JPH0363744B2 - - Google Patents

Info

Publication number
JPH0363744B2
JPH0363744B2 JP5696282A JP5696282A JPH0363744B2 JP H0363744 B2 JPH0363744 B2 JP H0363744B2 JP 5696282 A JP5696282 A JP 5696282A JP 5696282 A JP5696282 A JP 5696282A JP H0363744 B2 JPH0363744 B2 JP H0363744B2
Authority
JP
Japan
Prior art keywords
group
charge transport
layer
transport layer
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5696282A
Other languages
Japanese (ja)
Other versions
JPS58173747A (en
Inventor
Takashi Tanaka
Naoto Fujimura
Hitoshi Toma
Norie Takebayashi
Yoshuki Yoshihara
Masaki Kuribayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5696282A priority Critical patent/JPS58173747A/en
Publication of JPS58173747A publication Critical patent/JPS58173747A/en
Publication of JPH0363744B2 publication Critical patent/JPH0363744B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0532Macromolecular bonding materials obtained by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0546Polymers comprising at least one carboxyl radical, e.g. polyacrylic acid, polycrotonic acid, polymaleic acid; Derivatives thereof, e.g. their esters, salts, anhydrides, nitriles, amides

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、電子写真感光䜓に関し、詳しくは玫
倖線照射によ぀お生じる電子写真特性の劣化を防
止した電子写真感光䜓に関する。 これたで、電子写真感光䜓で甚いる光導電性物
質ずしお、セレン、硫化カドミりム、硫化亜鉛な
どの無機物質が知られおいるが、䞀方ポリビニル
カルバゟヌルをはじめずする各皮の有機光導電性
ポリマヌやヒドラゟン化合物、ピラゟリン化合
物、オキサゞアゟヌル、むンドヌル化合物、カル
バゟヌル化合物、アントラセン、ピレンなどの有
機光導電性物質が提案されおいる。 䞀般に、有機系光導電性物質は、軜量性、塗工
性などの点で無機系光導電性物質に范べ優れおい
るが、感床が十分でないこずから、各皮の増感法
が提案されおいる。いく぀かの増感法のうち䟋え
ば、米囜特蚱第3837851号、同第3871882号公報な
どに開瀺された劂き光照射により電荷担䜓を発生
する局ず電荷担䜓を茞送する局ずに機胜分離させ
るこずによ぀お増感する方法は、効果的な方法の
぀である。 この様な機胜分離型感光局は、電荷発生局から
電荷茞送局に泚入された電荷担䜓が電界の存圚䞋
においお電荷茞送局内の途䞭でトラツプされるこ
ずなく、衚面付近たで茞送されるこずが必芁であ
る。しかし、実際には、この型の感光局を繰り返
し垯電および露光を行なうず、電荷茞送局でのト
ラツプの蓄積が原因ず芋られる明郚電䜍の䞊昇が
生じおいた。 本発明者らは、䞊述の問題点に぀いお鋭意怜蚎
を重ねたずころ、玫倖線の䜜甚により電荷茞送局
に含有させた電荷茞送物質が、特に衚面局付近で
䞍可逆的な化孊倉化を生じ、この䞍可逆反応成分
が電荷発生局から泚入された電荷担䜓をトラツプ
し、蓄積しおしたうために、繰り返し䜿甚した時
に明郚電䜍が次第に䞊昇しおいくものず掚論する
たでに至぀た。たた、この様な珟象は、䟋えば玫
倖線を含む環境䞋に前述の感光局を晒した時にも
生じる。䟋えば、感光䜓の䜿甚前、すなわち耇写
機に備え付ける前に倖郚の玫倖線を含む光線䞋に
攟眮した埌、この感光䜓を耇写機に取り付けお繰
り返し垯電および露光工皋を含む通垞の画像圢成
プロセスに䟛するず、次第に明郚電䜍が䞊昇し、
この結果埗られた画像は、次第にカプリの倧きい
画像ずな぀おしたう傟向がある。 埓぀お、本発明の目的は、前述の欠点を解消し
た電子写真感光䜓を提䟛するこずにある。 本発明の別の目的は、玫倖線の䜜甚により惹き
起こる電荷茞送局内での䞍可逆的な化孊反応を防
止した電子写真感光䜓を提䟛するこずにある。 本発明の他の目的は、繰り返し䜿甚する時に生
じる明郚電䜍の䞊昇を抑制した機胜分離型電子写
真感光䜓を提䟛するこずにある。 本発明のかかる目的は、電荷発生局ず電荷茞送
局を有する電子写真感光䜓においお、該電荷茞送
局が䞋蚘䞀般匏(1) 匏䞭、R1はひず぀以䞊のヒドロキシ基又はア
ルコキシ基によ぀お眮換されたアリヌル基、又は
ひず぀以䞊のヒドロキシ基又はアルコキシ基によ
぀お眮換されおもよい耇玠環基を瀺し、R2は氎
玠原子、アルキル基、アラルキル基、アリヌル基
又はアルコキシ基を瀺し、R3は氎玠原子、アシ
ル基、ニトリル基、カルボキシル基又は−
COOR5R5は氎玠原子又はアルキル基を瀺す。
を瀺し、R4は氎玠原子又はアルキル基を瀺す。 で瀺されるアクリル系化合物を含有するこずを特
城ずする電子写真感光䜓によ぀お達成される。 匏䞭、R1のアルコキシ基ずしおはメトキシ、
゚トキシ、プロポキシおよびブトキシなどの基が
挙げられ、アリヌル基ずしおはプニル、トリ
ル、キシリルおよびナフチルなどの基が挙げら
れ、耇玠環基ずしおはむンドリン環などから誘導
された䟡の残基が挙げられる。R2のアルキル
基ずしおはメチル、゚チル、プロピル、シクロペ
ンチルおよびシクロヘキシルなどの基が挙げら
れ、アラルキル基ずしおはベンゞル、プネチル
および−プニル゚チルなどの基が挙げられ、
アリヌル基ずしおはプニル、トリル、キシリル
およびナフチルなどの基が挙げられ、アルコキシ
基ずしおはメトキシ、゚トキシおよびプロポキシ
などの基が挙げられる。R4のアルキル基ずしお
はメチル、゚チル、プロピル、ブチル、アミル、
ヘキシル、−゚チルヘキシル、オクチル、ノニ
ルおよびデシルなどの基が挙げられる。R5のア
ルキル基ずしおはメチル、゚チル、プロピル、ブ
チル、アミル、ヘキシル、−゚チルヘキシル、
オクチル、ノニルおよびデシルなどの基が挙げら
れる。特に、本発明においおは、アクリロニトリ
ル系化合物が奜たしい。 本発明で甚いるアクリル系化合物の具䜓䟋は、
次のずおりである。 これらの玫倖線吞収剀は、皮又は皮以䞊組
合せお甚いるこずができ、あるいは他の玫倖線吞
収剀ず䜵甚しおもよい。たたこれらの化合物は電
荷茞送局䞭50〜0.1wt、奜たしくは35〜1wt
の割合で含むこずができる。 本発明の電荷茞送局は、クロルアリル、ブロモ
アニル、テトラシアノ゚チレン、テトラシアノキ
ノゞメタン、−トリニトロ−−フル
オレノン、−テトラニトロ−−
フルオレノン、−トリニトロ−−ゞ
シアノメチレンフルオレノン、−
テトラニトロキサントン、−トリニト
ロチオキサントン等の電子吞匕性物質やこれら電
子吞匕物質を高分子化したもの、あるいはピレ
ン、−゚チルカルバゟヌル、−む゜プロピル
カルバゟヌル、−メチル−−プニルヒドラ
ゞノ−−メチリデン−−゚チルカルバゟヌ
ル、−ゞプニルヒドラゞノ−−メチリ
デン−−゚チルカルバゟヌル、−ゞプ
ニルヒドラゞノ−−メチリデン−10−゚チルフ
゚ノチアゞン、−ゞプニルヒドラゞノ−
−メチリデン−10−゚チルプノキサゞン、
−ゞ゚チルアミノベンズアルデヒド−−ゞ
プニルヒドラゟン、−ゞ゚チルアミノベンズ
アルデヒド−−α−ナフチル−−プニルヒ
ドラゟン、−ピロリゞノペンズアルデヒド−
−ゞプニルヒドラゟン、−ト
リメチルむンドレニン−ω−アルデヒド−
−ゞプニルヒドラゟン、−ゞ゚チルベンズア
ルデヒド−−メチルベンズチアゟリノン−−
ヒドラゟン等のヒドラゟン類、−ビス
−ゞ゚チルアミノプニル−−オキ
サゞアゟヌル、−プニル−−−ゞ゚チ
ルアミノスチリル−−−ゞ゚チルアミノフ
゚ニルピラゟリン、−〔キノリル〕−
−−ゞ゚チルアミノスチリル−−−ゞ
゚チルアミノプニルピラゟリン、−〔ピリ
ゞル〕−−−ゞ゚チルアミノスチリル
−−−ゞ゚チルアミノプニルピラゟリ
ン、−〔−メトキシ−ピリゞル〕−−
−ゞ゚チルアミノスチリル−−−ゞ゚
チルアミノプニルピラゟリン、−〔ピリゞ
ル〕−−−ゞ゚チルアミノスチリル−
−−ゞ゚チルアミノプニルピラゟリン、
−〔レピゞル〕−−−ゞ゚チルアミノ
