JPH0363416B2 - - Google Patents

Info

Publication number
JPH0363416B2
JPH0363416B2 JP59120730A JP12073084A JPH0363416B2 JP H0363416 B2 JPH0363416 B2 JP H0363416B2 JP 59120730 A JP59120730 A JP 59120730A JP 12073084 A JP12073084 A JP 12073084A JP H0363416 B2 JPH0363416 B2 JP H0363416B2
Authority
JP
Japan
Prior art keywords
membrane
dextrin
ethyl alcohol
day
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59120730A
Other languages
Japanese (ja)
Other versions
JPS61401A (en
Inventor
Masao Murano
Koji Fukuda
Shinsuke Takegami
Juji Konagaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP12073084A priority Critical patent/JPS61401A/en
Publication of JPS61401A publication Critical patent/JPS61401A/en
Publication of JPH0363416B2 publication Critical patent/JPH0363416B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride

Description

【発明の詳細な説明】 産業上の利用分野 本発明は水/水溶性有機化合物の混合液体より
水溶性有機化合物の分離に適する半透性膜に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semipermeable membrane suitable for separating water-soluble organic compounds from a mixed liquid of water/water-soluble organic compounds.

従来技術との関係 近年、廃水処理、海水の淡水化、食品工業或は
医療分野等において半透性膜が広範囲に利用され
るようになつた。更に化学工業においても有価物
の分離・濃縮・回収のプロセスに半透性膜を利用
しようとする試みがみられる。その試みのひとつ
として1970年半端頃から通常の蒸留法では分離が
困難であつた有機物混合物の分離精製を目的とし
て、浸透気化法(pervaporation)が研究されは
じめた。浸透気化法とは、膜の一方の側に混合液
体を置き、他の側を減圧にするか、又は不活性ガ
スを低蒸気圧に保ち、その圧力差によつて液を透
過させ、低圧側で蒸発させる事によつて混合物を
分離させる方法である。例えば、共沸混合物、沸
点の接近した溶媒、異性体などの分離・分別など
に応用される。浸透気化法に使用される半透膜と
しては、米国特許第2953502号明細書にはポリビ
ニルアルコール重合体が、米国特許第3726934号
明細書にはアクリロニトリル系重合体が、米国特
許第2960462号明細書にはエチルセルロースとポ
リエチレンまたはセルロース・ブチルアセテート
とからなる複合膜、又、特開昭54−47579号公報
ではポリビニルアルコール系中空繊維による有機
物の混合物の分離例が開示されている。更に特開
昭54−10549号公報には、ポリオレフイン、ポリ
スチレン、ポリハロゲン化ビニル、ポリビニルア
セタールなどの分離膜による有機物の分離例が示
されている。しかしいずれの膜も分離効率が悪い
ため、有機液体混合物が高分子膜を1回通過して
も、目的とする濃度まで分離・濃縮できない問題
点があつた。一方目的とする濃度まで水溶性有機
液体を分離・濃縮するためには多層の膜を通過さ
せるか、あるいは膜表面積を大きくするか、膜厚
を極端に薄くしなければならないが、前者の場合
には工業的に実施しようとすれば装置を大型化し
なければならず、コストアツプになる欠点があ
る。後者の場合には膜の強度・耐久性に問題が生
ずる。
Relationship with Prior Art In recent years, semipermeable membranes have come into widespread use in wastewater treatment, seawater desalination, food industry, medical fields, and the like. Furthermore, in the chemical industry, attempts are being made to utilize semipermeable membranes in the processes of separating, concentrating, and recovering valuable materials. As one such attempt, research began around the mid-1970s on pervaporation, with the aim of separating and purifying organic mixtures that were difficult to separate using conventional distillation methods. Pervaporation is a method in which a mixed liquid is placed on one side of the membrane and the other side is reduced in pressure, or an inert gas is kept at a low vapor pressure, and the pressure difference allows the liquid to permeate. This is a method of separating a mixture by evaporation. For example, it is applied to the separation and fractionation of azeotropic mixtures, solvents with similar boiling points, isomers, etc. As semipermeable membranes used in the pervaporation method, polyvinyl alcohol polymers are used in US Pat. No. 2,953,502, acrylonitrile polymers are used in US Pat. No. 3,726,934, and acrylonitrile polymers are used in US Pat. No. 2,960,462. discloses a composite membrane consisting of ethyl cellulose and polyethylene or cellulose butyl acetate, and JP-A-54-47579 discloses an example of separation of organic substance mixtures using polyvinyl alcohol hollow fibers. Further, JP-A-54-10549 discloses an example of separating organic substances using a separation membrane made of polyolefin, polystyrene, polyvinyl halide, polyvinyl acetal, or the like. However, since both membranes have poor separation efficiency, there is a problem in that even if the organic liquid mixture passes through the polymer membrane once, it cannot be separated and concentrated to the desired concentration. On the other hand, in order to separate and concentrate a water-soluble organic liquid to the desired concentration, it is necessary to pass it through a multilayer membrane, increase the membrane surface area, or make the membrane extremely thin. If this method is to be implemented industrially, the equipment must be enlarged, which has the disadvantage of increasing costs. In the latter case, problems arise in the strength and durability of the membrane.

