JPH0364039A - Evaluation of semiconductor substrate - Google Patents
Evaluation of semiconductor substrateInfo
- Publication number
- JPH0364039A JPH0364039A JP19933789A JP19933789A JPH0364039A JP H0364039 A JPH0364039 A JP H0364039A JP 19933789 A JP19933789 A JP 19933789A JP 19933789 A JP19933789 A JP 19933789A JP H0364039 A JPH0364039 A JP H0364039A
- Authority
- JP
- Japan
- Prior art keywords
- semi
- insulating substrate
- electrode
- active layer
- fet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 52
- 238000011156 evaluation Methods 0.000 title description 6
- 239000004065 semiconductor Substances 0.000 title description 5
- 239000012535 impurity Substances 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims description 13
- 230000005669 field effect Effects 0.000 claims description 11
- 239000000969 carrier Substances 0.000 claims description 4
- 239000012212 insulator Substances 0.000 claims description 3
- 230000005524 hole trap Effects 0.000 abstract description 4
- 108091006146 Channels Proteins 0.000 description 9
- 102000004129 N-Type Calcium Channels Human genes 0.000 description 6
- 108090000699 N-Type Calcium Channels Proteins 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 239000000370 acceptor Substances 0.000 description 2
- 102100031920 Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial Human genes 0.000 description 1
- 101000992065 Homo sapiens Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000001773 deep-level transient spectroscopy Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010291 electrical method Methods 0.000 description 1
- 238000010893 electron trap Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は半導体基板の基板中に含まれる準位の密度を測
定する半導体基板評価方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor substrate evaluation method for measuring the density of levels contained in a semiconductor substrate.
半絶縁基板は高抵抗(107Ω・Cl11以上)なため
寄生容量の少ない高速な回路にむいている。しかし浅い
不純物を深い不純物で補償することによって得られるた
め、半絶縁性基板上に作られた電界効果トランジスタ(
FET)の電気的特性は、そのn型チャネルと半絶縁性
基板のホモ界面(n−1界面)を介して基板の不純物密
度に大きく影響される。従って、不純物密度が基板面内
でゆらぐとFETの特性がばらつき、高密度なICを設
計する場合にFET特性のばらつきを考慮しなければな
らず、またそのばらつきのマージンをとることによって
回路のスピードを遅くすることになり、半絶縁性基板を
用いることのメリットを失うことになる。故に基板の均
一性をよくする製造方法、及びその評価方法の確立は重
要である。Semi-insulating substrates have high resistance (107Ω·Cl11 or more) and are suitable for high-speed circuits with little parasitic capacitance. However, since it can be obtained by compensating shallow impurities with deep impurities, field effect transistors (
The electrical characteristics of a FET (FET) are greatly influenced by the impurity density of the substrate via the homo-interface (n-1 interface) between its n-type channel and the semi-insulating substrate. Therefore, if the impurity density fluctuates within the substrate surface, the characteristics of the FET will vary, and when designing a high-density IC, it is necessary to take this variation in FET characteristics into account. This will slow down the process, and the advantage of using a semi-insulating substrate will be lost. Therefore, it is important to establish a manufacturing method that improves the uniformity of the substrate and a method for evaluating the same.
前に記したように半絶縁性基板は高抵抗なため、評価方
法として通常の電気的測定方法である電流−電圧測定法
、容量−電圧測定法、DLTS(Deep Level
Transient 5pectroscopy)法
などの手法は用いにくい。また従来の評価方法としては
、光励起によりキャリアを基板中に発生させその光電溝
を測る方法、あるいは電気的な方法ではないフォトルミ
ネッサンス法、赤外吸収法などがある。As mentioned above, semi-insulating substrates have high resistance, so the evaluation methods include the usual electrical measurement methods such as current-voltage measurement method, capacitance-voltage measurement method, and DLTS (Deep Level
Techniques such as the Transient 5 pectroscopy method are difficult to use. Conventional evaluation methods include a method in which carriers are generated in a substrate by optical excitation and the photoelectric groove is measured, a photoluminescence method, an infrared absorption method, and the like, which are not electrical methods.