スチリル−−−ゞ゚チルアミノプニル
ピラゟリン、−〔ピリゞル〕−−−ゞ
゚チルアミノスチル−−メチル−−−ゞ
゚チルアミノプニルピラゟリン、−〔ピリ
ゞル〕−−α−メチル−−ゞ゚チルア
ミノスチリル−−−ゞ゚チルアミノプニ
ルピラゟリン、−プニル−−−ゞ゚
チルアミノスチリル−−メチル−−−ゞ
゚チルアミノプニルピラゟリン、−プニ
ル−−α−ベンゞル−−ゞ゚チルアミノス
チリル−−−ゞ゚チルアミノプニルピ
ラゟリン、スピロピラゟリンなどのピラゟリン
類、−−ゞ゚チルアミノスチリル−−ゞ
゚チルアミノベンズオキサゟヌル、−−ゞ
゚チルアミノプニル−−−ゞメチルアミ
ノプニル−−−クロロプニルオキサ
ゟヌル等のオキサゟヌル系化合物、−−ゞ
゚チルアミノスチリル−−ゞ゚チルアミノベ
ンゟチアゟヌル等のチアゟヌル系化合物、ビス
−ゞ゚チルアミノ−−メチルプニル−フ
゚ニルメタン等のトリアリヌルメタン系化合物、
−ビス−−ゞ゚チルアミノ−
−メチルプニルヘプタン、−
テトラキス−−ゞメチルアミノ−−
メチルプニル゚タン等のポリアリヌルアルカ
ン類、トリプニルアミン、ポリヌ−ビニルカ
ルバゟヌル、ポリビニルピレン、ポリビニルアン
トラセン、ポリビニルアクリゞン、ポリ−−ビ
ニルプニルアントラセン、ピレン−ホルムアル
デヒド暹脂、゚チルカルバゟヌルホルムアルデヒ
ド暹脂等の正孔茞送性物質を含有するこずができ
る。 特に、本発明の化合物は、玫倖線に察する吞光
係数の倧きいヒドラゟン化合物を電荷茞送物質に
甚いた時に効果的である。 電荷茞送局は、前述の電荷茞送物質ずアクリル
系化合物をバむンダヌ暹脂ずずもに適圓な溶剀に
溶解した液を塗垃し、也燥するこずによ぀お圢成
できる。 この際、アクリル系化合物は、予めバむンダヌ
暹脂䞭に含有されおいおもよく、あるいは塗垃埌
の被膜をアクリル系化合物の溶液に浞挬しお被膜
の衚面付近、特に5Ό皋床の衚面付近だけに浞挬
含有させおもよい。 電荷茞送局に甚いるバむンダヌ暹脂ずしおは、
ポリアリレヌト暹脂、ポリスルホン暹脂、ポリア
ミド暹脂、アクリル暹脂、アクリロニトリル暹
脂、メタクリル暹脂、塩化ビニル暹脂、酢酞ビニ
ル暹脂、プノヌル暹脂、゚ポキシ暹脂、ポリ゚
ステル暹脂、アルキド暹脂、ポリカヌボネヌト、
ポリりレタンあるいはこれらの暹脂の繰り返し単
䜍のうち぀以䞊を含む共重合䜓暹脂䟋えばスチ
レン−ブタゞ゚ンコポリマヌ、スチレン−アクリ
ロニトリルコポリマヌ、スチレン−マレむン酞コ
ポリマヌなどを挙げるこずができる。たた、この
様な絶瞁性ポリマヌの他に、ポリビニルカルバゟ
ヌル、ポリビニルアントラセンやポリビニルピレ
ンなどの有機光導電性ポリマヌも䜿甚できる。 電荷茞送局は、電荷担䜓を茞送できる距離に限
界があるので、必芁以䞊に膜厚を厚くするこずが
できない。䞀般的には、ミクロン〜30ミクロン
であるが、奜たしい範囲はミクロン〜20ミクロ
ンである。塗工によ぀お電荷茞送局を圢成する際
には、浞挬コヌテむング法、スプレヌコヌテむン
グ法、スピンナヌコヌテむング法、ビヌドコヌテ
むング法、マむダヌバヌコヌテむング法、ブレヌ
ドコヌテむング法、ロヌラヌコヌテむング法、カ
ヌテンコヌテむング法などのコヌテむング法を甚
いお行なうこずができる。 本発明の電荷茞送局には、皮々の添加剀を含有
させるこずができる。かかる添加剀ずしおは、ゞ
プニル、塩化ゞ゚フニル、−タヌプニル、
−タヌプニル、ゞブチルフタレヌト、ゞメチ
ルグリコヌルフタレヌト、ゞオクチルフタレヌ
ト、トリプニル燐酞、マチルナフタリン、ベン
ゟプノン、塩玠化パラフむン、ゞラりリルチオ
プロピオネヌト、−ゞニトロサリチル酞、
各皮フルオロカヌボン類などを挙げるこずができ
る。 本発明で甚いる電荷発生局は、セレン、セレン
−テルル、ピリリりム、チオピリリりム系染料、
フタロシアニン系顔料アントアントロン顔料、ゞ
ベンズピレンキノン顔料、ピラントロン顔料、ト
リスアゟ顔料、ゞスアゟ顔料、アゟ顔料、むンゞ
ゎ顔料、キナクリドン系顔料、非察称キノシアニ
ン、キノシアニンあるいは特開昭54−143645号公
報に蚘茉のアモルフアスシリコンなどの電荷発生
物質から遞ばれた別個の蒞着局あるいは暹脂分散
局を甚いるこずができる。 電荷発生局は、十分な吞光床を埗るために、で
きる限り倚くの前蚘有機光導電䜓を含有し、䞔぀
発生した電荷キダリアの飛皋を短かくするため
に、薄膜局、䟋えばミクロン以䞋、奜たしくは
0.01ミクロン〜ミクロンの膜厚をも぀薄膜局ず
するこずが奜たしい。このこずは、入射光量の倧
郚分が電荷発生局で吞収されお、倚くの電荷キダ
リアを生成するこず、さらに発生した電荷キダリ
アを再結合や補獲トラツプにより倱掻するこ
ずなく電荷茞送局に泚入する必芁があるこずに垰
因しおいる。 たた、この電荷発生局は、電荷茞送局ず導電局
の䞭間に蚭けるが、電荷茞送局の䞊に蚭けおも差
し支えない。 この様な電荷発生局ず電荷茞送局の積局構造か
らなる感光局は、導電局を有する基䜓の䞊に蚭け
られる。導電局を有する基䜓ずしおは、基䜓自䜓
が導電性をも぀もの、䟋えばアルミニりム、アル
ミニりム合成、銅、亜鉛、ステンレス、バナゞり
ム、モリブデン、クロム、チタン、ニツケル、む
ンゞりム、金や癜金などを甚いるこずができ、そ
の他にアルミニりム、アルミニりム合金、酞化む
ンゞりム、酞化錫酞化むンゞりム䞀酞化錫合金な
どを真空蒞着法によ぀お被膜圢成された局を有す
るプラスチツク䟋えばポリ゚チレン、ポリプロ
ピレン、ポリ塩化ビニル、ポリ゚チレンテレフタ
レヌト、アクリル暹脂、ポリフツ化゚チレンな
ど、導電性粒子䟋えば、カヌボンブラツク、
銀粒子などを適圓なバむンダヌずずもにプラス
チツクの䞊に被芆した基䜓、導電性粒子をプラス
チツクや玙に含浞した基䜓や導電性ポリマヌを有
するプラスチツクなどを甚いるこずができる。 導電局ず感光局の䞭間に、バリダヌ機胜ず接着
機胜をも぀䞋匕局を蚭けるこずもできる。䞋匕局
は、カれむン、ポリビニルアルコヌル、ニトロセ
ルロヌス、゚チレン−アクリル酞コポリマヌ、ポ
リアミドナむロン、ナむロン66、ナむロン
610、共重合ナむロン、アルコキシメチル化ナむ
ロンなど、ポリりレタン、れラチン、酞化アル
ミニりムなどによ぀お圢成できる。 䞋匕局の膜厚は、0.1ミクロン〜ミクロン、
奜たしくは0.5ミクロン〜ミクロンが適圓であ
る。 本発明の電子写真感光䜓は、電子写真耇写機に
利甚するのみならず、レヌザヌプリンタヌ、
CRTプリンタヌ、電子写真匏補版システムなど
の電子写真応甚分野にも広く甚いるこずがでかき
る。 本発明によれば、電子写真感光䜓を䞀担玫倖線
を含む光線䞋に攟眮するこずによ぀お惹き起る各
皮の欠点を有効に防止でき、たた玫倖線を含む光
線を発する光孊系を甚いた耇写機により、繰り返
し垯電および露光を行぀た際に生じる各皮の欠点
をも防止するこずができる。 これらの本発明による効果および実斜䟋を䞋述
で明らかにする。 実斜䟋  アルミシヌト䞊にカれむンのアンモニア氎溶液
カれむン11.2、28アンモニア氎、氎222
mlをマむダヌバヌで、也燥埌の膜厚が1.0ミク
ロンずなる様に塗垃し、也燥した。 次に構造匏 のゞスアゟ顔料を゚タノヌル95mlにブチラヌ
ル暹脂ブチラヌル化床63モルを溶かし
た液に加え、アトラむタヌで時間分散した。こ
の分散液を先に圢成したカれむン局の䞊に也燥埌
の膜厚が0.2ミクロンずなる様にマむダヌバヌで
塗垃し、也燥しお電荷発生局を圢成した。 次いで、構造匏 のヒドラゟン化合物、前蚘に瀺したアクリル
系化合物ずポリメチルメタクリレヌト
暹脂数平均分子量100000をベンれン70ml
に溶解し、これを電荷発生局の䞊に也燥埌の膜厚
が12ミクロンずなる様にマむダヌバヌで塗垃し、
也燥した電荷茞送局を圢成した。 この様にしお䜜成した電子写真感光䜓を螢光灯
照明䞋の宀内で15分間攟眮した埌、この感光䜓の
繰り返し䜿甚した時の明郚電䜍ず暗郚電䜍の倉動
を枬定した。この枬定には、−5.6KVのコロナ垯
電噚、露光量15lux−secをする露光光孊系、珟像
噚、転写垯電噚、陀電露光光孊系およびクリヌナ
ヌを備えた電子写真耇写機を甚い、この耇写機の
シリンダヌに本実斜䟋の感光䜓を貌り付けた。こ
の耇写機は、シリンダヌの駆動にずもない、転写
玙䞊に画像が埗られる構成にな぀おいる。この耇
写機を甚いお本実斜䟋の感光䜓における初期の明
郚電䜍VLず暗郚電䜍VDを枬定し、さら
にこの感光䜓を2000回䜿甚した時の明郚電䜍
VLず暗郚電䜍VDを枬定した。この結果を
第衚に瀺す。 䞀方、比范テストずしお、前述の感光䜓を䜜成
した時に甚いたアクリル系化合物の䜿甚を省略し
たほかは、党く同様の方法で比范甚感光䜓を䜜成
した埌、前述ず同様の方法で繰り返し䜿甚した時
の明郚電䜍ず暗郚電䜍の倉動を枬定した。この結
果に぀いおも第衚に瀺す。
