分野で既知である。た
とえば、A.S.ヘイ、ジヤーナル・オブ・ポリマ
ー・サイエンス58巻、581頁(1962年)の、表題
「酸化的カツプリングによる重合」に教示されて
いるように、2、6−キシレノールをまず重合
し、ついでホワイト、オーランド、ポリエーテル
ズ、12巻、178頁(1974年)の表題「臭素化ポリ
(フエニレンオキシド)、ポリ(2、6−ジメチ
ル−1、4−フエニレンオキシド)の臭素化」に
教えられているように上記重合体をイオン性条件
下で臭素化することによつて、環臭素化ポリ
(2、6−ジメチル−p−フエニレンオキシド)
は容易に製造できる。類似の工程によつて、ここ
に記載の他の多くの置換ポリアリーレンオキシド
重合体を製造できる。 本発明で使用する半透膜は、式()の構造単
位を含む置換ポリ(アリーレンオキシド)重合体
の少なくとも1種から構成される。置換ポリ(ア
リーレンオキシド)重合体と相溶性のどの重合体
も膜の構成に使用でき、典型的重合体は、ポリ
(アリールスルホン)、ポリ(フエニレンオキシ
ド)、ポリ(無水マレイン酸)、およびその種々の
共重合体などを含む。この重合体の分子量は広く
変化できるが、ふつうは置換ポリ(アリーレンオ
キシド)重合体の分子量の50%範囲以内である。
強さ、耐久性、たわみ性のようなある種の物理的
特性を膜に与えるために、重合体の若干のブレン
ドが望ましいことがあり得る。しかし置換ポリ
(アリーレンオキシド)重合体により与えられる
フラツクスおよび選択率特性を弱めることを避け
るために、膜への他の重合体の合体は最小に保つ
のが望ましい。したがつて、置換ポリ(アリーレ
ンオキシド)重合体は膜の少なくとも約25重量
%、好ましくは少なくとも約50重量%、さらに好
ましくは少なくとも約75重量%を構成する。 他の膜の製造に使われる常法によつて上記膜を
製造し、1具体化では当該重合体を適当な溶剤に
溶かして約1〜2重量%の、好ましくは5〜10重
量%の溶液を形成する。一般に非極性溶剤を使用
でき、クロロホルム、トルエン、クロロベンゼン
類(たとえばo−ジクロロベンゼン)、塩素化炭
化水素(たとえばベルクロロエチレン)がその例
である。これらの非極性溶剤をジメチルホルムア
ミド、ジメチルスルホキシド、ジメチルアセトア
ミド、アセトン、メチルエチルケトンのような極
性溶剤と組合せて使用できるが、このような組合
せにおいては、非極性溶剤が混合物の少なくとも
約50重量%を構成する。橋かけ剤および(また
は)他の重合体を製造において使う場合は、一般
に置換ポリ(アリーレンオキシド)重合体溶液を
つくるのに使つた同一溶剤中の上記物質の1〜20
重量%、好ましくは5〜10重量%溶液をつくり、
2溶液またはそれ以上の溶液を室温で混合する。
ついで得られた溶液をきれいなガラス板上にあ
け、ある種の機器、たとえばドクターブレードの
助けで均一な厚さに均一に広げる。ついで膜を空
気乾燥し、ガラス板から除き、さらにふつうの条
件下空気中で適当な時間、一般には24時間以上乾
燥する。橋かけおよび溶剤の蒸発(除去)が乾燥
工程ぢゆう同時に起る。他の具体化では、当該技
術分野で既知の種々の実験室および商業的技術に
より、これらの膜を製造できる。これらの膜は、
中空繊維のようにフイルム以外の構造にも製造で
きる。さらに、これらの膜またはフイルムを基質
へのコーテイング、積層品などのような複合処方
物に使用できる。 本発明で使う膜は、どのような所望の厚さにも
製造できるが、約25ミル(1ミルは25μmに等し
い)以下の、好ましくは約10ミル以下の厚さをも
つ膜が最も有用な傾向をもつ。膜のフラツクスは
膜の厚さの減少と共に増す傾向があるから、一般
に薄い膜ほど一層望ましい膜である。勿論、膜の
最終厚さはフラツクスがその一つである多数の因
子により決定されるから、好ましい膜厚さは用途
により異なる。 本発明の半透膜は、通常の膜と同一方式で使わ
れる。すなわちガス混合物を典型的には加圧下膜
の片側と接触させ、混合物の1種またはそれ以上
のガス成分を選択的に膜を通過させ、一方残りの
ガス成分は膜により拒絶される。これは膜の片側
に生成する所望のガスの濃縮画分を生じ、一方、
同一ガスの枯かつ画分が膜の他の側に生成する。
一般には所望のガスを、膜を通過させる。すなわ
ち、天然ガスの他のガス成分から二酸化炭素の分
離においては、二酸化炭素が膜を通過し、一方の
他のガス成分の大部分は拒絶される。しかし、あ
る種のガスは一般にこれらの膜によつて拒絶され
ず、これらは一般に水素、ヘリウムのような小さ
な(大きさの)分子である。同様に、空気の他の
ガス成分なら酸素の分離においては、酸素が膜を
通過し、一方窒素および種々の他のガス成分は選
択的に拒絶される。本発明の実施中使う操作温度
は、広く変化できる。一般には類似の分離法で使
われている温度である。膜が物理的および化学的
に安定などの、温度も採用でき、一方、圧力は
(他のパラメーターのなかで)膜の物理強度と共
に変化する。 以下の実施例は、本発明の特別の具体化の例で
