JPH0363491B2 - - Google Patents

Info

Publication number
JPH0363491B2
JPH0363491B2 JP21185684A JP21185684A JPH0363491B2 JP H0363491 B2 JPH0363491 B2 JP H0363491B2 JP 21185684 A JP21185684 A JP 21185684A JP 21185684 A JP21185684 A JP 21185684A JP H0363491 B2 JPH0363491 B2 JP H0363491B2
Authority
JP
Japan
Prior art keywords
resin
epoxy resin
divalent phenol
hydroxyphenyl
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21185684A
Other languages
Japanese (ja)
Other versions
JPS6189815A (en
Inventor
Kaoru Tominaga
Tadao Iwata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP21185684A priority Critical patent/JPS6189815A/en
Publication of JPS6189815A publication Critical patent/JPS6189815A/en
Publication of JPH0363491B2 publication Critical patent/JPH0363491B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、強靭な樹脂成形品の製造方法に関す
る。更に詳しくは、ABS樹脂と同様の用途に用
いることのできる強靭な樹脂成形品を、注型法に
よつてエポキシ樹脂から製造する方法に関する。 〔従来の技術〕 ABS樹脂などの熱可塑性樹脂は、高耐衝撃性、
高伸度などの好ましい性質を有するため、自動
車、家電製品などを始め多くの分野で成形材料と
して利用されている。しかしながら、これらの成
形品を試作する場合や少量多品種を製造する場合
には、例えばABS樹脂を約280℃に加熱しても注
型などに適する程の低い溶融粘度にならないため
射出成形法などで成形せざるを得ず、このため高
価な金型を必要とするなどの経済的不利を免れる
ことができない。 一方、エポキシ樹脂を始めとする熱硬化性樹脂
は、成形時にはモノマー乃至オリゴマーの状態に
あるため注型が可能であり、シリコン樹脂型や簡
易金型を使用することができるので、極めて廉価
に試作、少量多品種の成形を行なうことができ
る。しかるに、熱硬化性樹脂の硬化物は、一般に
耐衝撃強度、伸度などが極めて小さく、脆い傾向
にあり、これらの点を改良するためにゴムなどの
可撓性付与剤を混合すると、今度は引張強度、曲
げ強度、圧縮強度などを極端に低下させるので、
各種物性上のバランスの点で実用性に欠けるよう
になる。 〔発明が解決しようとする問題点〕 かかる現状に鑑み、注型という簡単な方法で成
形が可能で、しかも各種物性上のバランスのとれ
た強靭な樹脂成形品が得られるならば、そのよう
な方法の有用性は大なるものがある。本発明の目
的は、求められているかかる課題、即ち強靭な樹
脂成形品をエポキシ樹脂から安価な注型法によつ
て製造する方法を提供せんとするものである。 〔問題点を解決するための手段〕および〔作用〕 従つて、本発明は強靭な樹脂成形品の製造方法
に係り、強靭な樹脂成形品の製造は、2価フエノ
ール型液状エポキシ樹脂に2価フエノールおよび
これら両者の反応触媒を溶解させた組成物を金型
に注型した後、加熱反応させることにより行われ
る。 2価フエノール型液状エポキシ樹脂としては、
例えばレゾルシン、ハイドロキノンなどの単核2
価フエノール、ビス(4−ヒドロキシフエニル)
メタン、2,2′−ビス(4−ヒドロキシフエニ
ル)プロパン〔ビスフエノールA〕、1,1′−ビ
ス(4−ヒドロキシフエニル)エタン、2,2′−
ビス(3,5−ジブロム−4−ヒドロキシフエニ
ル)プロパンなどの多核2価フエノールのジグリ
シジルエーテルなどであつて、常温(25℃)で液
状のものが用いられる。 2価フエノールとしては、上記の如き単核また
は多核の2価フエノールあるいは上記エポキシ樹
脂の両末端に2価フエノールを反応させて得られ
る2価フエノールなどであつて、上記液状エポキ
シ樹脂に溶解するものが用いられる。 また、反応触媒としては、例えばベンジルトリ
エチルアンモニウムクロライド、テトラエチルア
ンモニウムブロマイドなどの4級アンモニウム
塩、N,N−ベンジルメチルアミン、P−ジメチ
ルアミノベンズアルデヒドなどの3級アミン、2
−エチル−4−メチルイミダゾールなどのイミダ
ゾール類、トリフエニルホスフインなどのホスフ
イン類、トリフエニルエチルホスホニウムハライ
ドなどの4級ホスホニウム塩であつて、上記液状
エポキシ樹脂および2価フエノールの混合物に溶
解し、これらの反応触媒として作用するものが用
いられる。 これらの各成分中、2価フエノール型液状エポ
キシ樹脂としては1,1′−ビス(4−ヒドロキシ
フエニル)エタンのジグリシジルエーテルを用
い、また2価フエノールとして1,1−ビス(4
−ヒドロキシフエニル)エタンを用い、あるいは
これら両者を組合せて用いると、注型時の組成物
粘度が低く、得られた樹脂成形品もより強靭とな
るので特に好ましい。 以上の各成分を必須成分として本発明で用いら
れる注型可能な組成物が調製されるが、液状エポ
キシ樹脂と2価フエノールとは、2価フエノール
のヒドロキシ当量/エポキシ当量の比が約0.8〜
1.2の範囲となるような割合で一般に用いられる。
この比がこれより小さくて用いられると、得られ
たものの分子量が小さくなり、強靭な成形品を形
成し得ない。一方、これ以上の比では2価フエノ
ールの未反応物が多くなり、やはり強靭性が損わ
れるようになる。また、反応触媒は、エポキシ樹
脂と2価フエノールとの合計量に対し約0.01〜2
%の割合で一般に用いられる。 注型可能な組成物の調製は、まず液状エポキシ
樹脂に2価フエノールを一般に約50〜180℃、好
ましくは約80〜150℃に加熱して溶解させ、次い
でそこに反応触媒を添加することにより行われ
る。なお、この組成物中には、本発明の目的を逸
脱しない範囲内において、他のエポキシ樹脂、例
えば芳香族ジカルボン酸のジグリシジルエステル
や他の多価フエノール、例えば3価フエノールな
どを添加することもできる。 調製された組成物は、これは簡易成形型、例え
ばシリコーン樹脂、エポキシ樹脂などの樹脂型あ
るいはアルミニウムなどの金型中に注ぎ、一般に
約100〜180℃、好ましくは約100〜150℃で約1〜
15時間、好ましくは約3〜5時間加熱することに
より反応して高分子化し、強靭な樹脂成形品を与
える。この際、成形品の形状が複雑な場合には、
気泡の発生を防止するため、減圧下で反応させて
もよい。 〔発明の効果〕 本発明で用いられる組成物は注型が可能であ
り、そのため簡易成形型で成形ができるばかりで
はなく、その成形品は耐衝撃性、伸度、成形収縮
率、寸法精度などの点においてすぐれ、強靭でバ
ランスのとれた物性を示すので、従来ABS樹脂
などが成形材料として用いられていた成形品の分
野にも、有効に使用することができる。 〔実施例〕 次に、実施例について本発明を説明する。 実施例 1 ビスフエノールAのジグリシジルエーテル型液
状エポキシ樹脂(エポキシ当量190、粘度