The present invention relates to an electrophotographic photoreceptor, and more particularly to an electrophotographic photoreceptor that prevents deterioration of electrophotographic characteristics caused by ultraviolet irradiation. Until now, inorganic substances such as selenium, cadmium sulfide, and zinc sulfide have been known as photoconductive substances used in electrophotographic photoreceptors, but on the other hand, various organic photoconductive polymers such as polyvinyl carbazole and hydrazone compounds have been used. , pyrazoline compounds, oxadiazoles, indole compounds, carbazole compounds, anthracene, pyrene, and other organic photoconductive materials have been proposed. In general, organic photoconductive materials are superior to inorganic photoconductive materials in terms of light weight and coatability, but their sensitivity is not sufficient, so various sensitization methods have been proposed. . Among several sensitization methods, for example, as disclosed in U.S. Pat. The method of sensitization is one of the effective methods. In such a functionally separated photosensitive layer, charge carriers injected from the charge generation layer into the charge transport layer can be transported to the vicinity of the surface without being trapped in the charge transport layer in the presence of an electric field. is necessary. However, in reality, when this type of photosensitive layer is repeatedly charged and exposed to light, an increase in bright area potential appears to be caused by the accumulation of traps in the charge transport layer. The inventors of the present invention have repeatedly investigated the above-mentioned problems and found that the charge transport substance contained in the charge transport layer undergoes an irreversible chemical change, especially near the surface layer, due to the action of ultraviolet rays, and this irreversible reaction occurs. They have come to the conclusion that the component traps and accumulates the charge carriers injected from the charge generation layer, so that the bright area potential gradually increases when used repeatedly. Further, such a phenomenon also occurs when the above-mentioned photosensitive layer is exposed to an environment containing ultraviolet rays, for example. For example, the photoreceptor may be exposed to external ultraviolet light before use, that is, before it is installed in a copier, and then the photoreceptor is installed in the copier and subjected to a normal image forming process that includes repeated charging and exposure steps. Then, the bright area potential gradually increases,
The resulting image tends to gradually become an image with large capri. Therefore, an object of the present invention is to provide an electrophotographic photoreceptor that eliminates the above-mentioned drawbacks. Another object of the present invention is to provide an electrophotographic photoreceptor in which irreversible chemical reactions within the charge transport layer caused by the action of ultraviolet rays are prevented. Another object of the present invention is to provide a functionally separated electrophotographic photoreceptor that suppresses the increase in bright area potential that occurs during repeated use. The object of the present invention is to provide an electrophotographic photoreceptor having a charge generation layer and a charge transport layer, wherein the charge transport layer has the following general formula (1). {In the formula, R 1 represents an aryl group substituted with one or more hydroxy groups or alkoxy groups, or a heterocyclic group optionally substituted with one or more hydroxy groups or alkoxy groups, and R 2 is It represents a hydrogen atom, an alkyl group, an aralkyl group, an aryl group, or an alkoxy group, and R 3 is a hydrogen atom, an acyl group, a nitrile group, a carboxyl group, or a -
COOR 5 (R 5 represents a hydrogen atom or an alkyl group.)
and R 4 represents a hydrogen atom or an alkyl group. } This is achieved by an electrophotographic photoreceptor characterized by containing an acrylic compound represented by the following. In the formula, the alkoxy group of R 1 is methoxy,