発明の目的 これらの欠点を克服するためには、分離効率の
優れた半透性膜を開発する必要があり、本発明者
らは鋭意研究した結果、デキストリン系の架橋薄
膜が極めて優れた分離特性を示す事を見出し、本
発明に至つた。
Purpose of the Invention In order to overcome these drawbacks, it is necessary to develop a semipermeable membrane with excellent separation efficiency, and as a result of intensive research, the present inventors have found that a dextrin-based crosslinked thin membrane has extremely excellent separation properties. We have discovered that this shows the following, and have arrived at the present invention.

本発明の目的は、分離効率の良い透過性に優れ
たデキストリン系架橋膜を用いた半透性膜を提供
する事にある。本発明の他の目的は浸透気化法な
どの有機物の分離において、分離効率の優れた透
過性の大きい半透性膜を提供する事にある。
An object of the present invention is to provide a semipermeable membrane using a dextrin-based crosslinked membrane with good separation efficiency and excellent permeability. Another object of the present invention is to provide a semipermeable membrane with excellent separation efficiency and high permeability in the separation of organic substances such as by pervaporation.

発明の構成 即ち、本発明はデキストリン系物質とイソシア
ネート又はエピハロヒドリンとの反応により得ら
れる架橋構造を有する半透性膜を要旨とするもの
である。
Structure of the Invention That is, the gist of the present invention is a semipermeable membrane having a crosslinked structure obtained by the reaction of a dextrin-based substance and an isocyanate or epihalohydrin.

また本発明の好適な実施態様として上記反応物
を支持体にコーテイングして得られる複合膜又は
反応物を支持体にブレンドして得られる膜が挙げ
られる。
Further, preferred embodiments of the present invention include a composite membrane obtained by coating a support with the above reactant, or a membrane obtained by blending the reactant onto a support.