14000cps)100部(重量、以下同じ)に、130℃で
ビスフエノールA60部を溶解させ、次いで反応触
媒であるトリフエニルホスフイン0.7部を溶解さ
せた。 得られた液状組成物を、シリコンゴム製の簡易
樹脂型に注型し、150℃で4時間反応させ、室温
迄冷却してから成形品を型から取り出した。 実施例 2 実施例1において、液状エポキシ樹脂として
1,1′−ビス(4−ヒドロキシフエニル)エタン
のジグリシジルエーテル(エポキシ当量173、粘
度3000cps)の同量を用い、またビスフエノール
Aの使用量を65部に変更し、更に反応触媒にはベ
ンジルトリエチルアンモニウムクロライド0.6部
を用いた。 実施例 3 実施例1において、液状エポキシ樹脂として
1,1′−ビス(4−ヒドロキシフエニル)エタン
のジグリシジルエーテル(エポキシ当量173、粘
度3000cps)の同量を用い、またビスフエノール
Aの代りに1,1′−ビス(4−ヒドロキシフエニ
ル)エタンを61部使用し、反応触媒にはN,N−
ベンジルジメチルアミン0.4部が用いられ、120℃
で5時間反応させた。 以上の各実施例で得られた成形品について物性
値の測定を行ない、得られた結果を後記表に示し
た。 比較例 1 実施例1で用られた液状エポキシ樹脂100部と
硬化剤である脂肪族ポリアミン(三井エポキシ製
品Q−604)20部とを混合し、上記シリコンゴム
製簡易樹脂型に注型し、常温、1日間−80℃、1
時間の条件下で硬化させた。 比較例 2 実施例1で用いられた液状エポキシ樹脂30部、
エポキシ化ブタジエン(日本曹達製品;エポキシ
当量500、粘度170ポイズ/50)70部、N−アミノ
エチルピペラジン11部およびノニルフエノール5
部を混合し、比較例1と同様の硬化を行なつた。 以上の比較例では、いずれも注型性が良好であ
り、従つて硬化後これを成形型から取り出し、そ
れについての物性値の測定を行なつた。得られた
結果は、、後記表に示される。 比較例 3 ABS樹脂を用いて注型しようとしたが、280℃
でも注型し得るような溶融粘度に低下せず、注型
は全く不可能であつた。従つて、温度約280℃、
射出圧600Kg/cm3で射出成形して、物性値測定用
のサンプルを作製した。同様に行われた物性値の
測定結果は、次の表に併記される。 【表】
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a strong resin molded article. More specifically, the present invention relates to a method of manufacturing a strong resin molded product that can be used for the same purposes as ABS resin from epoxy resin by a casting method. [Conventional technology] Thermoplastic resins such as ABS resin have high impact resistance,
Because it has favorable properties such as high elongation, it is used as a molding material in many fields including automobiles and home appliances. However, when making prototypes of these molded products or manufacturing a wide variety of products in small quantities, for example, even if ABS resin is heated to about 280°C, the melt viscosity does not become low enough to be suitable for casting, so injection molding methods etc. Therefore, it is impossible to avoid economic disadvantages such as the need for expensive molds. On the other hand, thermosetting resins such as epoxy resins are in the monomer or oligomer state when molded, so they can be cast, and silicone resin molds or simple molds can be used, making prototyping extremely inexpensive. , it is possible to mold a wide variety of products in small quantities. However, cured products of thermosetting resins generally have very low impact strength and elongation, and tend to be brittle, and when a flexibility imparting agent such as rubber is mixed in to improve these points, Because it drastically reduces tensile strength, bending strength, compressive strength, etc.
It becomes impractical in terms of the balance of various physical properties. [Problems to be solved by the invention] In view of the current situation, if it is possible to obtain a strong resin molded product that can be molded by a simple method such as casting and has well-balanced physical properties, such a method would be possible. The usefulness of this method is enormous. The object of the present invention is to solve the problem that has been sought, that is, to provide a method for manufacturing strong resin molded products from epoxy resin by an inexpensive casting method. [Means for Solving the Problems] and [Operation] Therefore, the present invention relates to a method for producing a strong resin molded product, and the production of a strong resin molded product involves adding a divalent phenol type liquid epoxy resin to a divalent phenol type liquid epoxy resin. This is carried out by pouring a composition in which phenol and a reaction catalyst for both of them are dissolved into a mold, and then heating the mixture to cause a reaction. As a divalent phenol type liquid epoxy resin,