あり、ことわらない限り部およびパーセントはす
べて重量である。 実施例 膜の製造のためここで使つた重合体は、すべて
重量平均分子量約40000を有するポリ(2、6−
ジメチル−p−フエニレンオキシド(以後「重合
体」と呼ぶ)(アルドリツチ・ケミカル社販売)
に基づくものであつた。環臭素化重合体の典型的
製造は、室温でクロロホルム(600g)に溶かし
た重合体(60g)を臭素(94g)とガラス反応器
で接触させることにより始めた。接触または添加
時間は約45分であつた。ついで反応混合物を室温
でさらに1時間かくはんした。最終混合物をかき
まぜたメタノールにあけ重合体を沈殿させ、生成
物重合体をさらにメタノールで洗い、減圧で乾燥
し生成物97gを得た。元素分析はこの重合体の臭
素含量が約40重量%であることを示し、プロトン
NMR分光分析はブロモ基が重合体の芳香環部分
に結合していることを示した。 上記重合体を対照重合体、すなわちベンジル臭
素化ポリ(2、6−ジメチル−p−フエニレンオ
キシド)の製造に使つた。この製造は四塩化炭素
1500gに溶かした重合体(70g)をN−ブロモス
クシンイミド(220g)および過酸化ベンゾイル
(3g)と接触させることにより始めた。ついで
反応混合物をかきまぜて76℃に約6時間、窒素雰
囲気下に加熱した。生成物重合体の単離と精製は
環臭素化重合体の製造で使つたものと同じであ
り、生成物重合体102gを回収した。元素分析は
生成物重合体の臭素含量は約35.5重量%であるこ
とを示し、プロトンNMRスペクトルは臭素化が
主として重合体のベンジル(メチル)部分に起つ
たことを示した。 上記で製造した臭素化ポリ(2、6−ジメチル
−p−フエニレンオキシド)重合体から、ここで
試験した膜をつくつたが、ただし実施例2および
3の膜は、他の重合体を含むブレンドからつくつ
た。適当な溶剤、典型的にはクロロホルム中の臭
素化重合体またはブレンドの希薄溶液(約7〜8
重量%)を生成し、きれいなガラス板にあけ、ド
クターブレードの助けで均一な厚さに広げ、空気
乾燥し、ガラス板から除去し、さらに空気中で通
常の条件で少なくとも24時間乾燥することにより
膜をつくつた。 膜の透過試験に変形ギルバート槽を使つた。試
験側をモル比2.99対32対65の二酸化炭素/メタ
ン/窒素混合物にさらした。透過物をキヤリアー
ガスのヘリウムによつてとりあげ、間けつ的に試
料弁を通し分析のためガスクロマトグラフイーカ
ラムに注入した。実験を23℃で行い、フイード側
の試験ガスの分圧は29.8psiであり、透過物側の
生成物ガスの分圧は約0で、透過速度よりはるか
に過剰の流量でヘリウム29.8psiでパージした。 二酸化炭素透過率および二酸化炭素/メタン選
択率の数字を、第1表に示す。膜を構成している
重合体を欄の見出し「重合体」に示し、これら重
合体の各々の臭素含量をその略号に続くかつこ内
に示す。 RB−PPOは、環臭素化ポリ(2、6−ジメチ
ル−p−フエニレンオキシド)を意味し、BB−
PPOはベンジル臭素化ポリ(2、6−ジメチル
−p−フエニレンオキシド)を意味し、PASは
ポリ(アリールスルホン)を意味する。 分離係数は次式により計算した。 分離係数=二酸化炭素透過係数/メタン透過係
数 透過係数は生成物ガス容量(STPでのc.c.)掛
ける膜厚さ(cm)の積を、膜表面積(cm2)掛ける
膜を横切る圧力差(cmHg)掛ける分離時間(秒)
の積で割つた商として表わす。係数10-10は単に
便宜上使う。
TECHNICAL FIELD This invention relates to gas separation. In one aspect, the present invention relates to the separation of gases through the use of semipermeable membranes, and in another aspect, the invention relates to a method for separating gases through the use of semipermeable membranes made from at least one substituted poly(arylene oxide) polymer. It is related to. The use of semipermeable membranes to separate gas mixtures into their various component parts (or at least enriched fractions of their components) has long been known. The development of semipermeable membranes for this purpose was published in a U.S. patent.
