JPH0364024A - Washing method of surface of semiconductor substrate - Google Patents

Washing method of surface of semiconductor substrate

Info

Publication number
JPH0364024A
JPH0364024A JP19806389A JP19806389A JPH0364024A JP H0364024 A JPH0364024 A JP H0364024A JP 19806389 A JP19806389 A JP 19806389A JP 19806389 A JP19806389 A JP 19806389A JP H0364024 A JPH0364024 A JP H0364024A
Authority
JP
Japan
Prior art keywords
etching
reactive gas
gas
semiconductor substrate
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19806389A
Other languages
Japanese (ja)
Inventor
Shigeyuki Sugino
林志 杉野
Masaki Okuno
昌樹 奥野
Yasuhisa Sato
泰久 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19806389A priority Critical patent/JPH0364024A/en
Publication of JPH0364024A publication Critical patent/JPH0364024A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To prevent a polluted substance from being adhered to again by introducing a reactive gas and a non-reactive gas which does not contribute to etching into a chamber alternately for dividing a desired etching amount. CONSTITUTION:The amount of etching on the surface of a silicon wafer 22 is divided for etching. Methods for dividing etching include a method for alternately introducing chlorine (reactive gas) and a rare gas (non-reactive gas), the one for introducing the reactive gas and the non-reactive gas and then discharging these gases alternately and repeatedly, and the one for supplying the reactive gas and the non-reactive gas in pulse shape. A silicon crystal 11 and a polluted substance which are eliminated from a silicon wafer by etching reaction as shown by an arrow I are introduced intermittently as shown in a white-painted arrow II and are carried to the outside of chamber by discharged gas, thus preventing readhesion of the polluted substance.

Description

【発明の詳細な説明】 〔概要〕 半導体基板表面洗浄方法、特に半導体基板(シリコン基
板)表面に付着した重金属、アルカリなどの無機汚染物
it(例えば、Pe、 Ni、 Cr、 CaSHg、
Naなど)を乾式(ドライ)で洗浄する方法に関し、半
導体基板表面の洗浄のためのドライエツチング中に、汚
染物質を該基板に再付着させることなくエツチングを進
行させ、本来得られるべき清浄度を実現することのでき
る半導体基板の表面のドライ洗浄方法を提供することを
目的とし、ハロゲン系の反応性ガスを用いて半導体基板
の表面をエツチングしつつ該基板の表面の汚染物質を気
化、除去させる乾式洗浄において、反応性ガスとエツチ
ングに寄与しない非反応性ガスとを交互にチャンバ内に
導入することにより所望のエツチング量を分割してエツ
チングすることを特徴とする半導体基板表面洗浄方法を
含み構成する。
[Detailed Description of the Invention] [Summary] A semiconductor substrate surface cleaning method, particularly for cleaning inorganic contaminants such as heavy metals and alkalis adhering to the surface of a semiconductor substrate (silicon substrate) (e.g., Pe, Ni, Cr, CaSHg,
Regarding the method of dry cleaning (Na, etc.), during dry etching for cleaning the surface of a semiconductor substrate, the etching progresses without re-adhering contaminants to the substrate, thereby maintaining the cleanliness that should originally be obtained. The purpose of the present invention is to provide a dry cleaning method for the surface of a semiconductor substrate that can be realized by etching the surface of the semiconductor substrate using a halogen-based reactive gas and vaporizing and removing contaminants on the surface of the substrate. A semiconductor substrate surface cleaning method characterized in that, in dry cleaning, a reactive gas and a non-reactive gas that does not contribute to etching are introduced into a chamber alternately to divide and etch a desired amount of etching. do.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体基板表面洗浄方法、特に半導体基板(シ
リコン基板)表面に付着した重金属、アルカリなどの無
機汚染物質(例えば、Fe、 Ni、 Cr、Ca、 
Mg、 Naなと)を乾式(ドライ)で洗浄する方法に
関する。
The present invention provides a method for cleaning the surface of a semiconductor substrate, particularly cleaning inorganic contaminants such as heavy metals and alkalis (e.g., Fe, Ni, Cr, Ca,
This invention relates to a dry method for cleaning Mg, Na, etc.