Mononuclear 2 such as resorcinol and hydroquinone
phenol, bis(4-hydroxyphenyl)
Methane, 2,2'-bis(4-hydroxyphenyl)propane [bisphenol A], 1,1'-bis(4-hydroxyphenyl)ethane, 2,2'-
Diglycidyl ether of polynuclear divalent phenol such as bis(3,5-dibromo-4-hydroxyphenyl)propane, which is liquid at room temperature (25°C), is used. Examples of divalent phenols include mononuclear or polynuclear divalent phenols as described above, or divalent phenols obtained by reacting divalent phenols at both ends of the epoxy resin, which dissolve in the liquid epoxy resin. is used. Examples of reaction catalysts include quaternary ammonium salts such as benzyltriethylammonium chloride and tetraethylammonium bromide; tertiary amines such as N,N-benzylmethylamine and P-dimethylaminobenzaldehyde;
- imidazoles such as ethyl-4-methylimidazole, phosphines such as triphenylphosphine, quaternary phosphonium salts such as triphenylethylphosphonium halide, which are dissolved in the mixture of the liquid epoxy resin and divalent phenol, Those that act as catalysts for these reactions are used. Among these components, diglycidyl ether of 1,1'-bis(4-hydroxyphenyl)ethane was used as the divalent phenol type liquid epoxy resin, and 1,1-bis(4-hydroxyphenyl) ethane was used as the divalent phenol.
-Hydroxyphenyl)ethane or a combination of the two is particularly preferred because the viscosity of the composition during casting is low and the resulting resin molded product is also stronger. The castable composition used in the present invention is prepared using each of the above components as essential components, and the liquid epoxy resin and divalent phenol have a ratio of hydroxy equivalent of divalent phenol to epoxy equivalent of about 0.8 to
Commonly used ratios are in the range 1.2.
If this ratio is lower than this, the resulting product will have a low molecular weight and will not be able to form a strong molded product. On the other hand, if the ratio is higher than this, the amount of unreacted divalent phenol increases, resulting in a loss of toughness. In addition, the reaction catalyst is about 0.01 to 2% of the total amount of epoxy resin and divalent phenol.
Commonly used in percentages. The castable composition is prepared by first dissolving dihydric phenol in a liquid epoxy resin by heating it generally to about 50 to 180°C, preferably about 80 to 150°C, and then adding a reaction catalyst thereto. It will be done. Note that other epoxy resins, such as diglycidyl esters of aromatic dicarboxylic acids, and other polyhydric phenols, such as trivalent phenols, may be added to this composition without departing from the purpose of the present invention. You can also do it. The prepared composition is poured into a simple mold, such as a resin mold such as a silicone resin, an epoxy resin mold, or a mold such as aluminum, and is generally heated at about 100 to 180°C, preferably about 100 to 150°C, for about 1 hour. ~
By heating for 15 hours, preferably about 3 to 5 hours, it reacts and polymerizes to give a tough resin molded article. At this time, if the shape of the molded product is complex,