It is well summarized in columns 4 to 6 of No. 4230463. In addition to the membranes described therein, U.S. Pat.
Other membranes are known for this type of purpose, including those described in Nos. 3,350,844 and 3,899,309. Although most, if not all, of these membranes have shown effectiveness for their intended use, none are completely satisfactory. Generally, the membranes used for this type of separation lack one or more of the desirable flux, selectivity, or lifetime, so the industry continues to look for alternatives. Of particular interest to the chemical process industry is the separation of carbon dioxide and/or hydrogen sulfide from hydrocarbon streams (typically natural gas);
The membrane also exhibits good properties for concentrating oxygen from air. Commercially, these methods do not use membranes, the former using absorption techniques and the latter using cryogenic techniques. Both techniques require energy and are therefore expensive to operate. Therefore, there is a need to identify and implement alternative methods, and methods using membrane technology currently appear to offer significant economic advantages. However, to date, no membrane has been verified to be fully suitable for either of these processes. According to the invention, a gas mixture containing at least one of carbon dioxide, oxygen, and hydrogen sulfide is divided into two fractions.
In other words, a method of separating into one fraction enriched with at least one of carbon dioxide, oxygen, and hydrogen sulfide and the other fraction depleted in the above is a separation peak method.
The following structural formula at least one substituted poly(arylene oxide) containing at least about 50 mole percent structural units of
at least about 25% by weight of the polymer based on the total weight of the membrane
improved by using a semipermeable membrane containing provided that each R is independently hydrogen, an aliphatic, alicyclic, or aromatic group, or an inert substituted derivative thereof;
Each X is independently a group at least the size of a chloro group, and a is 0 or 1. This method operates in substantially the same manner as known methods. That is, a gas mixture is passed through a semipermeable membrane in such a way that a portion of the gas mixture selectively passes through the membrane such that the enriched fraction is on one side of the membrane and the depleted fraction remains on the other side of the membrane. bring into contact. When configured in a wellhead, this method is particularly useful for the separation of carbon dioxide and hydrogen sulfide from natural gas streams and for the production of enriched oxygen streams from air. Particularly for the separation of carbon dioxide from methane and the separation of oxygen from nitrogen, this process is characterized by excellent flux and selectivity. The method of the invention is suitable for separating any one of a number of different gases from a mixture containing different gases. The present invention is particularly useful for separating carbon dioxide and/or hydrogen sulfide from natural gas and oxygen from air. The relative amounts of gases that make up the gas mixture can vary widely, so the invention is applicable to a wide variety of separation activities. The membrane used in the present invention has the following structural formula: at least about 25% by weight of at least one substituted poly(arylene oxide) polymer containing structural units of. However, R, X, and a are as defined above. Preferably, each R is independently C 1 -C 6
Aliphatic (more preferably alkyl) group, C 5 -
C7 alicyclic group (more preferably cycloalkyl)
or an aryl (more preferably phenyl) group, or an inert substituted derivative thereof.