〔従来の技術〕[Conventional technology]

半導体表面の清浄化を目的とする洗浄方法のうち、溶液
を用いることのない乾式洗浄法(ドライ洗浄方法)は、
近年のICの高集積化に伴ない、製造工程中の洗浄工程
にも採用される必要性が生してきた。半導体基板(例え
ばシリコンウェハ)の表面には、前の工程の種類如何に
よって相違はあるものの、数人から500人程度の表面
汚染層が存在し、それを反応性ガスを用い、半導体基板
の表面のエツチングと共に除去するのである。用いる反
応性ガスは、ハロゲン系の塩素(CIZ) 、塩化水素
(Hel) 、77素(F2)、77化水素(IF)な
どである。または、これらの反応性ガスを用い、光(紫
外光!!9り照射によって反応性ガスを励起し、エネル
ギー状態を高くし、半導体基板表面をエツチングすると
同時に、汚染物質を気化させて除去する方法もある。
Among cleaning methods aimed at cleaning semiconductor surfaces, dry cleaning methods (dry cleaning methods) that do not use solutions are:
As ICs have become more highly integrated in recent years, there has been a need for them to be used in the cleaning process during the manufacturing process. On the surface of a semiconductor substrate (for example, a silicon wafer), there is a layer of surface contamination that ranges from a few to 500 particles, although it varies depending on the type of previous process. It is removed along with the etching process. The reactive gases used include halogen-based chlorine (CIZ), hydrogen chloride (Hel), element 77 (F2), and hydrogen 77ide (IF). Alternatively, using these reactive gases, the reactive gases are excited by irradiation with light (ultraviolet light!) to raise the energy state, etching the surface of the semiconductor substrate, and at the same time vaporizing and removing contaminants. There is also.

例えば、本出願人は、反応槽内にシリコン基板を装填し
、該反応槽内を排気し、しかる後、該反応槽内に塩素ガ
スを導入すると共に該シリコン基板を100’C〜50
0°Cの温度に加熱し、該シリコン基板装填部に光を照
射して塩素ラジカルを発生し、それにより該シリコン基
板表面のエツチングを行ない、その後、該反応槽内から
塩素ガスを除去し、薄膜形成用ガスを該反応槽内に導入
して前記シリコン基板上に薄膜を形成する方法を開発し
公にした(特開昭62−42530号公報)。
For example, the present applicant loaded a silicon substrate into a reaction tank, evacuated the inside of the reaction tank, and then introduced chlorine gas into the reaction tank and heated the silicon substrate at a temperature of 100°C to 50°C.
Heating to a temperature of 0°C, irradiating the silicon substrate loading part with light to generate chlorine radicals, thereby etching the silicon substrate surface, and then removing chlorine gas from the reaction tank, A method for forming a thin film on the silicon substrate by introducing a thin film forming gas into the reaction tank was developed and published (Japanese Patent Application Laid-Open No. 62-42530).

また、本発明者の1人である杉野林志は、奈良安雄、渡
辺悟、伊藤隆司らと共に、「光励起塩素ラジカルを用い
たシリコンのエツチングとクリーニング」と題する報告
を、電気化学Vo1.56. No、7(198B)、
p、533〜537に発表した。この報告の内容は、反
応ガスとしては99.999%の高純度塩素を、また紫
外光源としてマイクロ波励起の高圧水銀ランプを用い、
多層膜選択反射ξラーを介して塩素ラジカルを生成する
のに有効な200〜300nmの波長の光を基板に垂直
に照射した。光強度は基板表面テ22mW/cd (U
SIO[IVD 254−p)であり、反応室はすべて
石英からできていて、基板加熱は裏面に反応室外部から
赤外線を照射することで行った。試料としては(100
)シリコンウェハを用い、反応室に導入する直前に希弗
酸溶液と脱イオン水によって表面の自然酸化膜を除去し
た。反応室内の圧力はドライポンプとメカニカルブース
ターポンプで調整した。
In addition, Hayashi Sugino, one of the inventors of the present invention, along with Yasuo Nara, Satoru Watanabe, Takashi Ito, and others, published a report entitled "Etching and cleaning of silicon using photoexcited chlorine radicals" in Electrochemistry Vol. 1.56. No. 7 (198B),
Published on p. 533-537. This report uses 99.999% high-purity chlorine as the reaction gas and a microwave-excited high-pressure mercury lamp as the ultraviolet light source.
The substrate was perpendicularly irradiated with light having a wavelength of 200 to 300 nm, which is effective for generating chlorine radicals through the selective reflection ξ multilayer film. The light intensity is 22 mW/cd (U
The reaction chamber was entirely made of quartz, and the substrate was heated by irradiating the back surface with infrared rays from outside the reaction chamber. As a sample (100
) Using a silicon wafer, the natural oxide film on the surface was removed with a dilute hydrofluoric acid solution and deionized water immediately before introducing it into the reaction chamber. The pressure inside the reaction chamber was adjusted using a dry pump and a mechanical booster pump.