In order to prevent the generation of bubbles, the reaction may be carried out under reduced pressure. [Effects of the Invention] The composition used in the present invention can be cast, and therefore not only can it be molded with a simple mold, but the molded product has excellent impact resistance, elongation, mold shrinkage, dimensional accuracy, etc. Because it exhibits excellent, strong, and well-balanced physical properties, it can be effectively used in the field of molded products where ABS resin and other molding materials have traditionally been used as molding materials. [Example] Next, the present invention will be explained with reference to an example. Example 1 Diglycidyl ether type liquid epoxy resin of bisphenol A (epoxy equivalent: 190, viscosity:
60 parts of bisphenol A was dissolved in 100 parts (by weight, same below) of 14,000 cps) at 130°C, and then 0.7 part of triphenylphosphine as a reaction catalyst was dissolved. The obtained liquid composition was cast into a simple resin mold made of silicone rubber, reacted at 150° C. for 4 hours, cooled to room temperature, and then the molded product was taken out from the mold. Example 2 In Example 1, the same amount of diglycidyl ether of 1,1'-bis(4-hydroxyphenyl)ethane (epoxy equivalent weight 173, viscosity 3000 cps) was used as the liquid epoxy resin, and bisphenol A was used. The amount was changed to 65 parts, and 0.6 parts of benzyltriethylammonium chloride was used as a reaction catalyst. Example 3 In Example 1, the same amount of diglycidyl ether of 1,1'-bis(4-hydroxyphenyl)ethane (epoxy equivalent 173, viscosity 3000 cps) was used as the liquid epoxy resin, and bisphenol A was replaced with 61 parts of 1,1'-bis(4-hydroxyphenyl)ethane were used, and N,N-
0.4 parts of benzyldimethylamine was used and the temperature was 120°C.
The reaction was carried out for 5 hours. The physical properties of the molded articles obtained in each of the above Examples were measured, and the results are shown in the table below. Comparative Example 1 100 parts of the liquid epoxy resin used in Example 1 and 20 parts of aliphatic polyamine (Mitsui Epoxy Product Q-604) as a curing agent were mixed and cast into the above simple resin mold made of silicone rubber. Room temperature, -80℃ for 1 day, 1
Cured under conditions of hours. Comparative Example 2 30 parts of the liquid epoxy resin used in Example 1,
Epoxidized butadiene (Nippon Soda product; epoxy equivalent 500, viscosity 170 poise/50) 70 parts, N-aminoethylpiperazine 11 parts and nonylphenol 5
The components were mixed and cured in the same manner as in Comparative Example 1. The above comparative examples all had good castability, and therefore, after curing, they were taken out of the mold and their physical properties were measured. The results obtained are shown in the table below. Comparative example 3 I tried to cast using ABS resin, but the temperature was 280℃.
However, the melt viscosity did not decrease to such a level that it could be cast, and casting was completely impossible. Therefore, the temperature is about 280℃,
Samples for measuring physical properties were prepared by injection molding at an injection pressure of 600 kg/cm 3 . The results of measurements of physical property values conducted in the same manner are also listed in the following table. 【table】

