JPH036323A - Press forming method for steel sheet excellent in formability - Google Patents

Press forming method for steel sheet excellent in formability

Info

Publication number
JPH036323A
JPH036323A JP1137685A JP13768589A JPH036323A JP H036323 A JPH036323 A JP H036323A JP 1137685 A JP1137685 A JP 1137685A JP 13768589 A JP13768589 A JP 13768589A JP H036323 A JPH036323 A JP H036323A
Authority
JP
Japan
Prior art keywords
steel
annealing
formability
forming
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1137685A
Other languages
Japanese (ja)
Inventor
Chuzo Sudo
須藤 忠三
Yozo Hirose
広瀬 洋三
Atsuki Okamoto
篤樹 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1137685A priority Critical patent/JPH036323A/en
Publication of JPH036323A publication Critical patent/JPH036323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To properly form a steel sheet having superior formability and to increase the degree of freedom of formed parts by subjecting a steel in which trace amounts of Nb are added to hot rolling and to annealing at specific temp. and also controlling forming velocity at the time of press forming after cold rolling. CONSTITUTION:A slab of a steel having a composition consisting of, by weight, <=0.001 5% C, 0.03-0.60% Mn, <=0.1% solAl, 0.003-0.015% Nb, <=0.0020% N, and the balance Fe with inevitable impurities is hot-rolled, annealed, at 680-950 deg.C, and subjected to a repetition of cold rolling and annealing, and further, at the time of press forming, forming velocity is controlled to regulate equivalent strain rate in a zone with a risk of fracture to <=0.25<-1>, or, <=0.008% P is incorporated to the above steel slab and coiling is performed at 620-800 deg.C in stead of annealing.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、精度の高い造形が可能であって、複雑な形状
を有する成形部品用素材として好適な、造形性の優れた
鋼板のプレス成形方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to press forming of a steel plate with excellent formability, which can be formed with high precision and is suitable as a material for molded parts having a complex shape. Regarding the method.

(従来の技術) 従来、自動車のボディパネルやその他の複雑な形状の成
形部品の素材に供される超深絞り鋼板は、0.03〜0
.06重量%程度の炭素を含有する低炭素Af2キルド
鋼を冷間圧延した後、オープンコイル焼鈍炉で脱炭焼鈍
することにより製造されるのが、船釣であった。
(Prior Art) Conventionally, ultra-deep drawn steel sheets used as materials for automobile body panels and other molded parts with complex shapes have a drawing strength of 0.03 to 0.
.. Funatsuri was manufactured by cold rolling low carbon Af2 killed steel containing about 0.6% by weight of carbon and then decarburizing and annealing it in an open coil annealing furnace.

また最近は、精錬技術の著しい進歩によってNb等の炭
化物形成元素を添加した極低炭素鋼の製造が容易に行え
るようになり、それによる超深絞り鋼板も使われ始めて
いる。例えば、特公昭61−32S75号公報において
、TiおよびNbを複合添加したC含有量0.007%
以下の極低炭素鋼を冷間圧延し焼鈍することから成る超
深絞り鋼板の製造方法が提案されており、そのほかにも
この種の超深絞り鋼板に関する提案は多い。
Recently, due to remarkable progress in refining technology, it has become easy to manufacture ultra-low carbon steels containing carbide-forming elements such as Nb, and ultra-deep drawn steel sheets made from these steels have also begun to be used. For example, in Japanese Patent Publication No. 61-32S75, the C content is 0.007% with composite addition of Ti and Nb.
The following method for producing ultra-deep drawn steel plates has been proposed, which consists of cold rolling and annealing the ultra-low carbon steel, and there are many other proposals regarding this type of ultra-deep drawn steel plates.

しかしながら、最近の自動車成形部品では、デザインや
機能上の要求から、非常に複雑な形状や鋭角的な形状を
求める傾向が強くなり、上述のような超深絞り鋼板では
対応しきれないという事態が発生している。
However, due to design and functional requirements, there is a strong tendency for modern automotive molded parts to have very complex shapes and sharp-angled shapes, and the ultra-deep-drawn steel plates mentioned above are no longer able to meet these demands. It has occurred.

そこで、このような部品には、プラスチックを適用する
ことが考えられ、実際に使用もされている。しかし、プ
ラスチックはコストが高いほかに、傷がつきやすい、補
修が困難、耐熱性が低いなどの使用上の欠点があるため
、全面的に広く使用されるに至っていない。
Therefore, it has been considered to use plastic for such parts, and it is actually used. However, in addition to high costs, plastics have disadvantages in use, such as being easily scratched, difficult to repair, and having low heat resistance, so they have not been widely used across the board.