上記本発明に係る支持体としては、機械的強度
に優れた、耐熱・耐薬品性・耐微生物性に優れた
多孔性支持体が望ましい。かかる多孔性支持体と
しては例えばポリ沸化ビニリデン、ポリスルホ
ン、ポリスチレン、ポリアクリロニトリル、ポリ
プロピレン、ポリカーボネート、ポリエステル、
ポリアミド、ポリ塩化ビニル、ポリ沸化ビニルな
どを挙げる事が出来るが、特にポリ沸化ビニリデ
ン、ポリスルホンが好適である。多孔性支持体表
面の孔径は特に限定されるものではないが、特に
高い選択透過性をもたせるためには100ないし
1000〓の範囲にあるものが望ましい。多孔性支持
体の形状としては平膜ばかりではなく、管状ある
いは中空繊維状で用いる事ができ、任意に選択す
る事が出来る。中空繊維を使用した場合は、膜の
透過面積を最も大きくする事ができるために、従
来の装置よりもコンパクトな装置により分離処理
量を大きくする事が出来る。又、中空繊維は耐圧
性に優れているために、膜厚を薄くする事が出
来、そのため透過率を一層高める事が出来る。中
空繊維の形状は外径が5000μ以下がよく、好まし
くは50ないし500μである。中空繊維の外径は小
さい程、機械的強度・耐圧性が優れ従つて膜厚を
薄くする事が出来る。又、中空繊維の膜厚は透過
量を大きくする意味から、出来るだけ薄い方がよ
いが、薄くすると機械的強度が小さくなるため、
好ましくは10〜100μの範囲である。
As the support according to the present invention, a porous support having excellent mechanical strength, heat resistance, chemical resistance, and microbial resistance is desirable. Examples of such porous supports include polyvinylidene fluoride, polysulfone, polystyrene, polyacrylonitrile, polypropylene, polycarbonate, polyester,
Examples include polyamide, polyvinyl chloride, and polyvinyl fluoride, with polyvinylidene fluoride and polysulfone being particularly preferred. The pore diameter on the surface of the porous support is not particularly limited, but in order to have particularly high permselectivity, it should be 100 or more.
Something in the range of 1000〓 is desirable. The shape of the porous support is not limited to a flat membrane, but can be used in the form of a tube or hollow fibers, and can be arbitrarily selected. When hollow fibers are used, the permeation area of the membrane can be maximized, so the separation throughput can be increased with a device that is more compact than conventional devices. Furthermore, since hollow fibers have excellent pressure resistance, the film thickness can be made thinner, and therefore the transmittance can be further increased. The hollow fiber preferably has an outer diameter of 5000μ or less, preferably 50 to 500μ. The smaller the outer diameter of the hollow fibers, the better the mechanical strength and pressure resistance, and therefore the thinner the film thickness. In addition, the thickness of the hollow fiber should be as thin as possible in order to increase the amount of permeation, but if it is made thin, the mechanical strength will decrease.
Preferably it is in the range of 10 to 100μ.