Examples include groups such as ethoxy, propoxy and butoxy; aryl groups include phenyl, tolyl, xylyl and naphthyl; heterocyclic groups include monovalent residues derived from indoline rings etc. . Examples of the alkyl group of R 2 include groups such as methyl, ethyl, propyl, cyclopentyl and cyclohexyl, and examples of the aralkyl group include groups such as benzyl, phenethyl and 1-phenylethyl;
Aryl groups include phenyl, tolyl, xylyl and naphthyl, and alkoxy groups include methoxy, ethoxy and propoxy. The alkyl group for R4 is methyl, ethyl, propyl, butyl, amyl,
Groups such as hexyl, 2-ethylhexyl, octyl, nonyl and decyl may be mentioned. The alkyl group for R 5 is methyl, ethyl, propyl, butyl, amyl, hexyl, 2-ethylhexyl,
Groups such as octyl, nonyl and decyl may be mentioned. In particular, in the present invention, acrylonitrile compounds are preferred. Specific examples of the acrylic compound used in the present invention are:
It is as follows. These ultraviolet absorbers may be used alone or in combination of two or more, or may be used in combination with other ultraviolet absorbers. In addition, these compounds are contained in the charge transport layer in an amount of 50 to 0.1 wt%, preferably 35 to 1 wt%.
It can be included in a proportion of The charge transport layer of the present invention includes chlorallyl, bromoanil, tetracyanoethylene, tetracyanoquinodimethane, 2,4,7-trinitro-9-fluorenone, 2,4,5,7-tetranitro-9-
Fluorenone, 2,4,7-trinitro-9-dicyanomethylenefluorenone, 2,4,5,7-
Electron-withdrawing substances such as tetranitroxanthone, 2,4,8-trinitrothioxanthone, polymerized products of these electron-withdrawing substances, or pyrene, N-ethylcarbazole, N-isopropylcarbazole, N-methyl-N- Phenylhydrazino-3-methylidene-9-ethylcarbazole, N,N-diphenylhydrazino-3-methylidene-9-ethylcarbazole, N,N-diphenylhydrazino-3-methylidene-10-ethylphenol Thiazine, N,N-diphenylhydrazino-
3-methylidene-10-ethylphenoxazine, P
-Diethylaminobenzaldehyde-N,N-diphenylhydrazone, P-diethylaminobenzaldehyde-N-α-naphthyl-N-phenylhydrazone, P-pyrrolidinopenzaldehyde-
N,N-diphenylhydrazone, 1,3,3-trimethylindolenine-ω-aldehyde-N,N
-diphenylhydrazone, P-diethylbenzaldehyde-3-methylbenzthiazolinone-2-
Hydrazones such as hydrazone, 2,5-bis(P
-diethylaminophenyl)-1,3,4-oxadiazole, 1-phenyl-3-(P-diethylaminostyryl)-5-(P-diethylaminophenyl)pyrazoline, 1-[quinolyl(2)]-3
-(P-diethylaminostyryl)-5-(P-diethylaminophenyl)pyrazoline, 1-[pyridyl(2)]-3-(P-diethylaminostyryl)
-5-(P-diethylaminophenyl)pyrazoline, 1-[6-methoxy-pyridyl (2)]-3-
(P-diethylaminostyryl)-5-(P-diethylaminophenyl)pyrazoline, 1-[pyridyl(3)]-3-(P-diethylaminostyryl)-
5-(P-diethylaminophenyl)pyrazoline,
1-[Lepidyl (2)]-3-(P-diethylaminostyryl)-5-(P-diethylaminophenyl)
Pyrazoline, 1-[pyridyl(2)]-3-(P-diethylaminostyl)-4-methyl-5-(P-diethylaminophenyl)pyrazoline, 1-[pyridyl(2)]-3-(α-methyl -P-diethylaminostyryl)-5-(P-diethylaminophenyl)pyrazoline, 1-phenyl-3-(P-diethylaminostyryl)-4-methyl-5-(P-diethylaminophenyl)pyrazoline, 1-phenyl- Pyrazolines such as 3-(α-benzyl-P-diethylaminostyryl)-5-(P-diethylaminophenyl)pyrazoline and spiropyrazoline, 2-(P-diethylaminostyryl)-6-diethylaminobenzoxazole, 2-(P- oxazole compounds such as diethylaminophenyl)-4-(P-dimethylaminophenyl)-5-(2-chlorophenyl)oxazole, thiazole compounds such as 2-(P-diethylaminostyryl)-6-diethylaminobenzothiazole, triarylmethane compounds such as bis(4-diethylamino-2-methylphenyl)-phenylmethane,
1,1-bis(4-N,N-diethylamino-2
-methylphenyl)heptane, 1,1,2,2-
Tetrakis (4-N,N-dimethylamino-2-
Polyarylalkanes such as methylphenyl)ethane, triphenylamine, poly N-vinylcarbazole, polyvinylpyrene, polyvinylanthracene, polyvinylacridine, poly-9-vinylphenylanthracene, pyrene-formaldehyde resin, ethylcarbazole formaldehyde resin, etc. It can contain a pore-transporting substance. Particularly, the compound of the present invention is effective when a hydrazone compound having a large absorption coefficient for ultraviolet rays is used as a charge transport material. The charge transport layer can be formed by applying a solution prepared by dissolving the above-mentioned charge transport substance and acrylic compound together with a binder resin in a suitable solvent and drying the solution. At this time, the acrylic compound may be contained in the binder resin in advance, or the coated film may be immersed in a solution of the acrylic compound and the acrylic compound may be added only near the surface of the film, especially near the surface of about 5 ÎŒm. You may let them. As the binder resin used for the charge transport layer,