か\る光励起クリーニングで得られるシリコン表面は溶
液洗浄で得られるものより清浄度が高く、溶液洗浄で取
り切れないシリコン表面の汚染物質をも光励起クリーニ
ングでは除去することができることがわかった。
It has been found that the silicon surface obtained by such photoexcitation cleaning has a higher degree of cleanliness than that obtained by solution cleaning, and that contaminants on the silicon surface that cannot be removed by solution cleaning can also be removed by photoexcitation cleaning.

このようなドライ洗浄方式が用いられるに至った理由に
ついて説明すると、例えばシリコンウェハにトレンチを
形成する場合に、デバイスの微細化の目的で、トレンチ
は、幅に対して高さの比(アスペクト比)が大に、すな
わち狭い幅で深さを大に形成する必要がある。そのとき
、溶液を用いるウェットエツチングでは、表面張力によ
って溶液がトレンチ内に入り難くなり、また入った溶液
を抜く(除去する)ことが難しくなってきた。
To explain the reason why such a dry cleaning method was used, for example, when forming a trench in a silicon wafer, the trench has a height to width ratio (aspect ratio) for the purpose of device miniaturization. ), that is, it is necessary to form a narrow width and a large depth. At that time, in wet etching using a solution, it became difficult for the solution to enter the trench due to surface tension, and it became difficult to draw out (remove) the solution that had entered.

さらに、溶液を用いるエツチングや洗浄の後には基板表
面に残留物が付着する。従来は、これらの残留物はさほ
ど問題にはならなかったが、最近の高集積化、微細化の
状況下では、これらの残留物も無視することができなく
なり、ウェットエツチングには限界があるとしてドライ
洗浄方法、ドライエツチング方法が採用されるに至った
のである。
Additionally, residue adheres to the substrate surface after etching or cleaning with a solution. In the past, these residues did not pose much of a problem, but in the current situation of high integration and miniaturization, these residues can no longer be ignored, and wet etching has its limits. This led to the adoption of dry cleaning and dry etching methods.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述したハロゲン系の反応性ガスを用いる洗浄方法にお
し−)では、半導体基板表面のエツチング中に汚染物質
を気化、除去するので、気相中を汚染物質が浮遊するこ
とが避けられない。そして、この気相中を浮遊している
汚染¥yJ質がエツチングされた半導体基板の表面に再
付着することが認められた。
In the above-mentioned cleaning method using a halogen-based reactive gas, contaminants are vaporized and removed during etching of the semiconductor substrate surface, so it is inevitable that the contaminants will float in the gas phase. It was also observed that the contaminant material floating in the gas phase re-attached to the surface of the etched semiconductor substrate.

第3図は従来例の問題点を模式的に説明するための図で
ある。半導体基板(シリコンウェハ)の表面のエツチン
グの初期においては、同図(a)に示されるように、シ
リコン結晶Uの間に汚染物質12が入り込んでいる。エ
ツチングが進行すると同図(ロ)に示されるように、表
面のシリコン結晶11と共に汚染物質12も基板表面か
ら離脱するが、この離脱した汚染物質のあるものは、同
図に矢印を付けて示すようにシリコンウェハ表面に戻っ
て付着する。
FIG. 3 is a diagram for schematically explaining the problems of the conventional example. At the initial stage of etching the surface of a semiconductor substrate (silicon wafer), contaminants 12 have entered between the silicon crystals U, as shown in FIG. 2(a). As the etching progresses, as shown in Figure (B), contaminants 12 are also separated from the substrate surface together with the silicon crystals 11 on the surface, and some of these detached contaminants are indicated by arrows in the figure. so that it adheres back to the silicon wafer surface.

このように、従来の技術でドライ洗浄を行うということ
は、汚染物質の除去と付着とを繰返し行っていることに
なり、そのために、本来実現できる清浄度(汚染物質は
ゼロになるはずである。)よりも低いレベルの清浄度し
か得られない現状にある。
In this way, dry cleaning using conventional technology means that contaminants are removed and deposited repeatedly. Currently, the level of cleanliness that can be obtained is lower than that of .).