Claims (1)

【特許請求の範囲】 1 2価フエノール型液状エポキシ樹脂に2価フ
エノールおよびこれら両者の反応触媒を溶解させ
た組成物を金型に注型した後、加熱反応させるこ
とを特徴とする強靭な樹脂成形品の製造方法。 2 2価フエノール型液状エポキシ樹脂が1,1
−ビス(4−ヒドロキシフエニル)エタンのジグ
リシジルエーテルである特許請求の範囲第1項記
載の強靭な樹脂成形品の製造方法。 3 2価フエノールが1,1−ビス(4−ヒドロ
キシフエニル)エタンである特許請求の範囲第1
項記載の強靭な樹脂成形品の製造方法。
[Scope of Claims] 1. A tough resin characterized by casting a composition obtained by dissolving divalent phenol and a reaction catalyst for both in a divalent phenol type liquid epoxy resin into a mold and then subjecting it to a heating reaction. Method of manufacturing molded products. 2 Divalent phenol type liquid epoxy resin is 1,1
- The method for producing a tough resin molded article according to claim 1, which is diglycidyl ether of bis(4-hydroxyphenyl)ethane. 3 Claim 1 in which the divalent phenol is 1,1-bis(4-hydroxyphenyl)ethane
A method for producing a strong resin molded product as described in Section 1.
JP21185684A 1984-10-09 1984-10-09 Manufacture of tenacious resin molded part Granted JPS6189815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21185684A JPS6189815A (en) 1984-10-09 1984-10-09 Manufacture of tenacious resin molded part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21185684A JPS6189815A (en) 1984-10-09 1984-10-09 Manufacture of tenacious resin molded part

Publications (2)

Publication Number Publication Date
JPS6189815A JPS6189815A (en) 1986-05-08
JPH0363491B2 true JPH0363491B2 (en) 1991-10-01

Family

ID=16612727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21185684A Granted JPS6189815A (en) 1984-10-09 1984-10-09 Manufacture of tenacious resin molded part

Country Status (1)

Country Link
JP (1) JPS6189815A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT508941B1 (en) 2010-01-28 2011-05-15 Silhouette Int Schmied Ag GLASSES

Also Published As

Publication number Publication date
JPS6189815A (en) 1986-05-08

Similar Documents

Publication Publication Date Title
USRE32745E (en) Polymeric resins derived from 1-oxa-3-aza tetraline group-containing compounds and cycloaliphatic epoxides
US2801229A (en) Curing glycidyl polyethers
US3773856A (en) Process for the preparation of unsaturated epoxy ester compositions
US5091474A (en) Epoxy resin curing agent based on blends containing disecondary aromatic diamines
JPH031343B2 (en)
US3845016A (en) Thermoset molding powders employing glycidyl methacrylate-functional polymers and polymeric polyanhydride crosslinking agents and moldings thereof
JPS6261216B2 (en)
JPS6274923A (en) Novel epoxy resin
US3845010A (en) Thermoset molding powders employing glycidyl methacrylate functional polymer and dibasic acid crosslinking agent and moldings thereof
US5599628A (en) Accelerated cycloaliphatic epoxide/aromatic amine resin systems
JPH0363491B2 (en)
JPH11116566A (en) Cyclic carbonate resin composition and its cured product
EP0224391B1 (en) Epoxy resin compositions
JPH09194565A (en) Cyclic carbonate resin composition and its cured product
JPS62153314A (en) Liquid epoxy resin composition
US3214409A (en) Epoxidized novolac-fatty guanamine composition
JPS58206624A (en) Epoxy resin composition
JPH05295083A (en) Epoxy resin composition for mold and resin mold made thereof
US3957727A (en) Epoxy composition containing acid anhydride compound obtained from nadic methyl anhydride
JP3377110B2 (en) Epoxy resin composition for mold and resin mold obtained therefrom
US3225004A (en) Thermosetting plastic compositions derived from polyglycidyl ethers of bis (p-hydroxyphenyl) sulfones and certain fatty guanamines and process of preparing same
JPH02202512A (en) Epoxy resin composition and molded article produced by curing the same
JP4344662B2 (en) Epoxy resin composition, prepreg and molded body, and method for producing epoxy resin composition
JP3380031B2 (en) Method for producing crosslinked resin
JP2998167B2 (en) Method for producing crosslinked resin