次に本発明の架橋薄膜を得る方法は、デキスト
リン反応物溶液をガラス板上に流延した後、溶媒
を熱板上で蒸発させるか、又は水中に浸漬する方
法などがある。多孔性支持体の上にデキストリン
反応物の薄膜を形成させる方法としては、デキス
トリン反応物溶液を多孔性支持体の上に流延する
方法、スプレーする方法又は多孔性支持体を当該
溶液に浸漬する方法などがある。ここに使用され
るデキストリンは市販されているものであり、シ
クロデキストリンとしてはα−シクロデキストリ
ン(n=6)、β−シクロデキストリン(n=
7)、γ−シクロデキストリン(n=8)などで
ある。デキストリンの分子量は特に限定するもの
ではない。架橋剤として用いるイソシアネートと
してはイソホロンジイソシアネート、ヘキサメチ
レンジイソシアネート、トリレン−2,4−ジイ
ソシアネート、4,4−ジフエニルメタンジイソ
シアネート、m−キシリレンジイソシアネートな
どがある。エピハロヒドリンとしては、エピクロ
ルヒドリン、エピプロムヒドリン、1,2−エポ
キシ−4−クロルブタン、2,3−エポキシ−4
−クロルプタン、1,2−エポキシ−5−フロル
ペンタン、1,2−エポキシ−4−ブロムブタ
ン、2,3−エポキシ−4−ブロムブタン、1,
2−エポキシ−5−ブロムペンタン、2,3−エ
ポキシ−5−ブロムペンタンなどがある。又デキ
ストリンを反応させる溶媒としては、ジメチルス
ルホキシド、N,N−ジメチルホルムアミド、
N,N−ジメチルアセトアミドなどが好ましく、
その他にアセトンメチルエチルケトン、クロロホ
ルム、四塩化炭素、テトラヒドロフランなどの溶
媒も使用する事が出来る。有機溶媒中でのイソシ
アネート又はエピハロヒドリンの濃度は特に限定
するものではないが、5%ないし50重量%の範囲
で使用する事が好ましい。イソシアネート又はエ
ピハロヒドリンの濃度によつてデキストリンの架
橋度を変化させる事が出来る。架橋反応は20℃か
ら100℃の範囲内で、1時間から24時間の範囲内
で行なわせしめる。
Next, the crosslinked thin film of the present invention can be obtained by casting the dextrin reactant solution on a glass plate and then evaporating the solvent on a hot plate or immersing it in water. Methods for forming a thin film of the dextrin reactant on the porous support include a method of casting a dextrin reactant solution onto the porous support, a method of spraying, or a method of dipping the porous support in the solution. There are methods. The dextrins used here are commercially available, and the cyclodextrins include α-cyclodextrin (n=6) and β-cyclodextrin (n=6).
7), γ-cyclodextrin (n=8), etc. The molecular weight of dextrin is not particularly limited. Isocyanates used as crosslinking agents include isophorone diisocyanate, hexamethylene diisocyanate, tolylene-2,4-diisocyanate, 4,4-diphenylmethane diisocyanate, and m-xylylene diisocyanate. As epihalohydrin, epichlorohydrin, epipromhydrin, 1,2-epoxy-4-chlorobutane, 2,3-epoxy-4
-chlorptane, 1,2-epoxy-5-florpentane, 1,2-epoxy-4-bromobutane, 2,3-epoxy-4-bromobutane, 1,
Examples include 2-epoxy-5-bromopentane and 2,3-epoxy-5-bromopentane. In addition, as a solvent for reacting dextrin, dimethyl sulfoxide, N,N-dimethylformamide,
N,N-dimethylacetamide and the like are preferred;
In addition, solvents such as acetone methyl ethyl ketone, chloroform, carbon tetrachloride, and tetrahydrofuran can also be used. The concentration of isocyanate or epihalohydrin in the organic solvent is not particularly limited, but it is preferably used in a range of 5% to 50% by weight. The degree of crosslinking of dextrin can be varied by changing the concentration of isocyanate or epihalohydrin. The crosslinking reaction is carried out at a temperature of 20° C. to 100° C. for a period of 1 hour to 24 hours.

発明の効果 このようにして得たデキストリン架橋膜を浸透
気化法によつて、有機物の分離効率に優れ、透過
速度の大きい効率的な分離・濃縮を行なう事が出
来、従来の多大のエネルギーと大型の装置を必要
としていた蒸留法に比して大きな利点があり、そ
の工業的メリツトは極めて大きいものである。特
にイソホロンジイソシアネートで架橋されたデキ
ストリンを、ポリ沸化ビニリデン支持膜にコーテ
イングして得られる半透性膜を用いて、水/エチ
ルアルコールの浸透気化法による分離を行なつた
ところ、水を選択的に透過させている事がわか
り、その分離係数も従来に見られない高い値を示
した。
Effects of the invention By using the dextrin crosslinked membrane thus obtained, it is possible to perform efficient separation and concentration with excellent organic matter separation efficiency and high permeation rate by pervaporation, which requires a large amount of energy and large size compared to conventional methods. This method has great advantages over the distillation method, which required several types of equipment, and its industrial merits are extremely large. In particular, water/ethyl alcohol was separated by pervaporation using a semipermeable membrane obtained by coating a polyvinylidene fluoride support membrane with dextrin crosslinked with isophorone diisocyanate. The separation coefficient was found to be higher than ever seen before.

実施例 以下本発明の実施例を記載する。Example Examples of the present invention will be described below.