As used herein, "inert substitution" refers to substituents such as halogen, alkyl, nitro, alkoxy, etc., in which the group does not substantially reduce the selectivity properties (for its intended use) of the membrane containing the polymer. This means that it can contain one or more. Typical R groups include methyl, ethyl, n-propyl, isopropyl, butyl, tert-butyl, cyclohexyl, phenyl, tolyl, bromomethyl, and the like. The term "independently" as used in the present invention means:
It is meant that each substituent can be the same or different in a given structural unit, e.g. each R
can be methyl, or one can be methyl and the other ethyl. The X group of structure () serves at least in part as steric inhibitors and is therefore bulky and/or polar. By "sterically inhibited" is meant that these groups tend to act as spacers between adjacent polymer chains. These groups may serve other functions as well, such as increasing the overall polarity of the membrane, but the full range of their functions is currently not fully understood. These groups are preferably at least the size of a bromo group. Representative examples of these groups are halogen (chloro, bromo, or iodo), azide, hydroxyl, thiol, ether, thioether, ester, thioester, phosphoric acid, ester or salt thereof, nitro, nitrate, nitrite, alkyl , aryl, acyl, thioacyl, etc. Preferred among these groups are halogen groups, especially bromo groups. In the structural unit of formula () where the subscript a is zero,
Ring valencies other than those filled by the X groups are filled by hydrogen atoms. The substituted poly(arylene oxide) polymers used in the present invention can be homopolymers or copolymers, in the latter case at least about 50 mol%, preferably at least about 75 mol% of the formula () Contains structural units of If the polymer is a copolymer, the comonomer other than the unit of formula () may consist essentially of any structural unit such as bisphenol A, bisphenol sulfone, etc. that can be copolymerized with the structural unit of formula (). You can also do it. Preferably, the substituted poly(arylene oxide) polymers used in the present invention consist essentially of structural units of formula (), but each structural unit does not contain the same substituents (e.g., the same R or X groups). It's okay. Cyclobrominated poly(2,6-dimethyl-1,4-phenylene oxide) and also known as cyclobrominated poly(xylylene oxide) or poly(2,6-xylenol) , 6-dimethyl-p-phenylene oxide) are particularly preferred substituted polyarylene polymers. Practical considerations such as economics, ease of membrane fabrication, etc. are the only significant limitations on the molecular weight of these substituted poly(arylene oxide) polymers. The substituted poly(arylene oxide) polymers used in the present invention are generally known materials, and many methods of making them are known in the art. For example, 2,6-xylenol is first polymerized and then White, Orlando, Polyethers, vol. 12, p. 178 (1974), entitled ``Brominated poly(phenylene oxide), bromination of poly(2,6-dimethyl-1,4-phenylene oxide)''. By brominating the above polymer under ionic conditions as described above, ring brominated poly(2,6-dimethyl-p-phenylene oxide)
can be easily manufactured. Many other substituted polyarylene oxide polymers described herein can be made by similar processes. The semipermeable membrane used in the present invention is composed of at least one substituted poly(arylene oxide) polymer containing the structural unit of formula (). Any polymer that is compatible with the substituted poly(arylene oxide) polymer can be used in membrane construction; typical polymers include poly(aryl sulfone), poly(phenylene oxide), poly(maleic anhydride), and It includes various copolymers thereof. The molecular weight of this polymer can vary widely, but is usually within 50% of the molecular weight of the substituted poly(arylene oxide) polymer.
Some blend of polymers may be desirable to impart certain physical properties to the membrane, such as strength, durability, flexibility. However, to avoid compromising the flux and selectivity properties provided by the substituted poly(arylene oxide) polymer, it is desirable to keep the incorporation of other polymers into the membrane to a minimum. Thus, the substituted poly(arylene oxide) polymer comprises at least about 25%, preferably at least about 50%, and more preferably at least about 75% by weight of the membrane. The membranes are prepared by conventional methods used in the manufacture of other membranes, and in one embodiment, the polymer is dissolved in a suitable solvent to form a solution of about 1 to 2% by weight, preferably 5 to 10% by weight. form. Generally non-polar solvents can be used, examples being chloroform, toluene, chlorobenzenes (eg o-dichlorobenzene), chlorinated hydrocarbons (eg perchlorethylene). These non-polar solvents can be used in combination with polar solvents such as dimethylformamide, dimethyl sulfoxide, dimethylacetamide, acetone, methyl ethyl ketone, where the non-polar solvent constitutes at least about 50% by weight of the mixture. do. When crosslinking agents and/or other polymers are used in the preparation, they are generally mixed in 1 to 20 of the above materials in the same solvent used to make the substituted poly(arylene oxide) polymer solution.