(発明が解決しようとする課題) 従って、プラスチック的な“造形性”を鋼板についても
得られれば、安価で生産性に優れ、かつデザインの自由
度を大幅に改善できることになり、工業上極めて好まし
いことは明らかである。
(Problem to be solved by the invention) Therefore, if plastic-like "formability" could be obtained for steel plates, it would be inexpensive, highly productive, and greatly improve design freedom, which would be extremely desirable from an industrial perspective. That is clear.

一般に深絞り性とは、例えばより深く絞れるというよう
な全体的形状の成形可能性を意味している。しかしなが
ら、局部的な形状についての造形性、例えば隅角部の丸
みなどが非常に小さければ、そこに変形が集中して破断
し、本来持っている深絞り性を十分発揮することができ
ないのである。
In general, deep drawability refers to the ability to form an overall shape, such as being able to draw deeper. However, if the formability of a local shape, such as the roundness of a corner, is very small, deformation will concentrate there and breakage will occur, making it impossible to fully utilize the original deep drawability. .

従って上述のような造形性を得るには、単に深絞り性が
優れているだけでは十分でなく、鋭角的な局所変形にも
十分耐えるだけの粘り強さが必要になってくる。さらに
、実際にプラスチック的な造形を行うには、優れた素材
のほかに適切な成形方法が非常に重要になってくる。
Therefore, in order to obtain the above-mentioned formability, it is not enough just to have excellent deep drawability, but also to have sufficient tenacity to withstand acute local deformation. Furthermore, in order to actually create plastic-like shapes, in addition to using excellent materials, appropriate molding methods are extremely important.

ここに、本発明の目的は、精度の高い造形が可能であっ
て、複雑な形状を有する成形部品用素材として好適な、
造形性の優れた鋼板のプレス成形方法を提供することに
ある。
Here, the object of the present invention is to create a material that can be molded with high precision and is suitable as a material for molded parts having a complicated shape.
An object of the present invention is to provide a method for press forming a steel plate with excellent formability.

(課題を解決するための手段) 深絞り性は、一般に引張り試験で測定されるr値(塑性
異方性)で判定できることが理論的にも実験的にも実証
されている。従って、超深絞り用鋼板はr値の高いこ、
とを特徴としている。
(Means for Solving the Problems) It has been theoretically and experimentally demonstrated that deep drawability can be determined by the r value (plastic anisotropy) generally measured in a tensile test. Therefore, steel sheets for ultra-deep drawing have a high r value.
It is characterized by.

しかしながら、本発明で提供しようとする局所的変形集
中に対する耐性を評価する方法として、十分確立された
ものは未だ存在していない。このことは高造形性鋼板の
開発の上で大きな障害になるものと考えられた。
However, there is still no well-established method for evaluating resistance to local deformation concentration, which is the method provided by the present invention. This was thought to be a major obstacle in the development of highly formable steel sheets.

そこで、本発明者らは、第1図に示すような尖頭円錐形
ポンチ1によって鋼板2を円錐状に成形し、そのときの
限界成形高さ(頂点近傍が破断することなく成形できる
最大の成形高さ)で評価することを試みた。図中、ポン
チ直径は50mm、頂点Rは1■、頂角は標準で95°
、ダイス直径は52.5胚であり、鋼板2はその周囲を
仮押え力5 Tonで動かないように完全にクランプさ
れている。
Therefore, the present inventors formed a steel plate 2 into a conical shape using a pointed conical punch 1 as shown in FIG. An attempt was made to evaluate the molding height. In the figure, the punch diameter is 50mm, the apex radius is 1cm, and the standard apex angle is 95°.
The diameter of the die is 52.5 mm, and the steel plate 2 is completely clamped around it with a temporary holding force of 5 Ton so as not to move.

このような尖頭円錐では、容易に推測されるように先端
頂点に強烈な変形集中が起こるので、超深絞り鋼板は成
形高さが浅い階段で破断する。
As can be easily guessed, in such a pointed cone, intense deformation concentration occurs at the apex of the tip, so the ultra-deep drawn steel plate breaks at the step where the forming height is shallow.

このような尖頭円錐試験では頂点の局所変形集中に対す
る抵抗力によって成形高さが決まるので、造形性を評価
するのに適切であることがわかる。
In such a pointed cone test, the forming height is determined by the resistance force against local deformation concentration at the apex, so it is found to be appropriate for evaluating formability.

従って、本明細書においてより特定的にいえば、「造形
性」とは上記尖頭円錐張出し試験の限界張出し高さで実
験的に評価される冷延鋼板の特性のことを指すものとす
る。
Therefore, more specifically in this specification, "formability" refers to the properties of a cold rolled steel sheet that are experimentally evaluated at the critical overhang height of the above-mentioned pointed cone overhang test.

