JPH0363702B2 - - Google Patents

Info

Publication number
JPH0363702B2
JPH0363702B2 JP58078923A JP7892383A JPH0363702B2 JP H0363702 B2 JPH0363702 B2 JP H0363702B2 JP 58078923 A JP58078923 A JP 58078923A JP 7892383 A JP7892383 A JP 7892383A JP H0363702 B2 JPH0363702 B2 JP H0363702B2
Authority
JP
Japan
Prior art keywords
electrolyte
oxygen
oxygen sensor
acid
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58078923A
Other languages
Japanese (ja)
Other versions
JPS59204754A (en
Inventor
Kenji Sakuma
Hitoshi Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komyo Rikagaku Kogyo KK
Original Assignee
Komyo Rikagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komyo Rikagaku Kogyo KK filed Critical Komyo Rikagaku Kogyo KK
Priority to JP58078923A priority Critical patent/JPS59204754A/en
Publication of JPS59204754A publication Critical patent/JPS59204754A/en
Publication of JPH0363702B2 publication Critical patent/JPH0363702B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は気体及び液体中の酸素を検出するガル
バニ電池式酸素センサに関する。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD The present invention relates to galvanic cell oxygen sensors for detecting oxygen in gases and liquids.

従来技術 ガルバニ電池式酸素センサは、電解質として従
来はアルカリ性水溶液を使用したが、水酸化カリ
ウムまたは水酸化ナトリウムの水溶液はアルカリ
濃度が通常3.5重量%であつて、−5℃で凍結し、
これによる体積膨張のために、酸素透過性隔膜が
ふくれたり、破損する欠点があり、さらに測定気
体が酸素のほかに、酸性気体たとえば二酸化炭素
を含むときは、これを吸収して、アルカリ濃度が
変化するので、長期間にわたつて使用することが
できない欠点があつた。
Prior Art Galvanic cell type oxygen sensors have conventionally used an alkaline aqueous solution as an electrolyte, but the aqueous solution of potassium hydroxide or sodium hydroxide usually has an alkaline concentration of 3.5% by weight and freezes at -5°C.
Due to the volumetric expansion caused by this, the oxygen-permeable diaphragm may swell or break. Furthermore, if the gas to be measured contains acidic gases such as carbon dioxide in addition to oxygen, this will be absorbed and the alkaline concentration will increase. It has the disadvantage that it cannot be used for a long period of time because it changes.

発明の目的 本発明の目的は上記欠点を解消するガルバニ電
池式酸素センサを提供することである。
OBJECTS OF THE INVENTION It is an object of the invention to provide a galvanic cell oxygen sensor which overcomes the above-mentioned drawbacks.

発明の構成 本出願の一つの発明は、陽極、陰極、酸素透過
性隔膜および電解質を有するガルバニ電池式酸素
センサにおいて、電解質が、過塩素酸、テトラフ
ルオロほう酸、またはヘキサフルオロけい酸から
なることを特徴とするガルバニ電池式酸素センサ
である。
Structure of the Invention One invention of the present application is a galvanic cell oxygen sensor having an anode, a cathode, an oxygen-permeable diaphragm, and an electrolyte, in which the electrolyte is made of perchloric acid, tetrafluoroboric acid, or hexafluorosilicic acid. This is a galvanic cell type oxygen sensor.

本発明のガルバニ電池式酸素センサは陽極金属
を鉛とすることができ、また電解質水溶液にはコ
ロイド状無水けい酸を混入して、ゾルまたはゲル
状とすることが好ましい。また過塩素酸、テトラ
フルオロほう酸、またはヘキサフルオロけい酸を
20〜50重量%水溶液として使用すれば、凝固点が
−20℃以下になるので、低温で使用することがで
きる。
In the galvanic cell type oxygen sensor of the present invention, the anode metal can be lead, and it is preferable that colloidal silicic anhydride is mixed in the electrolyte aqueous solution to form a sol or gel. Also, do not use perchloric acid, tetrafluoroboric acid, or hexafluorosilicic acid.
When used as a 20 to 50% by weight aqueous solution, the freezing point is -20°C or lower, so it can be used at low temperatures.

作 用 一般に、ガルバニ電池式酸素センサは、第1図
に示すように、容器1はポリエチレンまたは塩化
ビニルなどの絶縁材料からなり、陰極2は金また
は白金などの貴金属からなり、陽極3は鉛などの
卑金属からなる。酸素透過性隔膜4は液体不透過
性であつて、容器1内の電解質5に測定雰囲気を
接触させて電解質5に酸素を溶解させる、多孔性
のポリエチレンまたはポリ四ふつ化エチレンなど
からなる。酸素は陰極2面で反応するので、酸素
透過性隔膜4は陰極2面に接して配置し、陰極2
面上の電解質5に測定雰囲気中の酸素量に対応し
た酸素濃度を与える。両極における反応は次のと
おりである。
Function Generally, in a galvanic cell type oxygen sensor, as shown in Fig. 1, the container 1 is made of an insulating material such as polyethylene or vinyl chloride, the cathode 2 is made of a noble metal such as gold or platinum, and the anode 3 is made of lead or the like. consisting of base metals. The oxygen-permeable diaphragm 4 is liquid-impermeable and is made of porous polyethylene or polytetrafluoroethylene, etc., and allows the measurement atmosphere to come into contact with the electrolyte 5 in the container 1 to dissolve oxygen in the electrolyte 5. Since oxygen reacts on the two surfaces of the cathode, the oxygen permeable diaphragm 4 is placed in contact with the two surfaces of the cathode.
An oxygen concentration corresponding to the amount of oxygen in the measurement atmosphere is applied to the electrolyte 5 on the surface. The reactions at both poles are as follows.