実施例 1 デキストリンをジメチルスルホキシドに溶解さ
せた後、加温下でイソホロンジイソシアネートを
加えてデキストリンのウレタン化を行なつた。こ
の溶液をポリ沸化ビニリデンフイルムにコーテイ
ングし、風乾させて膜を得た。20容量%エチルア
ルコール水溶液を用いて、40℃にて浸透気化法に
よる透過実験を行なつた。分離係数αH2OEtoH
1877.2水の透過速度QH2O=2.925×101Kg・m
-2・day-1、エチルアルコールの透過速度QEtpH
3.117×10-3Kg・m-2・day-1を得た。
Example 1 After dextrin was dissolved in dimethyl sulfoxide, isophorone diisocyanate was added under heating to convert the dextrin into urethane. This solution was coated on polyvinylidene fluoride film and air-dried to obtain a film. A permeation experiment was carried out using a 20% by volume aqueous ethyl alcohol solution at 40°C using the pervaporation method. Separation factor α H2OEtoH =
1877.2 Water permeation rate QH 2 O=2.925×10 1 Kg・m
-2・day -1 , ethyl alcohol permeation rate Q EtpH =
3.117×10 -3 Kg・m -2・day -1 was obtained.

実施例 2 イソホロンジイソシアネートでウレタン化した
デキストリンをポリ沸化ビニリデンに混合してフ
イルムを作製した。この膜を用いて40℃にて20容
量%エチルアルコール水溶液の浸透気化法による
透過実験を行なつたところ、分離係数αH2OEtoH
109.0、水の透過速度QH2O=1.741×10-1Kg・m
-2・day-1、エチルアルコールの透過速度QEtpH
3.196×10-4Kg・m-2・day-1を得た。
Example 2 A film was prepared by mixing dextrin urethanized with isophorone diisocyanate into polyvinylidene fluoride. Using this membrane, we conducted a permeation experiment using a pervaporation method with a 20% ethyl alcohol aqueous solution at 40°C, and found that the separation coefficient α H2OEtoH =
109.0, water permeation rate Q H2O = 1.741×10 -1 Kg・m
-2・day -1 , ethyl alcohol permeation rate Q EtpH =
3.196×10 -4 Kg・m -2・day -1 was obtained.

実施例 3 イソホロンジイソシアネートでウレタン化した
デキストリンをポリ弗化ピニリデンフイルムにコ
ーテイングした膜を用いて、80容量%エチルアル
コール水溶液の40℃での浸透気化法による透過実
験を行なつた。分離係数αH2OEtoH=389.3、水の透
過速度QH2O=9.451×10-1Kg・m-2・day-1エチ
ルアルコールの透過速度QEtpH=7.711×10-3Kg・
-3・day-1であつた。
Example 3 Using a membrane in which a polypinylidene fluoride film was coated with dextrin urethanized with isophorone diisocyanate, a permeation experiment was carried out using a permeation method using an 80% by volume aqueous ethyl alcohol solution at 40°C. Separation coefficient α H2OEtoH = 389.3, water permeation rate QH 2 O = 9.451×10 -1 Kg・m −2・day −1 ethyl alcohol permeation rate Q EtpH = 7.711×10 −3 Kg・
It was m -3・day -1 .

実施例 4 ヘキサメチレンジイソシアネートでウレタン化
したデキストリンをポリスルホンフイルムにコー
テイングした膜を用いて、80容量%エチルアルコ
ール水溶液の浸透気化を40℃で行なつた。分離係
数αH2OEtoH=128.4水の透過速度2.910×10-1Kg・m
-2・day-1、エチルアルコールの透過速度QEtpH
5.416×10-3Kg・m-2・day-1であつた。
Example 4 Using a membrane in which a polysulfone film was coated with dextrin urethanized with hexamethylene diisocyanate, pervaporation of an 80% by volume aqueous ethyl alcohol solution was carried out at 40°C. Separation coefficient α H2OEtoH = 128.4 Water permeation rate 2.910×10 -1 Kg・m
-2・day -1 , ethyl alcohol permeation rate Q EtpH =
It was 5.416×10 -3 Kg・m -2・day -1 .

