JPH0363685B2 - - Google Patents

Info

Publication number
JPH0363685B2
JPH0363685B2 JP58007278A JP727883A JPH0363685B2 JP H0363685 B2 JPH0363685 B2 JP H0363685B2 JP 58007278 A JP58007278 A JP 58007278A JP 727883 A JP727883 A JP 727883A JP H0363685 B2 JPH0363685 B2 JP H0363685B2
Authority
JP
Japan
Prior art keywords
blade row
users
differential
upstream
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58007278A
Other languages
Japanese (ja)
Other versions
JPS59133426A (en
Inventor
Shoichi Hanzawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OBARA KIKI KOGYO KK
Original Assignee
OBARA KIKI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OBARA KIKI KOGYO KK filed Critical OBARA KIKI KOGYO KK
Priority to JP727883A priority Critical patent/JPS59133426A/en
Publication of JPS59133426A publication Critical patent/JPS59133426A/en
Publication of JPH0363685B2 publication Critical patent/JPH0363685B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/10Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects using rotating vanes with axial admission

Description

【発明の詳細な説明】 本発明は旋流型タービンメータに関する。[Detailed description of the invention] TECHNICAL FIELD The present invention relates to a swirl type turbine meter.

旋流型タービンメータは、短管状の筐体内に同
軸に上流側及び下流側にデフユーザを設け、且つ
このデフユーザを支承する整流翼列を螺旋状のブ
レードで構成し、デフユーザの周りに同軸に螺旋
流を発生させ、これにより、上流側及び下流側の
デフユーザの間に回動自在に支承した回転タービ
ンを回動させ、この回動タービンの回転数を検知
して流動を測定するものである。
A swirl-flow turbine meter has differential users disposed coaxially on the upstream and downstream sides within a short tubular housing, and a rectifying blade row that supports the differential users is composed of a spiral blade. A flow is generated, which causes a rotary turbine rotatably supported between upstream and downstream differential users to rotate, and the flow is measured by detecting the rotational speed of the rotary turbine.

この旋流型タービンメータで用いる回転タービ
ンは、管軸に平行なブレードから成る環状翼列を
有するものである。
The rotary turbine used in this swirl-type turbine meter has an annular blade row consisting of blades parallel to the tube axis.

このため、回転タービンのブレードに作用する
流体抵抗がタービンの回転方向に分力を有しない
ので、整流翼列のブレードが管軸に平行な、所謂
直流型タービンメータにみられるレイノルズ数ハ
ンプと呼ばれる現象が無いため、タービン回転運
動の安定性が高く広いレイノズル数範囲に渡つて
高精度が維持されるという特徴を有する。
For this reason, the fluid resistance acting on the blades of the rotating turbine has no component force in the direction of rotation of the turbine, so the blades of the rectifier blade row are parallel to the tube axis, which is called the Reynolds number hump seen in so-called DC turbine meters. Since there is no phenomenon, the turbine rotational motion is highly stable and high accuracy is maintained over a wide range of Raynozzle numbers.

然しながら、この旋流型タービンメータには、
旋回流を発生させる螺旋状の整流翼列の製造が困
難であり、又、その整流翼列は流路断面を充分に
細分するものであることを要するが、そのような
環状翼列を構成することが極めて困難であつたの
で、実際に製造されたものでは環状翼列を構成す
るブレードの数が少なく、従つてそのブレードに
よつて区画される流路内に遠心力等による二次流
が発生し、そのため螺旋流が乱され、精度が充分
に高められないという問題があつた。
However, this swirl type turbine meter has
Although it is difficult to manufacture a spiral straightening blade row that generates a swirling flow, and the straightening blade row must sufficiently subdivide the flow path cross section, it is difficult to construct such an annular blade row. Because it was extremely difficult to do so, the number of blades that make up the annular blade array was actually small, and secondary flow due to centrifugal force etc. was generated in the flow path defined by the blades. This caused the problem that the spiral flow was disturbed and the accuracy could not be sufficiently improved.

本発明は、叙上の観点に立つて成されたもので
あつてその目的とするとことは極めて容易、且つ
良質な旋回流を生じさせる螺旋状整流翼列を有す
る螺流型タービンメータを提供することにある。
The present invention has been made based on the above-mentioned viewpoints, and provides a spiral flow turbine meter having a spiral straightening blade row that is extremely easy to achieve and that produces high-quality swirling flow. There is a particular thing.

而して本発明の要旨とするところはこの螺旋状
整流翼列を細管群をねじることによつて構成する
ことにある。
The gist of the present invention is to construct this spiral straightening blade row by twisting a group of thin tubes.

以下、図面により本発明の詳細を説明する。 Hereinafter, details of the present invention will be explained with reference to the drawings.

第1図は本発明に係る旋流型タービンメータの
一実施例を示す正面図、第2図はその筐体部分を
切断した側面図、第3図は第1図中切断線−
に沿つて切断した断面図、第4図及び第5図は細
管の上記とは別翼の配置例を示す正面図である。
FIG. 1 is a front view showing an embodiment of a swirl-flow turbine meter according to the present invention, FIG. 2 is a side view of the casing section cut away, and FIG. 3 is a section line -
4 and 5 are front views showing examples of the arrangement of wings of the thin tube, which are different from those described above.