そこで本発明は、半導体基板表面の洗浄のためのドライ
エツチング中に、汚染物質を該基板に再付着させること
なくエツチングを進行させ、本来得られるべき洗浄度を
実現することのできる半導体基板の表面のドライ洗浄方
法を提供することを目的とする。
Therefore, the present invention provides a surface of a semiconductor substrate that can achieve the originally desired degree of cleaning by allowing etching to proceed without re-adhering contaminants to the substrate during dry etching for cleaning the surface of the semiconductor substrate. The purpose of this invention is to provide a method for dry cleaning.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は、ハロゲン系の反応性ガスを用いて半導体基
板の表面をエツチングしつつ該基板の表面の汚染物質を
気化、除去させる乾式洗浄において、反応性ガスとエツ
チングに寄与しない非反応性ガスとを交互にチャンバ内
に導入することにより所望のエツチング量を分割してエ
ツチングする・ことを特徴とする半導体基板表面洗浄方
法によって解決される。
The above problem is solved by dry cleaning in which the surface of a semiconductor substrate is etched using a halogen-based reactive gas and contaminants on the surface of the substrate are vaporized and removed. This problem is solved by a semiconductor substrate surface cleaning method characterized in that a desired etching amount is divided and etched by alternately introducing etching into a chamber.

〔作用〕[Effect]

すなわち本発明では、目的のエツチング量に達するまで
、エツチングガスの導入と排気を繰返すことにより分割
的にエツチングを進行させ、排気の段階で気相中を浮遊
している汚染物質を反応室の外に排出するので、汚染物
質は再付着することなく気相状態で除去されるのである
That is, in the present invention, etching is progressed in parts by repeating the introduction and exhaust of etching gas until the target etching amount is reached, and during the exhaust stage, the contaminants floating in the gas phase are removed from the reaction chamber. The pollutants are removed in a gaseous state without being redeposited.

〔実施例〕〔Example〕

以下、本発明を図示の実施例により具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to illustrated embodiments.

第2図は本発明の方法の実施に使用する装置の構成を示
す図で、図中、21はチャンバ、22は半導体Ji板(
シリコンウェハ)、23はシリコンウェハ22を加熱す
るためのヒーター、24は排気口、25は反応性ガスで
ある例えば塩素ガスの容器、26はエツチングに寄与し
ない非反応性ガスである希ガス(例えばAr)容器、2
7aと27bはバルブ、28はヒーター23のための電
源、31は光源、32はリフレクタ−である。か\る装
置は反応ガスと希ガスとを交互に導入する点が異なる点
を除くと、従来用いられた知られた装置と同じものであ
る。
FIG. 2 is a diagram showing the configuration of an apparatus used to carry out the method of the present invention. In the figure, 21 is a chamber, 22 is a semiconductor Ji plate (
23 is a heater for heating the silicon wafer 22, 24 is an exhaust port, 25 is a container for a reactive gas such as chlorine gas, and 26 is a container for a non-reactive gas that does not contribute to etching (for example, Ar) Container, 2
7a and 27b are bulbs, 28 is a power source for the heater 23, 31 is a light source, and 32 is a reflector. The apparatus is the same as the known apparatus used in the past, except that the reactant gas and the noble gas are introduced alternately.

シリコンウェハ22はヒーター23によって200″C
〜500℃程度の温度に加熱され、チャンバ21内の圧
力は、通常1〜IQQ Torr、反応ガス導入時には
1〜100 Torr、排気時にはI X 10−3〜
I X 10−’Torrに保たれる。塩素ガスおよび
希ガス(Arガス)の流量はそれぞれ10〜200m 
l /5hinに維持される。
The silicon wafer 22 is heated to 200″C by the heater 23.
It is heated to a temperature of about 500° C., and the pressure inside the chamber 21 is normally 1 to IQQ Torr, 1 to 100 Torr when introducing a reaction gas, and I
I x maintained at 10-'Torr. The flow rate of chlorine gas and rare gas (Ar gas) is 10 to 200 m each.
It is maintained at l/5hin.

本発明の方法では、シリコンウェハ22の表面のエツチ
ング量(前記した数人から500人の範囲内の所望の量
)を、1度にエツチングするのではなく、分割してエツ
チングするものである。
In the method of the present invention, the amount of etching on the surface of the silicon wafer 22 (the desired amount within the range of several to 500 people as described above) is not etched all at once, but is etched in parts.