Polyarylate resin, polysulfone resin, polyamide resin, acrylic resin, acrylonitrile resin, methacrylic resin, vinyl chloride resin, vinyl acetate resin, phenol resin, epoxy resin, polyester resin, alkyd resin, polycarbonate,
Examples of polyurethane or copolymer resins containing two or more repeating units of these resins include styrene-butadiene copolymer, styrene-acrylonitrile copolymer, and styrene-maleic acid copolymer. In addition to such insulating polymers, organic photoconductive polymers such as polyvinylcarbazole, polyvinylanthracene, and polyvinylpyrene can also be used. Since the charge transport layer has a limit in the distance over which charge carriers can be transported, it is impossible to make the film thicker than necessary. Typically it is between 5 microns and 30 microns, with a preferred range between 8 microns and 20 microns. When forming a charge transport layer by coating, coating methods such as dip coating method, spray coating method, spinner coating method, bead coating method, Meyer bar coating method, blade coating method, roller coating method, curtain coating method, etc. This can be done using the law. The charge transport layer of the present invention can contain various additives. Such additives include diphenyl, dienyl chloride, O-terphenyl,
P-terphenyl, dibutyl phthalate, dimethyl glycol phthalate, dioctyl phthalate, triphenyl phosphoric acid, matylnaphthalene, benzophenone, chlorinated paraffin, dilaurylthiopropionate, 3,5-dinitrosalicylic acid,
Examples include various fluorocarbons. The charge generation layer used in the present invention includes selenium, selenium-tellurium, pyrylium, thiopyrylium dyes,
Phthalocyanine pigments anthorone pigments, dibenzpyrenequinone pigments, pyranthrone pigments, trisazo pigments, disazo pigments, azo pigments, indigo pigments, quinacridone pigments, asymmetric quinocyanine, quinocyanine, or amorphous as described in JP-A-54-143645. Separate deposited layers or resin dispersion layers of charge generating materials such as silicon can be used. The charge generation layer contains as much of the organic photoconductor as possible in order to obtain sufficient absorbance and is preferably a thin film layer, for example less than 5 microns, in order to shorten the range of the generated charge carriers. teeth
A thin film layer having a thickness of 0.01 micron to 1 micron is preferable. This means that most of the incident light is absorbed by the charge generation layer and generates a large number of charge carriers, and that the generated charge carriers are not deactivated by recombination or trapping, and the charge transport layer This is due to the need to inject. Further, although this charge generation layer is provided between the charge transport layer and the conductive layer, it may be provided on the charge transport layer. A photosensitive layer having such a laminated structure of a charge generation layer and a charge transport layer is provided on a substrate having a conductive layer. As the substrate having the conductive layer, materials that are themselves conductive can be used, such as aluminum, aluminum composite, copper, zinc, stainless steel, vanadium, molybdenum, chromium, titanium, nickel, indium, gold, and platinum. In addition, plastics (e.g., polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, acrylic resin) have a layer formed by vacuum deposition of aluminum, aluminum alloy, indium oxide, tin oxide, indium oxide, tin monoxide alloy, etc. , polyethylene fluoride, etc.), conductive particles (e.g., carbon black,