陰極 O2+4H++4e-→2H2O (1) 陽極 2Pb+2H2O→2PbO+4H++4e- (2) すなわち陰極においては、O2がH+と反応して
H2Oを生成し、外部回路からe-を取入れる。陽
極においては、PbがH2Oと反応してPbOとなり、
H+を生成し、かつ外部回路にe-を供給する。流
れる電流は酸素濃度に比例するので電流を測定す
ることにより酸素濃度を知ることができる。生成
したPbOが陽極であるPb表面をおおうと、電極
反応が進行しなくなるので、電解質の酸はPbOと
反応して溶解させる必要がある。
Cathode O 2 +4H + +4e - →2H 2 O (1) Anode 2Pb+2H 2 O→2PbO+4H + +4e - (2) In other words, at the cathode, O 2 reacts with H +
Generates H 2 O and takes in e - from an external circuit. At the anode, Pb reacts with H 2 O to become PbO,
Generates H + and supplies e - to external circuits. Since the flowing current is proportional to the oxygen concentration, the oxygen concentration can be determined by measuring the current. If the generated PbO covers the Pb surface of the anode, the electrode reaction will not proceed, so the electrolyte acid must react with the PbO and dissolve it.

また電解質は通常の使用において凍結してはな
らないので、酸濃度20〜50重量%において凝固点
が−20℃以下とする。
Furthermore, since the electrolyte must not freeze during normal use, the freezing point should be -20°C or lower at an acid concentration of 20 to 50% by weight.

さらに電解質は陽極のPbを溶解してはならな
い。また電解質の酸は使用中に分解または揮発し
てはならない。
Furthermore, the electrolyte must not dissolve the Pb in the anode. Also, the acid in the electrolyte must not decompose or volatilize during use.

これらの条件をすべて満足する酸としては、過
塩素酸、テトラフルオロほう酸またはヘキサフル
オロけい酸を使用することができる。
Perchloric acid, tetrafluoroboric acid, or hexafluorosilicic acid can be used as the acid that satisfies all of these conditions.

なお、電解質5をゲル状とすることによつて、
陰極2と酸素透過性隔膜4との間にはさまれた電
解質層の厚みを一定に保持し、かつセンサの姿勢
変化に伴なう両極間の液絡の変化を防止し、これ
によつて、良好な応答特性を維持することができ
る。
In addition, by making the electrolyte 5 into a gel state,
The thickness of the electrolyte layer sandwiched between the cathode 2 and the oxygen-permeable diaphragm 4 is maintained constant, and the liquid junction between the two electrodes is prevented from changing due to changes in the sensor's posture. , good response characteristics can be maintained.

実施例 第1図に示す装置を使用して、二酸化炭素含量
を変えた酸素・窒素混合雰囲気を、従来のアルカ
リ性電解質を使用する酸素センサと本発明の電解
質を使用する酸素センサで測定したときの経過期
間と出力電圧との関係を第2図に示す。
Example Using the apparatus shown in Fig. 1, an oxygen/nitrogen mixed atmosphere with varying carbon dioxide content was measured using an oxygen sensor using a conventional alkaline electrolyte and an oxygen sensor using the electrolyte of the present invention. FIG. 2 shows the relationship between elapsed period and output voltage.