分割エツチングの態様としては、0.1〜10秒程度に
、排気しながら塩素(反応性ガス)と希ガス(非反応性
ガス)とを交互に導入する方法、反応性ガスと非反応性
ガスの導入とこれらのガスの排気とを交互に繰返す方法
、反応性ガス導入→排気→非反応性ガス導入→排気のサ
イクルを繰返す方法、反応性ガスと非反応性ガスをいわ
ばパルス状に供給する方法、などがある。
Methods of split etching include a method of alternately introducing chlorine (reactive gas) and rare gas (non-reactive gas) while exhausting the air for about 0.1 to 10 seconds; A method of alternately repeating the introduction of gas and exhaust of these gases, a method of repeating the cycle of reactive gas introduction → exhaust → non-reactive gas introduction → exhaust, a method of supplying reactive gas and non-reactive gas in a so-called pulse form There are methods, etc.

さらには、シリコンウェハを200°C〜500″Cに
加熱し、塩素雰囲気中で、光源31からの光をパルス状
に照射する方法がある。この方法では、200〜400
nmの波長の光を用い(光源は高圧水銀灯)、光のパワ
ーは10〜100+W/c−とし、光パルスは0.1秒
〜1秒の間隔のパルスとし、総1t60秒の照射を行な
うと、シリコンウェハの表面を500人エツチングする
ことができる。
Furthermore, there is a method of heating the silicon wafer to 200°C to 500"C and irradiating the silicon wafer with pulsed light from the light source 31 in a chlorine atmosphere.
Using light with a wavelength of nm (the light source is a high-pressure mercury lamp), the light power is 10 to 100+W/c-, the light pulses are pulses at intervals of 0.1 seconds to 1 second, and the total irradiation time is 1t60 seconds. , the surface of a silicon wafer can be etched by 500 people.

上記の方法を実施することによって、第1図を参照する
と、エツチング反応によってシリコンウエバから矢印I
で示すように離脱したシリコン結晶11と汚染物質は、
本発明の方法に従う分割エツチングによって白抜矢印■
で示すように間欠的に導入され排気されるガスによって
チャンバの外へと運び去られ、汚染物質の再付着が防止
される。
By carrying out the above method, referring to FIG. 1, the silicon wafer is etched by the arrow I
As shown in , the separated silicon crystal 11 and the contaminant are
White arrows ■ by split etching according to the method of the present invention
As shown in , the gas that is intermittently introduced and exhausted carries the contaminants out of the chamber and prevents them from re-depositing.

本発明の分割ドライ洗浄方法で得られたシリコンウェハ
の清浄度を、原子吸光光度法によって定量分析してFe
の濃度を分析した。本発明の方法では、上記方法による
分析の限界値である2X10”個/Cl1lの値が得ら
れ、これは従来法では4X10q個/ c++1であっ
たのに比べて著しい改善を示す。ちなみに、溶液による
洗浄では上記の値より1桁高い値が得られたものである
The cleanliness of silicon wafers obtained by the divided dry cleaning method of the present invention was quantitatively analyzed by atomic absorption spectrometry.
The concentration of was analyzed. In the method of the present invention, a value of 2 x 10" pieces/Cl1l, which is the limit value for analysis by the above method, is obtained, which is a significant improvement compared to 4 x 10q pieces/c++1 in the conventional method. A value one order of magnitude higher than the above value was obtained by cleaning with .