而して、図中、1は短管状の筐体、2は上流側
デフユーザ、3は下流側デフユーザ、4,4は上
流側の整流翼列を構成する細管、5,5は下流側
の整流翼列を構成する細管、6は回転タービン、
7は回転タービン軸、8及び9はスラストベアリ
ング、10及び11はラジアルベアリング、12
及び13はスプリングワツシヤ、14及び15は
取付ボルト、16はプツクアツプである。
In the figure, 1 is a short tube-shaped housing, 2 is an upstream differential user, 3 is a downstream differential user, 4, 4 are thin tubes forming the upstream rectifier blade row, and 5, 5 are downstream rectifiers. Thin tubes constituting the blade row, 6 is a rotating turbine,
7 is a rotating turbine shaft, 8 and 9 are thrust bearings, 10 and 11 are radial bearings, 12
and 13 are spring washers, 14 and 15 are mounting bolts, and 16 is a push-up.

上流側デフユーザ2及び下流側デフユーザ3
は、それぞれ細管4,4及び5,5から成る整流
翼列により筐体1と同軸に支承されており、回転
タービン軸7は回転タービン6に固着されてお
り、スラストベアリング8及び9、ライアルベア
リング10及び11、スプリングワツシヤ12及
び13等により上流側デフユーザ2及び下流側デ
フユーザ3の間で回動自在に支承されている。
Upstream differential user 2 and downstream differential user 3
is supported coaxially with the housing 1 by rectifying blade rows consisting of thin tubes 4, 4 and 5, 5, respectively, and the rotating turbine shaft 7 is fixed to the rotating turbine 6, with thrust bearings 8 and 9, and a Lyall bearing. It is rotatably supported between the upstream differential user 2 and the downstream differential user 3 by spring washers 10 and 11, spring washers 12 and 13, and the like.

図示されているように、上流側及び下流側の整
流翼列は、それぞれ螺旋状にねじられた複数の細
管4,4,5,5を、環状翼列を形成するよう放
散同形に配設して成るものであり、この環状翼列
はデフユーザの周りに螺旋状に旋回する流れを生
じさせる。
As shown in the figure, the upstream and downstream straightening blade rows each have a plurality of spirally twisted thin tubes 4, 4, 5, and 5 arranged in a dispersive manner to form an annular blade row. This annular blade row generates a flow that spirals around the differential user.

回転タービン6の環状翼列は管軸に平行な平面
から成る環状翼列であつて、そのブレードは有限
なリードを有しないが、上記整流翼列に依り発生
する旋回流によつて回動せしめられ、その回転数
は公知のピツクアツプ16によつて検出される。
The annular blade row of the rotary turbine 6 is an annular blade row consisting of a plane parallel to the tube axis, and the blades thereof do not have a finite lead, but are rotated by the swirling flow generated by the rectifying blade row. The rotation speed is detected by a known pickup 16.

第1図乃至第3図には8本の円管を一重に巻い
て環状翼列を構成する例を示したが、この数、配
列法及び細管断面形状が自由に設計変更出来るこ
とは勿論であり、第4図には6本の細管を相互に
一定の距離を隔てて配設する例を示し、第5図に
は2種の異径の円管を多重に配設する例を示して
ある。これらの細管は相互に溶接、若しくは接着
され、公知の方法で筐体1内に圧入され、溶接そ
の他公知の方法で固定されるものである 本発明は叙上の如く構成されるので、本発明に
よるときは、簡単且つ確実に整流翼列を形成する
ことができ、然も、流路を充分細分し得るので、
従来製造が困難であつた旋回型タービンメータを
大量且つ安価にて提供し得るものである。
Figures 1 to 3 show an example in which eight circular tubes are wound in a single layer to form an annular blade row, but it goes without saying that the number, arrangement method, and cross-sectional shape of the thin tubes can be freely changed. Figure 4 shows an example in which six thin tubes are arranged at a certain distance from each other, and Figure 5 shows an example in which two types of circular tubes with different diameters are arranged in multiple layers. be. These thin tubes are welded or glued together, press-fitted into the housing 1 by a known method, and fixed by welding or other known method. In this case, it is possible to easily and reliably form a rectifying blade row, and the flow path can be sufficiently subdivided.
It is possible to provide rotating turbine meters, which have conventionally been difficult to manufacture, in large quantities and at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る旋流型タービンメータの
一実施例を示す正面図、第2図はその筐体部分を
切断した側面図、第3図は第1図中切断線−
に沿つて切断した断面図、第4図及び第5図は細
管の上記とは別異の配置例を示す正面図である。 1……短管状の筐体、2……上流側デフユー
ザ、3……下流側デフユーザ、4,4……上流側
の整流翼列を構成する細管、5,5……下流側の
整流翼列を構成する細管、6……回転タービン、
7……回転タービン軸、8,9……スラストベア
リング、10,11……ラジアルベアリング、1
2,13……スプリングワツシヤ、14,15…
…取付ボルト、16……ピツクアツプ。
FIG. 1 is a front view showing an embodiment of a swirl-flow turbine meter according to the present invention, FIG. 2 is a side view of the casing section cut away, and FIG. 3 is a section line -
4 and 5 are front views showing a different arrangement of the thin tubes from the above. 1...Short tubular housing, 2...Upstream differential user, 3...Downstream differential user, 4, 4...Thin tube forming the upstream straightening blade row, 5, 5...Downstream straightening blade row A thin tube constituting the 6...rotating turbine;
7... Rotating turbine shaft, 8, 9... Thrust bearing, 10, 11... Radial bearing, 1
2, 13... Spring washers, 14, 15...
...Mounting bolt, 16...Pick up.