A substrate made of plastic coated with silver particles (silver particles, etc.) together with a suitable binder, a substrate made of plastic or paper impregnated with conductive particles, a plastic containing a conductive polymer, etc. can be used. A subbing layer having barrier and adhesive functions can also be provided between the conductive layer and the photosensitive layer. The undercoat layer is made of casein, polyvinyl alcohol, nitrocellulose, ethylene-acrylic acid copolymer, polyamide (nylon 6, nylon 66, nylon
610, copolymerized nylon, alkoxymethylated nylon, etc.), polyurethane, gelatin, aluminum oxide, etc. The thickness of the undercoat layer is 0.1 micron to 5 micron.
Preferably, 0.5 micron to 3 micron is appropriate. The electrophotographic photoreceptor of the present invention can be used not only for electrophotographic copying machines, but also for laser printers,
It can also be widely used in electrophotographic applications such as CRT printers and electrophotographic plate making systems. According to the present invention, it is possible to effectively prevent various defects that occur when an electrophotographic photoreceptor is exposed to light rays containing ultraviolet rays, and it is possible to effectively prevent copying using an optical system that emits rays containing ultraviolet rays. The machine can also prevent various defects that occur when repeatedly charging and exposing to light. These effects and examples according to the present invention will be clarified below. Example 1 An ammonia aqueous solution of casein (11.2 g of casein, 1 g of 28% ammonia water, 222 g of water) was placed on an aluminum sheet.
ml) was applied with a Mayer bar so that the film thickness after drying was 1.0 microns, and dried. Then the structural formula 5 g of the disazo pigment was added to a solution prepared by dissolving 2 g of butyral resin (degree of butyralization: 63 mol %) in 95 ml of ethanol, and dispersed with an attritor for 2 hours. This dispersion was applied onto the previously formed casein layer using a Mayer bar so that the film thickness after drying was 0.2 microns, and dried to form a charge generation layer. Then, the structural formula 5 g of the hydrazone compound, 2 g of the acrylic compound (1) shown above, and 5 g of polymethyl methacrylate resin (number average molecular weight 100,000) were mixed with 70 ml of benzene.
and apply it onto the charge generation layer using a Mayer bar so that the film thickness after drying is 12 microns.
A dried charge transport layer was formed. The electrophotographic photoreceptor thus prepared was left in a room under fluorescent lamp illumination for 15 minutes, and then the fluctuations in bright area potential and dark area potential were measured when the photoreceptor was used repeatedly. For this measurement, an electrophotographic copying machine equipped with a -5.6 KV corona charger, an exposure optical system with an exposure amount of 15 lux-sec, a developer, a transfer charger, a static elimination exposure optical system, and a cleaner was used. The photoreceptor of this example was attached to the cylinder. This copying machine is configured to produce an image on transfer paper as the cylinder is driven. Using this copying machine, we measured the initial bright area potential (V L ) and dark area potential (V D ) of the photoreceptor of this example, and further measured the bright area potential (V L ) when this photoreceptor was used 2000 times. ) and dark potential (V D ) were measured. The results are shown in Table 1. On the other hand, as a comparative test, a comparative photoreceptor was created in exactly the same manner, except that the use of the acrylic compound used when creating the photoreceptor described above was omitted, and then used repeatedly in the same manner as described above. The fluctuations in the bright and dark potentials were measured at the same time. The results are also shown in Table 1.