% by weight, preferably 5-10% by weight solution,
Mix the two or more solutions at room temperature.
The solution obtained is then poured onto a clean glass plate and spread evenly to a uniform thickness with the aid of some kind of equipment, for example a doctor blade. The membrane is then air dried, removed from the glass plate, and further dried in air under normal conditions for a suitable period of time, generally 24 hours or more. Cross-linking and solvent evaporation (removal) occur simultaneously during the drying process. In other embodiments, these membranes can be manufactured by a variety of laboratory and commercial techniques known in the art. These membranes are
It can also be manufactured into structures other than films, such as hollow fibers. Additionally, these membranes or films can be used in composite formulations such as coatings on substrates, laminates, etc. Although the membranes used in the present invention can be manufactured to any desired thickness, membranes having a thickness of about 25 mils (1 mil equals 25 μm) or less, preferably about 10 mils or less are most useful. have a tendency. Thinner membranes are generally more desirable since membrane flux tends to increase with decreasing membrane thickness. Of course, the final thickness of the membrane is determined by a number of factors, one of which is flux, so the preferred membrane thickness will vary depending on the application. The semipermeable membrane of the present invention can be used in the same manner as a conventional membrane. That is, a gas mixture is typically brought into contact with one side of the membrane under pressure, allowing one or more gaseous components of the mixture to selectively pass through the membrane while the remaining gaseous components are rejected by the membrane. This results in an enriched fraction of the desired gas being produced on one side of the membrane, while
A depleted fraction of the same gas is produced on the other side of the membrane.
Generally, the desired gas is passed through the membrane. That is, in the separation of carbon dioxide from other gaseous components of natural gas, carbon dioxide passes through the membrane while most of the other gaseous components are rejected. However, certain gases are generally not rejected by these membranes, and these are generally small molecules such as hydrogen, helium. Similarly, in the separation of oxygen from other gaseous components of air, oxygen passes through the membrane while nitrogen and various other gaseous components are selectively rejected. The operating temperatures used during the practice of this invention can vary widely. This is generally the temperature used in similar separation methods. Temperature can also be employed, such that the membrane is physically and chemically stable, while pressure (among other parameters) varies with the membrane's physical strength. The following examples are illustrative of specific embodiments of the invention and all parts and percentages are by weight unless otherwise indicated. EXAMPLE The polymers used here for the production of the membranes were all poly(2,6-
Dimethyl-p-phenylene oxide (hereinafter referred to as "polymer") (sold by Aldrich Chemical Company)
It was based on A typical preparation of a ring brominated polymer began by contacting the polymer (60 g) dissolved in chloroform (600 g) with bromine (94 g) in a glass reactor at room temperature. The contact or addition time was approximately 45 minutes. The reaction mixture was then stirred for an additional hour at room temperature. The final mixture was poured into stirred methanol to precipitate the polymer, and the product polymer was further washed with methanol and dried under reduced pressure to yield 97 g of product. Elemental analysis shows that the bromine content of this polymer is approximately 40% by weight, with proton
NMR spectroscopy showed that the bromo group was attached to the aromatic ring moiety of the polymer. The above polymer was used to prepare a control polymer, benzyl brominated poly(2,6-dimethyl-p-phenylene oxide). This production is carbon tetrachloride