さて、尖頭円錐成形では頂点のひずみは極めて大きくな
るから、材料の変形能(延性)が十分高いことがまず重
要になる。そのためには材料の結晶粒度を適切に制御す
る必要がある。即ち、結晶粒が粗大になると成形時に鋼
板が著しく肌あれして、表面に凹凸を生じる。この凹凸
はいわゆる塑性不安定現象を促進し、変形能を低下させ
ることが知られている。
Now, in pointed cone forming, the strain at the apex becomes extremely large, so it is first important that the material has a sufficiently high deformability (ductility). For this purpose, it is necessary to appropriately control the crystal grain size of the material. That is, when the crystal grains become coarse, the steel sheet becomes noticeably rough during forming, resulting in unevenness on the surface. It is known that these irregularities promote the so-called plastic instability phenomenon and reduce deformability.

一方、この試験では鋼板の周囲に完全に固定され、ダイ
ス穴への流れ込みはない。このような状態では成形高さ
にr値が影響しないことは多くの研究によって明らかに
されている。この点に関して、本発明者らはさらに検討
を重ね、n値(加工硬化指数)が影響しているとの印象
を得た。その理由は、n値が高ければ変形集中部の硬化
が大きいため、そこの変形が抑制され、結果的に変形集
中を緩和して造形性が向上するためと考えられるからで
ある。
On the other hand, in this test, it was completely fixed around the steel plate and did not flow into the die hole. Many studies have revealed that the r value has no effect on the molding height under such conditions. Regarding this point, the present inventors have further investigated and obtained the impression that the n value (work hardening index) has an influence. The reason is that the higher the n value, the greater the hardening of the deformation concentrated portion, which suppresses deformation there, resulting in less deformation concentration and improved formability.

以上のような知見に基づいて、本発明者らのうちの数人
は造形性に優れた鋼板の製造方法に想到し、特願昭63
−270537号、特願昭63−311600号におい
てその発明を開示した。
Based on the above knowledge, several of the present inventors came up with a method for manufacturing a steel plate with excellent formability, and filed a patent application in 1983.
-270537 and Japanese Patent Application No. 63-311600.

確かに、第2図にその1例を示すように、上記方法によ
る鋼板では適当な頂角(95°)で頂点破断がなくなり
、完全な円錐形が形成されたことを意味する27II1
mという驚異的な成形高さが得られる。
Indeed, as shown in Fig. 2, an example of this is shown in the steel plate produced by the above method, which means that the apex fracture disappears at an appropriate apex angle (95°), and a complete conical shape is formed.
An amazing molding height of m is obtained.

しかしながら、本発明者らはこうして製造された高造形
性鋼板の成形についてさらに詳細に検討を重ねた結果、
このようにn値の高い鋼板であっても常に高造形性が得
られるとは限らず、変形速度によって変形集中抑制効果
が大きく異なるとの全く新しい知見を見いだし、本発明
に至ったのである。
However, as a result of further detailed study by the present inventors regarding the forming of the highly formable steel sheet manufactured in this way,
In this way, even with a steel plate having a high n value, high formability cannot always be obtained, and the inventors discovered a completely new finding that the effect of suppressing deformation concentration varies greatly depending on the deformation rate, leading to the present invention.

ここに、本発明の要旨とするところは、重量%で、 C: 0.0015%以下、 Mn: 0.03〜0.
60%、sol、AQ: 0.1%以下、Nb: 0.
003〜0.015%、N : 0.0020%以下 残部:Feおよび不可避的不純物 からなる鋼組成を有する鋼片に熱間圧延を施した後、6
80〜950℃の温度範囲で焼鈍を行い、次いで冷間圧
延と焼鈍とを施して冷延鋼板とし、それをプレス成形す
るに際して破断危険部の相当ひずみ速度が0.25−’
以下になるように成形速度を制御することを特徴とする
、造形性の優れた鋼板のプレス成形方法である。
Here, the gist of the present invention is, in weight %, C: 0.0015% or less, Mn: 0.03 to 0.
60%, sol, AQ: 0.1% or less, Nb: 0.
003 to 0.015%, N: 0.0020% or less, balance: After hot rolling a steel piece having a steel composition consisting of Fe and inevitable impurities, 6
Annealing is performed in a temperature range of 80 to 950°C, and then cold rolling and annealing are performed to obtain a cold rolled steel plate, and when press forming it, the equivalent strain rate of the fracture risk area is 0.25-'
This is a press forming method for a steel plate with excellent formability, which is characterized by controlling the forming speed as follows.