【衚】 実斜䟋 〜 実斜䟋で甚いたアクリル系化合物(1)に代え
お、前蚘に瀺したアクリル系化合物(4)(5)(8)
(9)(10)をそれぞれ甚いたはほかは、実斜䟋ず同
様の方法によ぀お皮の感光䜓を䜜成した。 これらの感光䜓を螢光灯照明䞋の宀内に15分間
攟眮した埌、実斜䟋ず同様の方法によ぀お、
2000回耐久埌の明郚電䜍ず暗郚電䜍の倉動を枬定
した。これらの結果を第衚に瀺す。
[Table] Examples 2 to 6 Instead of the acrylic compound (1) used in Example 1, the acrylic compounds (4), (5), (8),
Five types of photoreceptors were prepared in the same manner as in Example 1, except that (9) and (10) were used, respectively. After leaving these photoreceptors in a room under fluorescent light illumination for 15 minutes, the same method as in Example 1 was carried out.
After 2000 cycles, changes in bright and dark potential were measured. These results are shown in Table 2.

【衚】 実斜䟋 〜 実斜䟋の感光䜓を䜜成した時に甚いたヒドラ
ゟン化合物に代えお、−ゞプニルヒドラ
ゞノ−−メチリデン−−゚チルカルバゟヌル
実斜䟋、−ゞ゚チルアミノベンズアルデヒ
ド−−ゞプニルヒドラゟン実斜䟋
および−ピロリゞノベンズアルデヒド−
−ゞプニルヒドラゟン実斜䟋をそれぞれ
甚いたほかは、実斜䟋ず同様の方法によ぀お
皮の感光䜓を䜜成した。 これらの感光䜓を螢光灯照明䞋の宀内に15分間
攟眮した埌、実斜䟋ず同様の方法によ぀お、
2000回耐久埌の明郚電䜍ず暗郚電䜍の倉動を枬定
した。これらの結果を第衚に瀺す。
[Table] Examples 7 to 9 N,N-diphenylhydrazino-3-methylidene-9-ethylcarbazole (Example 7), P -Diethylaminobenzaldehyde-N,N-diphenylhydrazone (Example 8)
and P-pyrrolidinobenzaldehyde-N,N
- Diphenylhydrazone (Example 9) was used in each case, but in the same manner as in Example 1.
A seed photoreceptor was created. After leaving these photoreceptors in a room under fluorescent light illumination for 15 minutes, the same method as in Example 1 was carried out.
After 2000 cycles, changes in bright and dark potential were measured. These results are shown in Table 3.