It started by contacting the polymer (70 g) dissolved in 1500 g with N-bromosuccinimide (220 g) and benzoyl peroxide (3 g). The reaction mixture was then stirred and heated to 76°C for approximately 6 hours under a nitrogen atmosphere. The isolation and purification of the product polymer was the same as that used in the preparation of the ring brominated polymer, and 102 g of product polymer was recovered. Elemental analysis showed that the bromine content of the product polymer was about 35.5% by weight, and proton NMR spectra showed that bromination occurred primarily on the benzyl (methyl) moiety of the polymer. The membranes tested here were made from the brominated poly(2,6-dimethyl-p-phenylene oxide) polymer prepared above, except that the membranes of Examples 2 and 3 contained other polymers. Made from a blend. A dilute solution of the brominated polymer or blend (approximately 7 to 8
% by weight), pour it into a clean glass plate, spread it to a uniform thickness with the help of a doctor blade, air dry it, remove it from the glass plate, and further dry it in air under normal conditions for at least 24 hours. I made a membrane. A modified Gilbert tank was used for the membrane permeation test. The test side was exposed to a carbon dioxide/methane/nitrogen mixture in a molar ratio of 2.99:32:65. The permeate was picked up by the carrier gas helium and intermittently injected through the sample valve into a gas chromatography column for analysis. The experiment was conducted at 23 °C, the partial pressure of the test gas on the feed side was 29.8 psi, the partial pressure of the product gas on the permeate side was approximately 0, and the helium was purged at 29.8 psi at a flow rate far in excess of the permeation rate. did. The figures for carbon dioxide permeability and carbon dioxide/methane selectivity are shown in Table 1. The polymers constituting the membrane are shown under the column heading "Polymer", and the bromine content of each of these polymers is shown in brackets following the abbreviation. RB-PPO means ring brominated poly(2,6-dimethyl-p-phenylene oxide); BB-
PPO means benzyl brominated poly(2,6-dimethyl-p-phenylene oxide) and PAS means poly(arylsulfone). The separation factor was calculated using the following formula. Separation coefficient = carbon dioxide permeation coefficient / methane permeation coefficient The permeability coefficient is the product of product gas volume (cc at STP) times membrane thickness (cm), membrane surface area (cm 2 ) times pressure difference across the membrane (cmHg). Separation time to be multiplied (seconds)
It is expressed as the quotient divided by the product of The factor 10 -10 is used merely for convenience.

【表】 第1表のデータから、環臭素化ポリ(2、6−
ジメチル−p−フエニレンオキシド)重合体から
形成した膜は、X基をもたない類似の重合体から
形成した膜よりも一般的にすぐれていることが明
らかにわかる。二酸化炭素透過係数と同様に、分
離係数は環臭化重合体がベンジル臭素化または未
臭化重合体よりもはるかに大であつた。 二酸化炭素透過率と二酸化炭素/メタン選択率
を決めるための上記操作をくり返したが、ただし
21.3対78.7のモル比の酸素と窒素の混合物を使つ
た。この試験結果を第2表に示す。
[Table] From the data in Table 1, ring brominated poly(2,6-
It can be clearly seen that membranes formed from dimethyl-p-phenylene oxide) polymers are generally superior to membranes formed from similar polymers without the X group. Similar to the carbon dioxide permeability coefficient, the separation factor was much greater for the cyclobrominated polymer than for the benzyl brominated or unbrominated polymer. The above operation to determine the carbon dioxide permeability and carbon dioxide/methane selectivity was repeated, but
A mixture of oxygen and nitrogen with a molar ratio of 21.3 to 78.7 was used. The test results are shown in Table 2.

【表】 第2表のデータからまた、環臭素化ポリ(2、
6−ジメチル−p−フエニレンオキシド)重合体
がそのベンジル臭素化および未臭素化体よりも優
れていることがわかる。 本発明を上記実施例によりかなり詳しく記載し
たが、それらは、単に例示の目的で示したもの
で、本発明を制限する意図を有するものではな
い。
[Table] From the data in Table 2, we also found that ring brominated poly(2,
It can be seen that the 6-dimethyl-p-phenylene oxide) polymer is superior to its benzylic brominated and unbrominated versions. Although the present invention has been described in considerable detail by the above examples, they are given for illustrative purposes only and are not intended to limit the invention.