本発明は、その別の面からは、上記の造形性の優れた鋼
板のプレス成形方法において、重量%で鋼片がさらに、 P量0.008% を含有するとともに、680〜950℃の温度範囲での
焼鈍に替えて、620〜800℃の温度範囲での巻゛取
りを行うことを特徴とする造形性の優れた鋼板のプレス
成形方法である。
From another aspect, the present invention provides the above-mentioned press forming method for a steel plate with excellent formability, in which the steel piece further contains 0.008% by weight of P and a temperature of 680 to 950°C. This is a press-forming method for a steel plate with excellent shapeability, which is characterized by performing coiling at a temperature range of 620 to 800°C instead of annealing at a temperature range of 620 to 800°C.

(作用) 本発明によって高造形性が発現する機構については不明
な点が多いが、素材鋼の炭素量ないしはP量を著しく低
減するとともに、少量のNbを添加すると、極低窒素鋼
であることから、熱間圧延後に焼鈍を行うかまたは高温
で巻き取ると、鋼板の結晶粒度が適度になり、さらには
適度の固溶炭素やNbが存在することが相乗されて、高
造形性が出現するものと考えられる。
(Function) Although there are many unknown points regarding the mechanism by which high formability is expressed by the present invention, it is possible to significantly reduce the amount of carbon or phosphorus in the material steel and add a small amount of Nb, making it an extremely low nitrogen steel. Therefore, if annealing is performed after hot rolling or coiling at high temperature, the crystal grain size of the steel sheet becomes appropriate, and the presence of appropriate solid solution carbon and Nb is combined, resulting in high formability. considered to be a thing.

具体的には、極低炭素化は鋼の高純度化と結晶粒度調整
に、また微量Nbの添加や熱間圧延後の焼鈍は結晶粒度
調整にそれぞれ関連があり、特に固溶炭素量、Nb量に
より強く係わっているものと推察される。
Specifically, ultra-low carbonization is related to high purity steel and grain size adjustment, and addition of a small amount of Nb and annealing after hot rolling are related to grain size adjustment. It is surmised that this is more strongly related to quantity.

次に、本発明において、用いる鋼片の成分組成、焼鈍温
度およびひずみ速度を限定した理由を説明する。
Next, in the present invention, the reason why the chemical composition, annealing temperature, and strain rate of the steel slab used are limited will be explained.

(1)成分組成 C: C量が0.0015%を超えると、セメンタイト
が形成されて鋼板の延性を阻害するため、所望の造形性
を確保できなくなる。従って、C含有量は0.0015
%以下とした。
(1) Component composition C: When the amount of C exceeds 0.0015%, cementite is formed and inhibits the ductility of the steel sheet, making it impossible to ensure desired formability. Therefore, the C content is 0.0015
% or less.

Mn: Mnは、基本的には鋼に不可避的に含まれるS
による脆化を防止するために含有させられるものである
。そして、その含有量が0.03%未満では脆化防止効
果が十分でなく、一方0.60%を超えてもその効果は
飽和してしまい、コスト増加を招くだけになる。したが
ってMn含有量を0.03%以上0.60%以下と制限
した。
Mn: Mn is basically S, which is inevitably included in steel.
It is included in order to prevent embrittlement caused by. If the content is less than 0.03%, the effect of preventing embrittlement will not be sufficient, while if it exceeds 0.60%, the effect will be saturated, which will only lead to an increase in cost. Therefore, the Mn content was limited to 0.03% or more and 0.60% or less.

sol、M: Al1は鋼の脱酸のために使用されるの
で、若干量は鋼中にsol、Mとして残存する。しかし
、sol、AQはAQNを析出し延性を阻害するため、
0.1%を超えると所望の造形性が得られない。したが
って、AQC含有量0.1%以下と制限した。
sol, M: Since Al1 is used for deoxidizing steel, some amount remains in the steel as sol, M. However, since sol and AQ precipitate AQN and inhibit ductility,
If it exceeds 0.1%, desired formability cannot be obtained. Therefore, the AQC content was limited to 0.1% or less.

Nb: Nbは最終製品の結晶粒の粗粒化とNbCの形
成のため添加され、これによって高造形性が確保できる
ようになる。しかしながら、Nb量が0.003%未満
では所望の効果が得られず、一方、0.015%を超え
て含有させると固溶Nbが増して鋼が硬化して逆に造形
性が劣化する。よってNb添加量を0.003%以上0
.015%以下と制限した。
Nb: Nb is added to coarsen the crystal grains of the final product and form NbC, thereby ensuring high formability. However, if the amount of Nb is less than 0.003%, the desired effect cannot be obtained, and on the other hand, if the amount of Nb is more than 0.015%, the solid solution Nb will increase, the steel will harden, and the formability will deteriorate. Therefore, the amount of Nb added should be 0.003% or more.
.. It was limited to 0.015% or less.