【衚】【table】

Claims (1)

【特蚱請求の範囲】  電荷発生局ず電荷茞送局を有する電子写真感
光䜓においお、該電荷茞送局が䞋蚘䞀般匏(1) 匏䞭、R1はひず぀以䞊のヒドロキシ基又はア
ルコキシ基によ぀お眮換されたアリヌル基、又は
ひず぀以䞊のヒドロキシ基又はアルコキシ基によ
぀お眮換されおもよい耇玠環基を瀺し、R2は氎
玠原子、アルキル基、アラルキル基、アリヌル基
又はアルコキシ基を瀺し、R3は氎玠原子、アシ
ル基、ニトリル基、カルボキシル基又は−
COOR5R5は氎玠原子又はアルキル基を瀺す。
を瀺し、R4は氎玠原子又はアルキル基を瀺す。 で瀺されるアクリル系化合物を含有するこずを特
城ずする電子写真感光䜓。
[Scope of Claims] 1. In an electrophotographic photoreceptor having a charge generation layer and a charge transport layer, the charge transport layer has the following general formula (1). {In the formula, R 1 represents an aryl group substituted with one or more hydroxy groups or alkoxy groups, or a heterocyclic group optionally substituted with one or more hydroxy groups or alkoxy groups, and R 2 is It represents a hydrogen atom, an alkyl group, an aralkyl group, an aryl group, or an alkoxy group, and R 3 is a hydrogen atom, an acyl group, a nitrile group, a carboxyl group, or a -
COOR 5 (R 5 represents a hydrogen atom or an alkyl group.)
and R 4 represents a hydrogen atom or an alkyl group. } An electrophotographic photoreceptor comprising an acrylic compound represented by the following.
JP5696282A 1982-04-06 1982-04-06 Electrophotographic receptor Granted JPS58173747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5696282A JPS58173747A (en) 1982-04-06 1982-04-06 Electrophotographic receptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5696282A JPS58173747A (en) 1982-04-06 1982-04-06 Electrophotographic receptor

Publications (2)

Publication Number Publication Date
JPS58173747A JPS58173747A (en) 1983-10-12
JPH0363744B2 true JPH0363744B2 (en) 1991-10-02

Family

ID=13042156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5696282A Granted JPS58173747A (en) 1982-04-06 1982-04-06 Electrophotographic receptor

Country Status (1)

Country Link
JP (1) JPS58173747A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085960A (en) * 1988-05-16 1992-02-04 Fuji Xerox Co., Ltd. Electrophotographic photosensitive member and image forming process
US5350653A (en) * 1992-03-02 1994-09-27 Ricoh Company, Ltd. Electrophotographic photoconductor
DE69927534T2 (en) * 1998-01-07 2006-07-06 Canon K.K. Electrophotographic photosensitive member, process for its preparation, process cartridge and electrophotographic apparatus incorporating this member

Also Published As

Publication number Publication date
JPS58173747A (en) 1983-10-12

Similar Documents

Publication Publication Date Title
JPH0480381B2 (en)
JPS58163945A (en) Electrophotographic receptor
JPH0480384B2 (en)
JPS61123848A (en) Electrophotographic sensitive body
JPS58160957A (en) Electrophotographic receptor
JPH0363744B2 (en)
JPH0441336B2 (en)
JPS58160961A (en) Image formation
JPS58163946A (en) Electrophotographic receptor
JPH0448217B2 (en)
JPH039459B2 (en)
JPS61238061A (en) Electrophotographic sensitive body
JPS58163947A (en) Electrophotographic receptor
JPS58163948A (en) Electrophotographic receptor
JPH0549102B2 (en)
JPS6329739B2 (en)
JP2641059B2 (en) Electrophotographic photoreceptor
JPH0478983B2 (en)
JPS62269966A (en) Electrophotographic sensitive body
JPS5830760A (en) Electrophotographic receptor
JPH0477903B2 (en)
JPH0650403B2 (en) Electrophotographic photoreceptor
JPS5859451A (en) Electrophotographic receptor
JPS6373266A (en) Electrophotographic sensitive body
JPH0440716B2 (en)