Claims (1)

【特許請求の範囲】 1 ガス混合物の一部分が選択的に半透膜を通過
して濃縮画分が膜の片側にあり枯かつ画分が膜の
他の側に生じるような方式で当該ガス混合物を半
透膜と接触させることからなる、CO2、O2、H2S
の少なくとも1種を含んでいるガス混合物を一つ
の画分がCO2、O2、H2Sの少なくとも1種で濃縮
され他の画分がCO2、O2、H2Sの少なくとも1種
が枯かつしている2画分に分離する方法におい
て、 次の構造式 (ただし、各Rは独立に水素、脂肪族、または芳
香族基、またはその不活性置換誘導体であり、各
Xは独立に少なくともクロロ基の大きさの基であ
り、aは0または1である)の構造単位を少なく
とも約50モル%含んでいる少なくとも1種の置換
ポリ(アリーレンオキシド)重合体を、膜の全重
量基準で、少なくとも約25重量%含む膜を使うこ
とを特徴とする改良法。 2 各Rが独立にC1〜C6アルキル基である特許
請求の範囲1の方法。 3 各Rがメチル基である特許請求の範囲2の方
法。 4 各Xがハロゲン基である特許請求の範囲3の
方法。 5 各Xがブロモ基である特許請求の範囲4の方
法。 6 置換ポリ(アリーレンオキシド)重合体が構
造式()の構造単位を少なくとも75モル%含ん
でいる特許請求の範囲5の方法。 7 aが零である特許請求の範囲5の方法。 8 置換ポリ(アリーレンオキシド)重合体が式
()の構造単位から本質的になる特許請求の範
囲7の方法。 9 当該膜が膜の全重量基準で少なくとも1種の
置換ポリ(アリーレンオキシド)重合体少なくと
も約50重量%を含んでいる特許請求の範囲8の方
法。 10 当該膜が膜の全重量基準で少なくとも1種
の置換ポリ(アリーレンオキシド)重合体を少な
くとも約75重量%含んでいる特許請求の範囲8の
方法。 11 当該膜が1種またはそれ以上の置換ポリ
(キシリレンオキシド)重合体から本質的に構成
されている特許請求の範囲8の方法。 12 当該膜が環臭素化ポリ(2、6−ジメチル
−p−フエニレンオキシド)を本質的に含んでい
る特許請求の範囲8の方法。 13 当該膜が相容性重合体と組合せた少なくと
も1種の置換ポリ(キシリレンオキシド)重合体
を含んでいる特許請求の範囲9の方法。 14 相容性重合体がポリ(アリールスルホン)
またはポリ(2、6−ジメチル−p−フエニレン
オキシド)である特許請求の範囲13の方法。 15 当該膜が中空繊維である特許請求の範囲
1、9、11、12、または13の方法。 16 当該膜が約10ミル以下の厚さをもつ特許請
求の範囲15の方法。 17 当該膜を基質上にコーテイングとして流し
込む特許請求の範囲1、9、11、12、または
13の方法。 18 被覆した基質が中空繊維である特許請求の
範囲17の方法。 19 ガス混合物が天然ガスである特許請求の範
囲6の方法。 20 ガス混合物が空気である特許請求の範囲6
の方法。 21 ガス混合物が天然ガスである特許請求の範
囲17の方法。 22 ガス混合物が空気である特許請求の範囲1
7の方法。
[Claims] 1. Passing a portion of the gas mixture selectively through a semipermeable membrane in such a way that a concentrated fraction is on one side of the membrane and a depleted fraction is on the other side of the membrane. CO 2 , O 2 , H 2 S by contacting them with a semipermeable membrane.
One fraction is enriched with at least one of CO 2 , O 2 , H 2 S and the other fraction is enriched with at least one of CO 2 , O 2 , H 2 S. In the method of separating into two fractions in which (wherein each R is independently a hydrogen, aliphatic, or aromatic group, or an inert substituted derivative thereof, each X is independently a group at least the size of a chloro group, and a is 0 or 1) ) of at least about 25% by weight, based on the total weight of the membrane, of at least one substituted poly(arylene oxide) polymer containing at least about 50% by mole of structural units of . 2. The method of claim 1, wherein each R is independently a C1 - C6 alkyl group. 3. The method of claim 2, wherein each R is a methyl group. 4. The method of claim 3, wherein each X is a halogen group. 5. The method of claim 4, wherein each X is a bromo group. 6. The method of claim 5, wherein the substituted poly(arylene oxide) polymer contains at least 75 mole percent of structural units of formula (). 7. The method of claim 5, wherein a is zero. 8. The method of claim 7, wherein the substituted poly(arylene oxide) polymer consists essentially of structural units of formula (). 9. The method of claim 8, wherein the membrane includes at least about 50% by weight of at least one substituted poly(arylene oxide) polymer, based on the total weight of the membrane. 10. The method of claim 8, wherein the membrane contains at least about 75% by weight of at least one substituted poly(arylene oxide) polymer, based on the total weight of the membrane. 11. The method of claim 8, wherein the membrane consists essentially of one or more substituted poly(xylylene oxide) polymers. 12. The method of claim 8, wherein the membrane essentially comprises ring-brominated poly(2,6-dimethyl-p-phenylene oxide). 13. The method of claim 9, wherein the membrane comprises at least one substituted poly(xylylene oxide) polymer in combination with a compatible polymer. 14 Compatible polymer is poly(arylsulfone)
or poly(2,6-dimethyl-p-phenylene oxide). 15. The method of claim 1, 9, 11, 12, or 13, wherein the membrane is a hollow fiber. 16. The method of claim 15, wherein the membrane has a thickness of about 10 mils or less. 17. The method of claim 1, 9, 11, 12, or 13, wherein the membrane is cast as a coating onto a substrate. 18. The method of claim 17, wherein the coated substrate is a hollow fiber. 19. The method of claim 6, wherein the gas mixture is natural gas. 20 Claim 6 in which the gas mixture is air
the method of. 21. The method of claim 17, wherein the gas mixture is natural gas. 22 Claim 1 in which the gas mixture is air
7 ways.