N:NもCと同様少ないほど造形性にとっては好ましい
元素である。そして、N含有量が0.0020%を超え
た場合はNbNを多量に形成して延性を阻害し、所望の
造形性を確保できなくなる。よって、N添加量を0.0
020%以下と制限した。
N: Like C, N is also an element that is better for formability as it is less. If the N content exceeds 0.0020%, a large amount of NbN is formed, inhibiting ductility and making it impossible to ensure desired formability. Therefore, the amount of N added is 0.0
It was limited to 0.020% or less.

(2)焼鈍温度の限定理由 通常の冷延鋼板の製造プロセスでは、熱延鋼板を酸洗し
て脱スケールした後そのまま冷間圧延している。しかる
に本発明においては、熱延鋼板を高温で焼鈍することを
大きな特徴としている。
(2) Reason for limiting the annealing temperature In the usual manufacturing process of cold rolled steel sheets, hot rolled steel sheets are descaled by pickling and then cold rolled as they are. However, a major feature of the present invention is that the hot rolled steel sheet is annealed at a high temperature.

この焼鈍は冷間圧延前の鋼板中におけるNbCやAQN
等の析出状態、結晶粒および集合組織を調整し、冷間圧
延−焼鈍後の組成が造形性に好ましくなるようにするた
めの準備段階として重要である。
This annealing is performed using NbC and AQN in the steel sheet before cold rolling.
It is important as a preparatory step to adjust the precipitation state, crystal grains, and texture, such as, so that the composition after cold rolling and annealing is favorable for formability.

即ち、熱延綱板ではNbはCと結合したNbCの状態で
析出しているが、適度の高温焼鈍はNbCの粗大化を防
止しつつNbC析出を十分ならしめ、冷間圧延−焼鈍後
の細粒化と高r値化を確実にする。
In other words, in hot-rolled steel sheets, Nb is precipitated in the form of NbC combined with C, but moderate high-temperature annealing prevents coarsening of NbC and makes NbC precipitate sufficiently, and the Ensure fine grain size and high r value.

また、鋼中のsol、AQもAQNとしてほとんど析出
してしまい、固溶Nを低下させる。
Furthermore, most of the sol and AQ in the steel precipitate as AQN, reducing the solid solution N.

しかして、680℃未満の焼鈍温度では、このよ1 うなNbCやMNの析出が十分行われないためr値や伸
びが低くなり、高造形性が得られない。一方、950℃
を超える焼鈍温度では、析出したNbCが粗大化するた
め著しい結晶粒の粗大化が起こる。そのため、成形品に
肌荒れが生じて、変形限界を低下させ、造形性を劣化さ
せる。以上の理由により、焼鈍温度は680〜950℃
と定めた。
However, at an annealing temperature of less than 680°C, such precipitation of NbC and MN does not occur sufficiently, resulting in a low r value and elongation, making it impossible to obtain high formability. On the other hand, 950℃
At an annealing temperature higher than 100%, the precipitated NbC becomes coarser, resulting in significant coarsening of crystal grains. As a result, the surface of the molded product becomes rough, lowering the deformation limit and deteriorating formability. For the above reasons, the annealing temperature is 680-950℃
It was determined that

この高温焼鈍は、コイルのままのバッチ焼鈍またはコイ
ルをほぐしながらの連続焼鈍のいずれによって行っても
差し支えない。また、この焼鈍はスケールつきの熱延板
にそのまま施してもよいし、いったん脱スケールした鋼
板に施してもよい。本発明方法では鋼板のC含有量が1
5 ppm以下であるので、スケールによる脱炭は問題
にならない。
This high-temperature annealing may be performed by either batch annealing with the coil as it is or continuous annealing while loosening the coil. Further, this annealing may be applied to the scaled hot rolled sheet as it is, or may be applied to the steel sheet which has been descaled. In the method of the present invention, the C content of the steel plate is 1
Since the amount is 5 ppm or less, decarburization due to scale is not a problem.

(3)ひずみ速度の限定理由 鋼板のプレス成形においては、鋼板は一般に面内で2軸
変形する。このときのひずみ状態を統一的に表現するた
めに塑性力学でいう相当ひずみを用いる。すなわち、面
内の最大上ひずみをε8、それと直交する主ひずみをε
ヶ、板厚ひずみをε5、2 相当ひずみをε、鋼板の面内平均r値をrとすると、 3r(1+2r)2 である。
(3) Reasons for limiting the strain rate During press forming of a steel plate, the steel plate generally undergoes biaxial deformation within its plane. In order to uniformly express the strain state at this time, equivalent strain in plastic mechanics is used. In other words, the in-plane maximum strain is ε8, and the principal strain perpendicular to it is ε.
, the plate thickness strain is ε5,2, the equivalent strain is ε, and the in-plane average r value of the steel plate is r, then 3r(1+2r)2.