なお、反応ガスとしては、ハロゲン系のガスであるフッ
素、フッ化水素、塩化水素などが有効である。
Note that halogen-based gases such as fluorine, hydrogen fluoride, and hydrogen chloride are effective as the reactive gas.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、反応性ガスを用いる半導
体基板表面のドライ洗浄において、エツチングを分割し
て行うことにより、従来認められた汚染物質の半導体基
板への再付着が著しく減少し、高集積化する半導体装置
の製造に寄与するところ大である。
As described above, according to the present invention, by performing etching in parts during dry cleaning of the surface of a semiconductor substrate using a reactive gas, redeposition of contaminants to the semiconductor substrate, which has been observed in the past, is significantly reduced. This will greatly contribute to the production of highly integrated semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明する図、 第2図は本発明の方法の実施に使用する装置の構成図、 第3図は従来例の問題点を説明する図で、その(a)は
初期のシリコンウェハ表面の図、その(b)は従来の方
法で得られるシリコンウェハ表面の図である。 図中、 11はシリコン結晶、 12は汚染物質、 21はチャンバ、 22は半導体基板、 23はヒーター 24は排気口、 25は反応ガス容器、 26は希ガス容器、 27a 、 27bはバルブ、 28は電源、 31は光源、 32はリフレクタ− を示す。 +1=、シ1)コニわ台1− 木実ξ帆の方3矢乞劃ε明する団 第1図
Fig. 1 is a diagram for explaining the present invention in detail, Fig. 2 is a block diagram of an apparatus used to carry out the method of the present invention, and Fig. 3 is a diagram for explaining the problems of the conventional method. (b) is a diagram of an initial silicon wafer surface, and (b) is a diagram of a silicon wafer surface obtained by a conventional method. In the figure, 11 is a silicon crystal, 12 is a contaminant, 21 is a chamber, 22 is a semiconductor substrate, 23 is a heater 24 is an exhaust port, 25 is a reaction gas container, 26 is a rare gas container, 27a and 27b are valves, and 28 is a A power source, 31 a light source, and 32 a reflector. +1=, shi1) Koniwadai 1- Kinomi ξ sail direction 3 arrow begging ε light group Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)ハロゲン系の反応性ガスを用いて半導体基板(2
2)の表面をエッチングしつつ該基板の表面の汚染物質
(12)を気化、除去させる乾式洗浄において、反応性
ガスとエッチングに寄与しない非反応性ガスとを交互に
チャンバ(21)内に導入することにより所望のエッチ
ング量を分割してエッチングすることを特徴とする半導
体基板表面洗浄方法。
(1) Semiconductor substrate (2
2) In dry cleaning to vaporize and remove contaminants (12) on the surface of the substrate while etching the surface, a reactive gas and a non-reactive gas that does not contribute to etching are alternately introduced into the chamber (21). 1. A method for cleaning a surface of a semiconductor substrate, characterized in that etching is performed by dividing a desired amount of etching.
(2)反応性ガスの導入中に該ガスが吸収して励起せし
められる光を点滅させることを特徴とする請求項1記載
の方法。
2. A method according to claim 1, characterized in that, during the introduction of the reactive gas, a light which is absorbed and excited by the reactive gas is blinked.
JP19806389A 1989-08-01 1989-08-01 Washing method of surface of semiconductor substrate Pending JPH0364024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19806389A JPH0364024A (en) 1989-08-01 1989-08-01 Washing method of surface of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19806389A JPH0364024A (en) 1989-08-01 1989-08-01 Washing method of surface of semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH0364024A true JPH0364024A (en) 1991-03-19

Family

ID=16384913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19806389A Pending JPH0364024A (en) 1989-08-01 1989-08-01 Washing method of surface of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH0364024A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182339A (en) * 2006-01-05 2007-07-19 Denki Kagaku Kogyo Kk Method for regenerating aluminum nitride substrate, and circuit board using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182339A (en) * 2006-01-05 2007-07-19 Denki Kagaku Kogyo Kk Method for regenerating aluminum nitride substrate, and circuit board using the same

Similar Documents

Publication Publication Date Title
US5326406A (en) Method of cleaning semiconductor substrate and apparatus for carrying out the same
EP0005491B1 (en) Process for the preparation of low temperature silicon nitride films by photochemical vapor deposition
JP2001118818A (en) Ultraviolet ray-treating device and method
JP2001015472A (en) Method and device for projecting ultraviolet ray
JPH06103682B2 (en) Photoexcited dry cleaning method and apparatus
JPH0496226A (en) Manufacture of semiconductor device
JPH0663097B2 (en) Decontamination method after cleaning with fluoride gas in film forming operation system
JPH0364024A (en) Washing method of surface of semiconductor substrate
JPH03136329A (en) Cleaning method for silicon substrate surface
JPH03502861A (en) Gas cleaning method for silicon devices
JPH0429220B2 (en)
JPS5975629A (en) Manufacture of semiconductor device
JPS61276325A (en) Etching method for silicon substrate
JPH04146620A (en) Method of flattening semiconductor substrate
JP2928538B2 (en) Substrate processing method
JPH03127830A (en) Cleaning method of semiconductor substrate
JPS6345822A (en) Method and apparatus for cleaning
JP2770083B2 (en) Dry cleaning method for semiconductor substrate
JPS61119028A (en) Photo-chemical vapor deposition equipment
JPH01101625A (en) Manufacture of semiconductor device
JPS6276632A (en) Surface treatment device
JPS6360532A (en) Dry etching method
JPH03218628A (en) Method and device for cleaning surface of semiconductor substrate
JPH03173426A (en) Light excitation surface treating device
JPH03250626A (en) Forming method for thin film