実施例 5 ヘキサメチレンジイソシアネートでウレタン化
したα−シクロデキストリンをポリスルホンフイ
ルム上にコーテイングして膜を作製した。この膜
により90容量%エチルアルコール水溶液の浸透気
化法による透過実験を40℃にて行ない、分離係数
αH2OEtoH=50.8、水の透過速度QH2O=1.778×10-1
Kg・m-2・day-1、エチルアルコールの透過速度
QEtpH=2.492×10-2Kg・m-2・day-1を得た。
Example 5 A membrane was prepared by coating a polysulfone film with α-cyclodextrin urethanized with hexamethylene diisocyanate. Using this membrane, a permeation experiment using the pervaporation method of a 90% ethyl alcohol aqueous solution was conducted at 40°C, and the separation coefficient α H2OEtoH = 50.8 and the water permeation rate Q H2O = 1.778×10 -1
Kg・m -2・day -1 , permeation rate of ethyl alcohol
Q EtpH = 2.492×10 -2 Kg·m -2 ·day -1 was obtained.

実施例 6 エピクロルヒドリンでエポキシ化したデキスト
リンを、ポリ弗化ビニリデンフイルム上にコーテ
イングした膜を用いて浸透気化を行なつた。80容
量%エチルアルコール水溶液の40℃での分離係数
αH2OEtoH=76.8、水の透過速度QH2O=1.504×10-1
Kg・m-2・day-1、エチルアルコールの透過速度、
QEtpH=6.224×10-3Kg・m-2・day-1であつた。
Example 6 Dextrin epoxidized with epichlorohydrin was pervaporated using a membrane coated on a polyvinylidene fluoride film. Separation coefficient α H2OEtoH = 76.8, water permeation rate QH 2 O = 1.504×10 -1 at 40°C for 80% ethyl alcohol aqueous solution by volume
Kg・m -2・day -1 , permeation rate of ethyl alcohol,
Q EtpH = 6.224×10 -3 Kg・m -2・day -1 .

実施例 7 エピクロルヒドリンでエポキシ化したデキスト
リンを、ポリスルホンフイルム上にコーテイング
して膜を作製した。この膜を用いて50容量%のエ
チルアルコール水溶液の浸透気化実験を40℃で行
なつた。分離係数αH2OEtoH=17.6、水の透過速度
QH2O=1.443×10-1Kg・m-2・day-1、エチルアル
コールの透過速度QEtpH=6.507×10-3Kg・m-2
day-1を得た。
Example 7 A membrane was prepared by coating a polysulfone film with dextrin epoxidized with epichlorohydrin. Using this membrane, a pervaporation experiment of a 50% by volume aqueous ethyl alcohol solution was conducted at 40°C. Separation coefficient α H2OEtoH = 17.6, water permeation rate
Q H2O = 1.443×10 -1 Kg・m -2・day -1 , Ethyl alcohol permeation rate Q EtpH = 6.507×10 -3 Kg・m -2
Got day -1 .

比較例 デキストランをジメチルスルホオキシドに溶解
させた後、加温下でイソフオロンジイソシアネー
トを加えてデキストランのウレタン化を行なつ
た。この溶液をポリフツ化ビニリデンフイルムに
コーテイングし、風乾させて膜を得た。この膜の
20%エチルアルコール水溶液を用いた40℃浸透気
化法による透過実験の結果、 分離係数αH2OEtoH=5.0 水の透過速度QH2O=5.683Kg・m-2・day-1 エチルアルコールの透過速度QEtOH=2.264×
10-1Kg・m-2・day-1 であり、分離性能はデキストリン架橋膜に比べ劣
るものであつた。
Comparative Example After dextran was dissolved in dimethyl sulfoxide, isophorone diisocyanate was added under heating to convert the dextran into urethane. This solution was coated on a polyvinylidene fluoride film and air-dried to obtain a film. of this membrane
The results of a permeation experiment using a 20% ethyl alcohol aqueous solution at 40°C by pervaporation method: Separation coefficient α H2OEtoH = 5.0 Water permeation rate Q H2O = 5.683Kg・m -2・day -1 Ethyl alcohol permeation rate Q EtOH = 2.264×
10 −1 Kg·m −2 ·day −1 , and the separation performance was inferior to that of the dextrin crosslinked membrane.