相当ひずみは塑性論によれば変形による加工硬化を規定
する値であるから、局所変形抑制効果を表わすのに最も
適したパラメータである。
According to plasticity theory, the equivalent strain is the value that defines work hardening due to deformation, so it is the most suitable parameter to express the effect of suppressing local deformation.

さて上述のように、ひずみ状態を相当ひずみで表わすと
き、相当ひずみ速度が0.2S−’を超えると変形の局
所集中の抑制効果が減少し、造形性が急激に低下するの
で0.2S−’を上限とした。
Now, as mentioned above, when the strain state is expressed by equivalent strain, if the equivalent strain rate exceeds 0.2S-', the effect of suppressing local concentration of deformation decreases, and formability sharply decreases, so 0.2S-'' was set as the upper limit.

変形のひずみ速度によって、造形性が変化する理由は未
だ詳細にはわかっていないが、変形速度が遅い場合、鋼
中の極微量の炭素が変形中に拡散して、鋼板の加工硬化
特性を高めるためと推察される。
The reason why formability changes depending on the strain rate of deformation is not yet known in detail, but when the deformation rate is slow, minute amounts of carbon in the steel diffuse during deformation, increasing the work hardening properties of the steel sheet. It is presumed that this is because of this.

なお、一般にプレス成形品はその部位によってひずみ量
やひずみ速度が異なるが、いま問題になるのは破断であ
るから、破断危険部のひずみ速度を考慮すればよい。
Generally, the strain amount and strain rate of a press-formed product differ depending on its location, but since the current issue is fracture, the strain rate of the fracture-prone area should be taken into consideration.

なお、破断危険部は、成形品の各部のひずみ分布を測定
して事前に特定すればよい。
Note that the fracture-dangerous parts may be identified in advance by measuring the strain distribution of each part of the molded product.

次に本発明にあってはその別法として、用いる鋼片がさ
らにP、50.08%を含有するとともに、680〜9
50℃での焼鈍に替えて、620〜800℃での巻き取
りを行うようにしてもよい。
Next, in the present invention, as an alternative method, the steel billet used further contains P, 50.08%, and 680 to 9
Instead of annealing at 50°C, winding at 620 to 800°C may be performed.

このように限定する理由は次の通りである。The reason for this limitation is as follows.

(4)P≦o、oos% Pは、結晶粒界に偏析して造形性を阻害するという作用
があるが、このP含有量を特に0.008%以下にする
と偏析による悪影響が著しく減少し、冷間圧延・巻き取
り後に高造形性が安定して得られるようになる。もし、
P含有量が0.008%を越えると、造形性への悪影響
が無視できなくなり、所望の特性が得られない。したが
って、用いる鋼片中のP含有量を0.008%以下と制
限する。
(4) P≦o, oos% P segregates at grain boundaries and inhibits formability, but when the P content is particularly reduced to 0.008% or less, the negative effects of segregation are significantly reduced. , high formability can be stably obtained after cold rolling and winding. if,
If the P content exceeds 0.008%, the adverse effect on formability cannot be ignored, and desired characteristics cannot be obtained. Therefore, the P content in the steel slab used is limited to 0.008% or less.

(5)巻き取り温度の限定理由 熱間圧延後の巻取りは、冷間圧延前の鋼片中におけるN
bCやTiN等の析出状態、結晶粒および集3 4 合組織を調整し、冷間圧延−焼鈍後に好ましい組織を得
るための準備工程として重要である。通常の熱間圧延で
は巻取りは600〜500℃の温度範囲で実施されるが
、本発明では従来よりも高い温度で実施する。
(5) Reason for limiting the coiling temperature When coiling after hot rolling, N
It is important as a preparatory step for adjusting the precipitation state, crystal grains, and agglomerated structure of bC, TiN, etc., and obtaining a preferable structure after cold rolling and annealing. In normal hot rolling, winding is carried out at a temperature range of 600 to 500°C, but in the present invention it is carried out at a higher temperature than conventionally.

すなわち、適度の高温巻取りによって、NbCが粗大化
しない範囲でNbCが十分析出する。これにより冷間圧
延−焼鈍された後の鋼板のr値および伸びが向上し、高
造形性が確保される。しかし、かかる効果は620 ’
C未満の巻取り温度では十分得られないため、620℃
を下限とした。
That is, by winding at an appropriate high temperature, enough NbC can be produced without coarsening the NbC. This improves the r value and elongation of the steel plate after cold rolling and annealing, and ensures high formability. However, such an effect is 620'
A winding temperature of less than 620°C will not be sufficient.
was set as the lower limit.

一方、800℃を越える高温巻取りでは、NbCの析出
が粗大になり過ぎ、組織が粗粒化する。この結果、成形
時に肌荒れが発生して鋼板の変形限界を下げるため、や
はり高造形性が得られない。
On the other hand, in high-temperature winding exceeding 800° C., NbC precipitation becomes too coarse and the structure becomes coarse-grained. As a result, surface roughness occurs during forming and lowers the deformation limit of the steel plate, making it impossible to obtain high formability.