測定雰囲気は10%CO2、20.9%O2、残部N2、ま
たは0.03%CO2、20.9%O2、残部N2とし、従来の
電解質として、3.5重量%NaOH水溶液N、本発
明の電解質として、44重量%HClO4水溶液にコ
ロイド状無水けい酸を4重量%添加したものC、
41重量%H2SiF6水溶液にコロイド状無水けい酸
を4重量%添加したものS、および33重量%
HBF4水溶液にコロイド状無水けい酸を4重量%
添加したものBとした。従来のアルカリ性電解質
Nは10%CO2の場合aは、50日を過ぎると出力が
低下し、0.03%CO2の場合bは、300日後には出
力が低下した。これに対して、本発明の電解質は
いずれも、CO2濃度が10%の場合aも、0.03%の
場合bも900日経過後にようやく出力が低下しは
じめた。
The measurement atmosphere was 10% CO 2 , 20.9% O 2 , balance N 2 , or 0.03% CO 2 , 20.9% O 2 , balance N 2 , and the conventional electrolyte was 3.5% NaOH aqueous solution N, and the electrolyte of the present invention was 3.5% NaOH aqueous solution N. , 4% by weight of colloidal silicic anhydride added to a 44% by weight HClO 4 aqueous solution C,
41 wt% H 2 SiF 6 aqueous solution with 4 wt% colloidal silicic anhydride added, and 33 wt%
4% by weight of colloidal silicic anhydride in HBF 4 aqueous solution
Added product B was added. In the case of conventional alkaline electrolyte N with 10% CO 2 , the output decreased after 50 days in case a, and in the case of 0.03% CO 2 in case b the output decreased after 300 days. On the other hand, in all of the electrolytes of the present invention, the output began to decrease only after 900 days had elapsed in both cases (a) when the CO 2 concentration was 10% and cases (b) when the CO 2 concentration was 0.03%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はガルバニ電池式酸素センサの略断面図
であり、第2図は本発明および従来技術のガルバ
ニ電池式酸素センサの経過期間と出力電圧との関
係を示すグラフである。 1……容器、2……陰極、3……陽極、4……
酸素透過性隔膜、5……電解質、N……3.5%
NaOHセンサ、C……44%HClO4センサ、S…
…41%H2SiF6センサ、B……33%HBF4センサ、
a……10%CO2、b……0.03%CO2
FIG. 1 is a schematic cross-sectional view of a galvanic cell type oxygen sensor, and FIG. 2 is a graph showing the relationship between the elapsed period and the output voltage of the galvanic cell type oxygen sensor of the present invention and the prior art. 1... Container, 2... Cathode, 3... Anode, 4...
Oxygen permeable diaphragm, 5...electrolyte, N...3.5%
NaOH sensor, C...44%HClO 4 sensor, S...
...41% H2SiF 6 sensors, B...33%HBF 4 sensors,
a...10% CO2 , b...0.03% CO2 .

Claims (1)

【特許請求の範囲】 1 陽極、陰極、酸素透過性隔膜および電解質を
有するガルバニ電池式酸素センサにおいて、電解
質が過塩素酸、テトラフルオロほう酸、またはヘ
キサフルオロけい酸の水溶液であることを特徴と
するガルバニ電池式酸素センサ。 2 陽極金属が鉛である、特許請求の範囲第1項
記載の酸素センサ。 3 電解質水溶液にコロイド状無水けい酸を混入
してゾルまたはゲル状とした、特許請求の範囲第
1項記載の酸素センサ。
[Scope of Claims] 1. A galvanic cell oxygen sensor having an anode, a cathode, an oxygen-permeable diaphragm, and an electrolyte, characterized in that the electrolyte is an aqueous solution of perchloric acid, tetrafluoroboric acid, or hexafluorosilicic acid. Galvanic cell type oxygen sensor. 2. The oxygen sensor according to claim 1, wherein the anode metal is lead. 3. The oxygen sensor according to claim 1, wherein colloidal silicic anhydride is mixed into an electrolyte aqueous solution to form a sol or gel.
JP58078923A 1983-05-07 1983-05-07 Galvanic cell type oxygen sensor Granted JPS59204754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58078923A JPS59204754A (en) 1983-05-07 1983-05-07 Galvanic cell type oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58078923A JPS59204754A (en) 1983-05-07 1983-05-07 Galvanic cell type oxygen sensor

Publications (2)

Publication Number Publication Date
JPS59204754A JPS59204754A (en) 1984-11-20
JPH0363702B2 true JPH0363702B2 (en) 1991-10-02

Family

ID=13675375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58078923A Granted JPS59204754A (en) 1983-05-07 1983-05-07 Galvanic cell type oxygen sensor

Country Status (1)

Country Link
JP (1) JPS59204754A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2813844B1 (en) * 2013-06-13 2017-02-08 Honeywell International Inc. Oxygen galvanic sensor based on noble metals

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58187846A (en) * 1982-04-27 1983-11-02 Japan Storage Battery Co Ltd Oxygen densitometer

Also Published As

Publication number Publication date
JPS59204754A (en) 1984-11-20

Similar Documents

Publication Publication Date Title
US4132616A (en) Gas sensor
EP1959253B1 (en) Electrochemical sensor
US3296113A (en) Gas-stream monitor
EP1332358A1 (en) Acid gas measuring sensors and method of making same
US4622105A (en) Method for measuring gaseous sulfur dioxide
US4477403A (en) Method of making an electrochemical sensor
JPH0363702B2 (en)
US4981567A (en) Lithium-salt reference half-cell for potentiometric determinations
GB2140566A (en) Powdered liquid electrolyte
JPH0239740B2 (en)
JP2001289816A (en) Controlled potential electrolysis type gas sensor
US4149948A (en) Electrochemical cell for detecting hydrogen sulphide in a gaseous mixture
JPH041495Y2 (en)
JPS60112266A (en) Specific gravity sensor for lead storage battery
JPS63231258A (en) Sensor
JPS5944649A (en) Electrochemical device for measuring partial pressure of oxygen in gas or liquid atmosphere
JPH0334824B2 (en)
JPH0334690Y2 (en)
JPH0346371Y2 (en)
JPH0625746B2 (en) Electrochemical acid gas detector
JPH0336190B2 (en)
JPH0425753A (en) Gas sensor
JPH032258B2 (en)
JPS59145954A (en) Oxygen sensor
JPS5937455A (en) Gas sensor