一方、51−MOSFETではいわゆるバックゲート効
果として、FETのドレイン電流がFETと基板を介し
た第2の電極の電圧で変調されることが認められている
。これはStの基板はn型チャネルのFETに対しp型
の基板であるため、第2の電極に加えた負電圧はすべて
チャネルと基板の界面の空乏層にかかり、いわゆるpn
接合の逆バイアス状態になっているため、基板の不純物
の密度と印加電圧に対するドレイン電流の関係が得られ
る。しかし、半絶縁性基板上に作られたn型チャネルの
FETでは、基板自体が高抵抗なため通常のpn接合の
考え方はできないと考えられる。On the other hand, in the 51-MOSFET, it is recognized that the drain current of the FET is modulated by the voltage of the second electrode via the FET and the substrate, as a so-called back gate effect. This is because the St substrate is a p-type substrate for an n-type channel FET, so all the negative voltage applied to the second electrode is applied to the depletion layer at the interface between the channel and the substrate, so-called pn
Since the junction is in a reverse bias state, the relationship between the drain current and the impurity density of the substrate and the applied voltage can be obtained. However, in an n-type channel FET fabricated on a semi-insulating substrate, the substrate itself has a high resistance, so the usual pn junction concept cannot be considered.
従来の評価方法では、上述したように電界効果トランジ
スタの特性と基板特性との関係が不明瞭であった。In conventional evaluation methods, the relationship between the characteristics of the field effect transistor and the characteristics of the substrate is unclear, as described above.
本発明の目的は、電界効果トランジスタの特性と被測定
半導体基板の特性との関連が明確になる半導体基板の評
価方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a method for evaluating a semiconductor substrate in which the relationship between the characteristics of a field effect transistor and the characteristics of a semiconductor substrate to be measured becomes clear.
本発明の半絶縁性基板の評価方法は、
正孔または電子をトラップしやすい深い準位で補償した
半絶縁性基板上にトラップしやすいキャリアの型と同じ
導電型の活性層を有する電界効果トランジスタを少なく
とも一つ形成し、かつ、その電界効果トランジスタの隣
あるいは前記半絶縁性基板の下面に半絶縁性基板を絶縁
体として介して、前記活性層上に第2の電極構造を形成
し、電界効果トランジスタを線形領域で動作させた時の
ドレイン電流を、前記第2の電極に加えた電圧を変化さ
せて変調し、そのときのドレイン電流および第2の電極
に加えた電圧から、電界効果トランジスタの前記活性層
と半絶縁性基板の界面付近の不純物準位の密度を得るこ
とにより半絶縁性基板を評価することを特徴としている
。The method for evaluating a semi-insulating substrate of the present invention includes forming a field-effect transistor having an active layer of the same conductivity type as the type of carriers that easily trap holes or electrons on a semi-insulating substrate compensated with a deep level that easily traps holes or electrons. and a second electrode structure is formed on the active layer next to the field effect transistor or on the lower surface of the semi-insulating substrate with a semi-insulating substrate interposed as an insulator, and a second electrode structure is formed on the active layer. The drain current when the effect transistor is operated in a linear region is modulated by changing the voltage applied to the second electrode, and from the drain current and the voltage applied to the second electrode at that time, the field effect transistor is The semi-insulating substrate is evaluated by obtaining the density of impurity levels near the interface between the active layer and the semi-insulating substrate.
正孔あるいは電子をトラップしやすい深い準位で補償し
た半絶縁性基板上にトラップしやすいキャリアの型と同
じ導電型の活性層を有するFE、r’を少なくとも一つ
以上作り、かつ、そのFETの隣あるいは基板の下面に
半絶縁性基板を絶縁体として介して、前記活性層上に第
2の電極構造を形成し、FET@線形領域で動作させた
時のドレイン電流が、第2の電極に加えた電圧に対し、
FETの活性層と半絶縁性基板の界面の空乏層の変化に
よって変調することから前記界面付近の不純物準位の密
度を得、半絶縁性基板を評価することが可能となる。At least one FE, r', having an active layer of the same conductivity type as the type of carriers that easily trap holes or electrons is formed on a semi-insulating substrate compensated with a deep level that easily traps holes or electrons, and the FET A second electrode structure is formed on the active layer next to or on the lower surface of the substrate with a semi-insulating substrate as an insulator, and the drain current when operated in the FET@linear region is determined by the second electrode structure. For the voltage applied to
Since it is modulated by changes in the depletion layer at the interface between the active layer of the FET and the semi-insulating substrate, it becomes possible to obtain the density of impurity levels near the interface and evaluate the semi-insulating substrate.
第1図は本発明の方法を実施するデバイス構造の具体例
を示したものである。FIG. 1 shows a specific example of a device structure for implementing the method of the present invention.