なお、本発明ではP含有量を低くしているため、高温巻
取りでもFeTiPの析出は抑えられる。
Note that in the present invention, since the P content is low, precipitation of FeTiP can be suppressed even during high-temperature winding.

そこで、上述の別法にあっては680〜950℃の温度
範囲で焼鈍を行う代わりに、巻取り温度を620℃以上
800℃以下と制限するのである。
Therefore, in the above-mentioned alternative method, instead of performing annealing in the temperature range of 680 to 950°C, the winding temperature is limited to 620°C or more and 800°C or less.

5 さらに、本発明を実施例を用いて詳述するが、これは本
発明の例示でありこれにより本発明が限定されるもので
はない。
5 Furthermore, the present invention will be explained in detail using Examples, but these are illustrative of the present invention and the present invention is not limited thereby.

実施例1 第1表に示される成分の綱を溶製してスラブとし、加熱
温度1100℃1圧延仕上げ温度910″Cで熱間圧延
を行った後、680〜950℃で焼鈍を施し、3.2肝
厚の熱延鋼板を得た。
Example 1 Steel having the components shown in Table 1 was melted into a slab, hot-rolled at a heating temperature of 1100°C and a rolling finishing temperature of 910''C, and then annealed at 680-950°C. A hot rolled steel plate having a thickness of .2 mm was obtained.

次いで、これを酸洗した後、圧下率75%の冷間圧延を
行い、続いて850℃に40秒間保持することにより、
0.8m+n厚の冷延鋼板である試料1ないし試料9を
得た。
Next, after pickling this, cold rolling was performed at a reduction rate of 75%, and then by holding at 850 ° C. for 40 seconds,
Samples 1 to 9, which were cold-rolled steel plates with a thickness of 0.8 m+n, were obtained.

このようにして得られた各試料に、第1図で示した頂角
95°、頂点R1,5Rの尖頭円錐張り出し試験を頂点
の相当ひずみ速度0.05s−’及び0.3s−’で行
い、限界成形高さを測定した。この場合、頂点は等2軸
引張り応力状態にあるので、ε8−εア、かつ塑性ひず
みの基本的性質である体積不変の法則から得られるε8
+εア+ε2−0を考慮すると、 6 ε−[(r+2)/3]   ・ ε、であるので、上
式より板厚ひずみε、を測定して相当ひずみに換算し、
所定のひずみ速度を得るように、ポンチ押し込み速度を
調整した。
Each sample thus obtained was subjected to a pointed cone stretching test with an apex angle of 95° and vertices R1 and 5R as shown in Fig. 1 at equivalent strain rates of 0.05 s-' and 0.3 s-' at the apex. The critical molding height was measured. In this case, since the vertex is in an equibiaxial tensile stress state, ε8−εa and ε8 obtained from the law of volume invariance, which is a fundamental property of plastic strain.
Considering +εa+ε2−0, 6ε−[(r+2)/3]・ε, so from the above formula, measure the plate thickness strain ε and convert it to the equivalent strain,
The punching speed was adjusted to obtain a predetermined strain rate.

結果は第1表に示すように、成分および製造条件が本発
明の範囲にあって、かつ相当ひずみ速度が本発明の範囲
内にある場合のみに、尖頭円錐成形において完全円錐が
形成できる27m以上の成形高さが得られ、優れた高造
形性が実現されることがわかる。
As shown in Table 1, the results show that a perfect cone of 27 m can be formed in pointed cone forming only when the ingredients and manufacturing conditions are within the range of the present invention, and the equivalent strain rate is within the range of the present invention. It can be seen that the above molding height can be obtained and excellent high moldability is achieved.

実施例2 第1表に示した試料のうち、試料Nα4と試料Nα8 
(以上極低炭素鋼)、試料No、9(オープンコイル脱
炭焼鈍鋼)を用いて、ひずみ速度を変えて尖頭円錐成形
高さを測定した。ひずみ速度の求め方は実施例1と同し
である。
Example 2 Among the samples shown in Table 1, sample Nα4 and sample Nα8
(all ultra-low carbon steels) and sample No. 9 (open coil decarburized annealed steel), the height of the pointed cone formed was measured by changing the strain rate. The method of determining the strain rate is the same as in Example 1.