JP58101583A 1982-08-26 1983-06-07 Improvement in separation method of gaseous mixture using semipermeable membrane made of substituted poly(aryleneoxide) polymer Granted JPS5939304A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US41192482A 1982-08-26 1982-08-26
US411924 1982-08-26

Publications (2)

Publication Number Publication Date
JPS5939304A JPS5939304A (en) 1984-03-03
JPH0364175B2 true JPH0364175B2 (en) 1991-10-04

Family

ID=23630826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58101583A Granted JPS5939304A (en) 1982-08-26 1983-06-07 Improvement in separation method of gaseous mixture using semipermeable membrane made of substituted poly(aryleneoxide) polymer

Country Status (3)

Country Link
JP (1) JPS5939304A (en)
KR (1) KR840005975A (en)
BR (1) BR8303018A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE31146T1 (en) * 1983-06-30 1987-12-15 Monsanto Co MEMBRANES BASED ON AMORPHIC POLYARYL ETHERS SUBSTITUTED TO THE ARYL GROUPS.

Also Published As

Publication number Publication date
JPS5939304A (en) 1984-03-03
BR8303018A (en) 1984-04-17
KR840005975A (en) 1984-11-21

Similar Documents

Publication Publication Date Title
US5071448A (en) Semipermeable membranes based on certain sulfonated substituted polysulfone polymers
EP0426118B1 (en) Sulfonated hexafluoro bis-A polysulfone membranes and process for fluid separations
JPH06269648A (en) Polyimide gas separation membrane for carbon dioxide thickening
US5080698A (en) Aromatic polyethers containing cyano groups for gas separation
EP1213049B1 (en) Gas separation membrane and process for producing a polymer
JPH0829239B2 (en) Polyimide gas separation membrane
US4427419A (en) Semipermeable membranes prepared from polymers containing pendent sulfone groups
JPH04222832A (en) Polyimide and gas separation material made by using it
US4596860A (en) Process for the modification of aromatic polymers via Friedel-Crafts reactions to produce novel polymers and the use thereof
US4586939A (en) Process for separating gaseous mixtures using a semipermeable membrane constructed from substituted poly(arylene oxide) polymer
US4710204A (en) Polyphosphazene gas separation membranes
EP0099187B1 (en) Separation of gaseous mixtures using a semi-permeable membrane
CA1294093C (en) Polyphosphazene fluid separation membranes
US5156656A (en) Semi-permeable membranes derived from reactive oligomers
US4882057A (en) Composition and process for separating fluid mixtures
JPH0768143A (en) New polyimide and gas separation membrane prepared thereof
US4684376A (en) Process for the modification of aromatic polymers via Friedel-Crafts reactions to produce novel polymers and the use thereof
FI73700B (en) FOERBAETTRADE POLY (ARYLETRAR).
JPH0364175B2 (en)
US4963266A (en) Composition and process for separating fluid mixtures
EP0778077A2 (en) New polymer membranes prepared from polysulfone and polyimide blends for the separation of industrial gas mixtures
US4673717A (en) Process for the modification of aromatic polymers via Friedel-Crafts reactions to produce novel polymers and the use thereof
US6419725B1 (en) Process of forming a permeable gas separation material
EP0409265A2 (en) Composite polymeric membranes for gas separation and their preparation and use
Wu ether ketimine membranes