まず、測定対象である半絶縁性基板1を準備する。この
半絶縁性基板1は、浅いアクセプタ不純物を正孔トラッ
プ型の深いドナ準位で補償されている。この半絶縁性基
板1上にnチャネルFET2を一つ作製する。3はこの
FETのソース電極、4はゲート電極、5はドレイン電
極である。次に、FET2の隣に第2の電極6あるいは
基板1の下面に第2の電極7を形成する。なお、8はn
型チャネル層である。First, a semi-insulating substrate 1 to be measured is prepared. In this semi-insulating substrate 1, shallow acceptor impurities are compensated by a hole trap type deep donor level. One n-channel FET 2 is fabricated on this semi-insulating substrate 1. 3 is a source electrode of this FET, 4 is a gate electrode, and 5 is a drain electrode. Next, a second electrode 6 is formed next to the FET 2 or a second electrode 7 is formed on the lower surface of the substrate 1. In addition, 8 is n
type channel layer.
以上のような構造のデバイスにおいて、ソース電極3.
ゲート電極4.ドレイン電極5の電位を固定し、第2電
極7の電圧を負に変化させる。このときの第1図中の断
面線A−Aに沿ったポテンシャル分布を計算したものを
第2図に示す。縦座標はポテンシャル、横座標はnチャ
ネル9側から第2の電極7側への距離である。曲線■〜
■は、チャネル電位がそれぞれ20V、IOV、5V、
2V。In the device having the above structure, the source electrode 3.
Gate electrode 4. The potential of the drain electrode 5 is fixed, and the voltage of the second electrode 7 is changed to negative. FIG. 2 shows a calculated potential distribution along the cross-sectional line A-A in FIG. 1 at this time. The ordinate is the potential, and the abscissa is the distance from the n-channel 9 side to the second electrode 7 side. Curve ■~
■The channel potential is 20V, IOV, 5V, respectively.
2V.
I V、0.5V、OVの場合を示している。このよう
に印加した電圧のほぼ全てがチャネル側n−を界面10
に集中しその空乏層を広げている。キャリアの空乏して
いるこの領域では、深い準位は正孔トラップであるため
、電子をほぼ100%つかまえており、その領域の電荷
は浅いアクセプタの総量で決まっている。従ってこの場
合、チャネル側n−i界面10は深い準位の帯電を考え
ないpn接合と考えてよい。The case of IV, 0.5V, and OV is shown. Almost all of the voltage applied in this way is applied to the channel side n- to the interface 10.
and the depletion layer is widening. In this carrier-depleted region, the deep level is a hole trap, so it captures almost 100% of the electrons, and the charge in that region is determined by the total amount of shallow acceptors. Therefore, in this case, the channel side n-i interface 10 may be considered to be a pn junction without consideration of deep level charging.
以上は半絶縁性基板1の下面に形成された第2の電極7
の電圧を変化させた場合であるが、FET2の隣に形成
した第2の電極6の電圧を負に変化させても、同様にチ
ャネル側n−i界面10に空乏層が広がり、チャネル側
n−を界面IOは深い準位の帯電を考えないpn接合と
考えてよい。The above is the second electrode 7 formed on the lower surface of the semi-insulating substrate 1.
This is a case where the voltage of the second electrode 6 formed next to the FET 2 is changed to a negative value, a depletion layer similarly spreads at the channel side n-i interface 10, and the channel side n The interface IO can be considered as a pn junction in which deep level charging is not considered.
第3図は第1図のデバイス構造についてドレイン電流の
第2電極電圧依存性を計算したものである。縦座標は規
格化した(normalized) ドレイン電流を
、横座標は第2の電極の電圧を示している。FIG. 3 shows the calculated dependence of the drain current on the second electrode voltage for the device structure shown in FIG. The ordinate shows the normalized drain current, and the abscissa shows the voltage at the second electrode.
深い準位の密度N7を2 X1016cm−’と固定し
、浅い準位の密度Naを5 ×1QI4〜I Xl01
6c+*−’と変えている。このように浅い準位の密度
依存性がクリアに現れる。ここでn型チャネルのドナ密
度をN、と置いたとき、第2電極の電圧変化に対するド
レイン電流の変化の割合は、
θ Iゎ
θV2
・ ・ ・(1)
のように表される。ここで、1.はドレイン電流。The density of the deep level N7 is fixed as 2 x 1016 cm-', and the density of the shallow level Na is set as 5 x 1QI4~IXl01
It is changed to 6c+*-'. In this way, the density dependence of shallow levels clearly appears. Here, when the donor density of the n-type channel is set as N, the ratio of change in drain current to change in voltage of the second electrode is expressed as θ IゎθV2 . . . (1). Here, 1. is the drain current.