Claims (1)

【特許請求の範囲】[Claims] 1 短管状の筐体と、該筐体内に同軸に設けられ
た上流側及び下流側のデフユーザと、前記上流側
及び下流側のデフユーザと筐体内壁に設けられ、
これらデフユーザを支承すると共にデフユーザと
同軸に設けた旋回流を生ぜしめ整流翼列と、管軸
に平行なブレードからなる管状翼列を有し前記上
流側及び下流側のデフユーザの間に回動自在に支
承された回転タービンとから成る旋流型タービン
メータにおいて、前記整流翼列を複数本の細管を
螺旋状にねじることにより形成したことを特徴と
する旋流型タービンメータ。
1. A short tubular housing, upstream and downstream differential users coaxially provided within the housing, and provided on the internal wall of the housing with the upstream and downstream differential users,
It supports these differential users and generates a swirling flow coaxially with the differential users, and has a straightening blade row and a tubular blade row consisting of blades parallel to the tube axis, and is rotatable between the upstream and downstream differential users. What is claimed is: 1. A swirling type turbine meter comprising a rotating turbine supported by a rotary turbine, wherein the rectifying blade row is formed by spirally twisting a plurality of thin tubes.
JP727883A 1983-01-21 1983-01-21 Swirl flow type turbine meter Granted JPS59133426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP727883A JPS59133426A (en) 1983-01-21 1983-01-21 Swirl flow type turbine meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP727883A JPS59133426A (en) 1983-01-21 1983-01-21 Swirl flow type turbine meter

Publications (2)

Publication Number Publication Date
JPS59133426A JPS59133426A (en) 1984-07-31
JPH0363685B2 true JPH0363685B2 (en) 1991-10-02

Family

ID=11661557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP727883A Granted JPS59133426A (en) 1983-01-21 1983-01-21 Swirl flow type turbine meter

Country Status (1)

Country Link
JP (1) JPS59133426A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10058701B4 (en) * 2000-11-25 2008-02-28 E.On Ruhrgas Ag Device for testing a flowmeter
DE102007043128B4 (en) * 2007-09-10 2015-06-03 Alexander Rombach Axial multi-jet impeller volume meter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57175915A (en) * 1981-04-01 1982-10-29 Hydrotechnik Gmbh Measuring turbine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5251802Y2 (en) * 1972-05-29 1977-11-25
JPS5775517U (en) * 1980-10-24 1982-05-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57175915A (en) * 1981-04-01 1982-10-29 Hydrotechnik Gmbh Measuring turbine

Also Published As

Publication number Publication date
JPS59133426A (en) 1984-07-31

Similar Documents

Publication Publication Date Title
US5997242A (en) Hydraulic turbine
EP3628825B1 (en) Flow sensor rake assembly
Liou et al. LDV study of developing flows through a smooth duct with a 180 deg straight-corner turn
US20050172607A1 (en) Exhaust diffuser for axial-flow turbine
JPH0363685B2 (en)
CN100356142C (en) Commutating device
US3248943A (en) Turbine flow meter
JP7086299B2 (en) Wind power generator
CH519109A (en) Rotor blade
KR102039700B1 (en) Hihg-power generating vortex windmill wing
US3301052A (en) Turbine flowmeter
JPH06323237A (en) Savonius windmill
Adachi et al. Study on the performance of a sirocco fan (optimum design of blade shape)
JP4632145B2 (en) Turbine flow meter rectifier
Jepson Currentmeter errors under pulsating flow conditions
KR101981553B1 (en) Rotary screw structure for generating power using fluids
JPS6193279A (en) Runner in turbine
JPH10213388A (en) Heat exchanger
CN110318938A (en) The output enhancing equipment and natural energy resources type power generator of power generator
Yasaki et al. Experimental Investigation of a 0.35 Hub-Tip Radius Ratio Transonic Axial Flow Rotor Designed for 40 Pounds per Second per Square Foot with a Design Tip Diffusion Factor of 0.20
JP2012137070A (en) Wind turbine generating equipment
WO2022163043A1 (en) Rotary vane, rotating device, and power generation device
CN115493019A (en) Flow regulator
CN207715434U (en) Current collector and wind turbine
Yamamoto et al. Unsteady Three-Dimensional Flow Behavior Due to Rotor-Stator Interaction in an Axial-Flow Turbine