Claims (1)

【特許請求の範囲】[Claims] 1 デキストリンをイソシアネート又はエピハロ
ヒドリンとの反応で得られる架橋構造を有する浸
透気化用半透性膜。
1 A semipermeable membrane for pervaporation having a crosslinked structure obtained by reacting dextrin with isocyanate or epihalohydrin.
JP12073084A 1984-06-14 1984-06-14 Semipermeable membrane Granted JPS61401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12073084A JPS61401A (en) 1984-06-14 1984-06-14 Semipermeable membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12073084A JPS61401A (en) 1984-06-14 1984-06-14 Semipermeable membrane

Publications (2)

Publication Number Publication Date
JPS61401A JPS61401A (en) 1986-01-06
JPH0363416B2 true JPH0363416B2 (en) 1991-10-01

Family

ID=14793565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12073084A Granted JPS61401A (en) 1984-06-14 1984-06-14 Semipermeable membrane

Country Status (1)

Country Link
JP (1) JPS61401A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183109A (en) * 1987-01-23 1988-07-28 Fukuda Metal Foil & Powder Co Ltd Apparatus for producing metal powder
US5354587A (en) * 1993-11-15 1994-10-11 W. L. Gore & Associates, Inc. Hydrophilic compositions with increased thermal and solvent resistance
US5352511A (en) * 1993-11-15 1994-10-04 W. L. Gore & Associates, Onc. Hydrophilic compositions with increased thermal resistance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411080A (en) * 1977-06-28 1979-01-26 Fuji Photo Film Co Ltd Separating support
JPS588505A (en) * 1981-07-08 1983-01-18 Toyobo Co Ltd Semi-permeable composite membrane
JPS60232210A (en) * 1984-04-28 1985-11-18 Makoto Komiyama Fabrication of cyclodextrin membrane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411080A (en) * 1977-06-28 1979-01-26 Fuji Photo Film Co Ltd Separating support
JPS588505A (en) * 1981-07-08 1983-01-18 Toyobo Co Ltd Semi-permeable composite membrane
JPS60232210A (en) * 1984-04-28 1985-11-18 Makoto Komiyama Fabrication of cyclodextrin membrane

Also Published As

Publication number Publication date
JPS61401A (en) 1986-01-06

Similar Documents

Publication Publication Date Title
US4240914A (en) Selective permeable membrane and process for preparing the same
US4871461A (en) Polymer composite membrane
US20030098274A1 (en) Silicone-coated organic solvent resistant polyamide composite nanofiltration membrane, and method for preparing the same
US5145584A (en) Processes for using a thin film composite ultrafiltration membrane
US5151182A (en) Polyphenylene oxide-derived membranes for separation in organic solvents
JPH0525529B2 (en)
JPH0413013B2 (en)
US5085775A (en) Thin film composite ultrafiltration membrane
JPH0363416B2 (en)
JP3525759B2 (en) Fluid separation membrane and method for producing the same
JPS6410243B2 (en)
JPH0790152B2 (en) Composite reverse osmosis membrane
KR100322235B1 (en) Fabrication of high permeable reverse osmosis membranes
JPH0790154B2 (en) Method for producing aromatic polysulfone composite semipermeable membrane
KR20180107605A (en) Reverse-osmosis membrane having excellent salt rejection and method for manufacturing thereof
KR100588474B1 (en) crosslinked polyvinyl alcohol-based membranes which show good chemical resistance
JPH0516291B2 (en)
US5221482A (en) Polyparabanic acid membrane for selective separation
JPH0114801B2 (en)
JP3444169B2 (en) Composite polysulfone hollow fiber membrane
JPH0516290B2 (en)
JPH04110030A (en) Aromatic copolymerized separating membrane
JPS588505A (en) Semi-permeable composite membrane
KR970025683A (en) Composite membrane with excellent chemical resistance and its manufacturing method
JPS6347486B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term