v2は第2電極の電圧、qは準位電荷、ε、は基板1の
誘電率、V b iはnチャネル側n−i界面10の拡
散電位、LwはFET2のゲート幅、σはn型チャネル
の導電率、Eはチャネル中のソース−ドレイン方向の平
均電界を表す。(1)式の2乗の逆数をとることにより
1/(θrn/θV2)2と電圧v2のグラフの1頃き
をAとすれば
・ ・ ・(2)
と与えられることが示される。例として1/(θre/
θVり!と■2のグラフを第4図に示す。v2 is the voltage of the second electrode, q is the level charge, ε is the dielectric constant of the substrate 1, V b i is the diffusion potential of the n-i interface 10 on the n-channel side, Lw is the gate width of FET 2, and σ is the n-type The conductivity of the channel, E, represents the average electric field in the source-drain direction in the channel. By taking the reciprocal of the square of equation (1), it can be shown that if A is around 1 on the graph of 1/(θrn/θV2)2 and voltage v2, the following is given. For example, 1/(θre/
θVri! The graph of (2) and (2) is shown in Figure 4.
縦座標は1/(θ1./θV、)2を、横座標は第2の
電極の電圧V2を示している。13は(1)式のグラフ
であり、14は第1図のデバイスの2次元デバイスシミ
ュレータの結果を表している。このように、ドレイン電
流が第2電極電圧で変調し始めるところの(1)式の解
析式の傾きを使えば浅い不純物の密度が精度良く求めら
れる。The ordinate indicates 1/(θ1./θV,)2, and the abscissa indicates the voltage V2 of the second electrode. 13 is a graph of equation (1), and 14 represents the results of a two-dimensional device simulator of the device shown in FIG. In this way, by using the slope of the analytical equation (1) where the drain current begins to be modulated by the second electrode voltage, the shallow impurity density can be determined with high accuracy.
以上の実施例では、正孔トラップの場合について説明し
たが、電子トラップ型の深い準位の場合は正孔を電子、
nをp、電極電圧の極性を入れ換えれば説明は全く同じ
である。In the above example, the case of hole trap was explained, but in the case of electron trap type deep level, hole is converted into electron,
The explanation is exactly the same if n is changed to p and the polarity of the electrode voltage is changed.
以上のように本発明の方法は、半絶縁性基板の浅い不純
物の密度とFETの電気的特性を具体的に結びつける評
価が可能となる。As described above, the method of the present invention enables evaluation that specifically links the density of shallow impurities in a semi-insulating substrate and the electrical characteristics of an FET.
第1図は基板を評価するためのデバイス構造を示す図、
第2図、第3図は本発明の詳細な説明するための図、
第4図は浅い不純物の密度を求めるために必要な解析方
法を示す図である。
l・・・・・半・絶縁性基板
2・・・・・nチャネルFET
3・・・・・ソース電極
4・・・・・ゲート電極
5・・・・・ドレイン電極
6・・・・・第2電極(FETの隣につけたもの)
7・・・・・第2電極(基板の裏側につけたもの)
8・・・・・n型チャネル層
9・・・・・nチャネル
10・・・・・チャネル側n−i界面
11・・・・・第2電極側n−i界面
13・・・・・解析式のグラフ
14・・・・・第1図のデバイスの2次元シミュレータ
の結果Figure 1 is a diagram showing the device structure for evaluating the substrate, Figures 2 and 3 are diagrams for explaining the present invention in detail, and Figure 4 is the analysis necessary to determine the density of shallow impurities. FIG. 2 is a diagram illustrating the method. l...Semi-insulating substrate 2...N-channel FET 3...Source electrode 4...Gate electrode 5...Drain electrode 6... Second electrode (attached next to the FET) 7... Second electrode (attached to the back side of the substrate) 8... N-type channel layer 9... N-channel 10... ... Channel side n-i interface 11 ... Second electrode side n-i interface 13 ... Analytical formula graph 14 ... Results of two-dimensional simulator of the device in Figure 1
Claims (1)
償した半絶縁性基板上にトラップしやすいキャリアの型
と同じ導電型の活性層を有する電界効果トランジスタを
少なくとも一つ形成し、かつ、その電界効果トランジス
タの隣あるいは前記半絶縁性基板の下面に半絶縁性基板
を絶縁体として介して、前記活性層上に第2の電極構造
を形成し、電界効果トランジスタを線形領域で動作させ
た時のドレイン電流を、前記第2の電極に加えた電圧を
変化させて変調し、そのときのドレイン電流および第2
の電極に加えた電圧から、電界効果トランジスタの前記
活性層と半絶縁性基板の界面付近の不純物準位の密度を
得ることにより半絶縁性基板を評価する方法。(1) At least one field effect transistor having an active layer of the same conductivity type as the type of carriers that easily trap holes or electrons is formed on a semi-insulating substrate compensated with a deep level that easily traps holes or electrons, and A second electrode structure is formed on the active layer next to the field effect transistor or on the lower surface of the semi-insulating substrate via a semi-insulating substrate as an insulator, and the field-effect transistor is operated in a linear region. The drain current at that time is modulated by changing the voltage applied to the second electrode, and the drain current at that time and the second
A method for evaluating a semi-insulating substrate by obtaining the density of impurity levels near the interface between the active layer of the field effect transistor and the semi-insulating substrate from the voltage applied to the electrode of the field effect transistor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19933789A JPH0364039A (en) | 1989-08-02 | 1989-08-02 | Evaluation of semiconductor substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19933789A JPH0364039A (en) | 1989-08-02 | 1989-08-02 | Evaluation of semiconductor substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0364039A true JPH0364039A (en) | 1991-03-19 |
Family
ID=16406114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19933789A Pending JPH0364039A (en) | 1989-08-02 | 1989-08-02 | Evaluation of semiconductor substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0364039A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6075263A (en) * | 1997-04-09 | 2000-06-13 | Nec Corporation | Method of evaluating the surface state and the interface trap of a semiconductor |
-
1989
- 1989-08-02 JP JP19933789A patent/JPH0364039A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6075263A (en) * | 1997-04-09 | 2000-06-13 | Nec Corporation | Method of evaluating the surface state and the interface trap of a semiconductor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wouters et al. | Subthreshold slope in thin-film SOI MOSFETs | |
CA1153479A (en) | Semiconductor devices controlled by depletion regions | |
US7211459B2 (en) | Fabrication method of an ion sensitive field effect transistor | |
US4908682A (en) | Power MOSFET having a current sensing element of high accuracy | |
US10684251B2 (en) | Ion sensitive field effect transistor (ISFET) having higher sensitivity in response to dynamic biasing | |
Troutman | Low-level avalanche multiplication in IGFET's | |
US8138527B2 (en) | Transistor and semiconductor device | |
Angelis et al. | Low-frequency noise spectroscopy of polycrystalline silicon thin-film transistors | |
Sinha et al. | Investigation of carrier generation in fully depleted enhancement and accumulation mode SOI MOSFET's | |
JPH10284562A (en) | Measuring circuit for pinch-off voltage of field effect transistor, transistor for measurement, measuring method and producing method | |
JPH0364039A (en) | Evaluation of semiconductor substrate | |
Kadotani et al. | Experimental study on electron mobility in accumulation-mode silicon-on-insulator metal–oxide–semiconductor field-effect transistors | |
Shimanovich et al. | Efficient temperature sensor based on SOI gate-all-around electrostatically formed nanowire transistor | |
US6246093B1 (en) | Hybrid surface/buried-channel MOSFET | |
US3868718A (en) | Field effect transistor having a pair of gate regions | |
da Silva et al. | Effect of substrate bias and temperature variation in the capacitive coupling of SOI UTBB MOSFETs | |
US7545018B2 (en) | High voltage operating field effect transistor, bias circuit therefor and high voltage circuit thereof | |
Soma | A dual gate junctionless FinFET for biosensing applications | |
KR20200025797A (en) | Method for measuring doping concentration of semiconductor material , and recording medium for computer program using the same | |
Ahmed et al. | Physically based analytical modeling of 2D electrostatic potential for symmetric and asymmetric double gate junctionless field effect transistors in subthreshold region | |
Malits et al. | Low frequency noise in surface and buried channel nanometric CMOS transistors | |
Nathan et al. | Thin film transistor integration on glass and plastic substrates in amorphous silicon technology | |
JP4430485B2 (en) | Method for detecting charge state of impurities in semiconductor | |
JPH03241758A (en) | Evaluation of semiconductor substrate | |
Tataridou | Low Frequency Noise in advanced MOSFET technologies: From experimental observations to new extraction and modeling methods |