結果は第3図に示す。第3図かられかるように、本発明
にかかる試料N[L4の場合は頂点の相当ひずみ速度が
0.2S−’以下になると限界成形高さが大きく向上し
て、完全円錐を形成する。すなわちこの領域で目的とす
る高造形性が得られる。一方、極低炭素鋼系である試料
No、 8ではひずみ速度を下げれば成形高さは上昇傾
向にはあるものの、その増加はわずかである。また脱炭
焼鈍鋼である試料No。
The results are shown in Figure 3. As can be seen from FIG. 3, in the case of sample N[L4 according to the present invention, when the equivalent strain rate at the apex becomes 0.2 S-' or less, the critical forming height increases greatly and a perfect cone is formed. In other words, the desired high formability can be obtained in this area. On the other hand, in samples No. 8, which are ultra-low carbon steels, the forming height tends to increase when the strain rate is lowered, but the increase is small. Sample No. is also a decarburized annealed steel.

9では速度効果そのものが小さく、どの速度領域でも造
形性が得られなかった。
In No. 9, the speed effect itself was small, and good formability could not be obtained in any speed range.

以上のように造形性はひずみ速度に非常に鋭敏で、それ
を十分発現させるには適正なひずみ速度の選定が重要で
あることが明らかである。
As described above, formability is very sensitive to strain rate, and it is clear that selecting an appropriate strain rate is important in order to fully express this ability.

実施例3 第2表に示される成分の鋼を溶製してスラブとし、加熱
温度1100℃1圧延仕上げ温度910℃で熱間圧延を
行った後、巻取り、3.2111m厚の熱延鋼板を得た
Example 3 Steel having the components shown in Table 2 was melted into a slab, hot-rolled at a heating temperature of 1100°C and a rolling finishing temperature of 910°C, and then coiled to form a hot-rolled steel plate with a thickness of 3.2111 m. I got it.

次いで、これを酸洗した後、圧下率75%の冷間圧延を
行い、続いて850℃に40秒間保持して0.8mm厚
の冷延鋼板である試料No、 10ないし試料No、 
18を得た。
Next, after pickling this, cold rolling was performed at a reduction rate of 75%, and then held at 850 ° C. for 40 seconds to obtain cold rolled steel sheets with a thickness of 0.8 mm Sample No. 10 to Sample No.
I got 18.

このようにして得られた各試料に実施例1の場合と全く
同様にして、引張り試験および尖頭円錐限界成形高さ試
験を行った。結果を第2表に示す。
Each sample thus obtained was subjected to a tensile test and a pointed cone limit forming height test in exactly the same manner as in Example 1. The results are shown in Table 2.

結果は第2表に示すように、成分および製造条件が本発
明の範囲にあって、かつ相当ひずみ速度が本発明の範囲
内にある場合のみに、尖頭円錐成形において完全円錐が
形成できる27mm以上の成形高さが得られ、優れた高
造形性が実現されることがわかる。
The results are shown in Table 2. Only when the ingredients and manufacturing conditions are within the range of the present invention and the equivalent strain rate is within the range of the present invention, a perfect cone of 27 mm can be formed in pointed cone molding. It can be seen that the above molding height can be obtained and excellent high moldability is achieved.

実施例4 第2表に示した鋼板のうち、試料No、 13と試料N
Example 4 Among the steel plates shown in Table 2, sample No. 13 and sample N
.

16(以上極低炭素鋼)、試料No、18 (オープン
コイル脱炭焼鈍鋼)を用いて、ひずみ速度を替えて尖頭
円錐成形高さを測定した。ひずみ速度の求め方は実施例
1と同じである。
Using Sample No. 16 (extremely low carbon steel), Sample No. 18 (open coil decarburized annealed steel), the height of pointed cone forming was measured by changing the strain rate. The method of determining the strain rate is the same as in Example 1.

結果は第4図に示す。第4図かられかるように、本発明
例である試料No、 13の場合は頂点の相当ひずみ速
度が0.28−’以下になると限界成形高さが大きく向
上して、完全円錐を形成する。すなわちこの領域で目的
とする高造形性が得られる。一方、極低炭素鋼系の試料
No、 16ではひずみ速度を下げれば成形高さは上昇
傾向にはあるものの、その増加はわずかである。また脱
炭焼鈍鋼である試料No、 18では速度効果そのもの
が小さく、どの速度領域でも造形性が得られなかった。
The results are shown in Figure 4. As can be seen from Figure 4, in the case of sample No. 13, which is an example of the present invention, when the equivalent strain rate at the apex becomes 0.28-' or less, the critical forming height increases greatly and a perfect cone is formed. . In other words, the desired high formability can be obtained in this area. On the other hand, in sample No. 16, which is made of ultra-low carbon steel, although the forming height tends to increase when the strain rate is lowered, the increase is slight. In addition, in sample No. 18, which is decarburized annealed steel, the speed effect itself was small, and formability could not be obtained in any speed range.

以上のように造形性はひずみ速度に非常に鋭敏で、それ
を十分発現させるには適正なひずみ速度の選定が重要で
あることが明らかである。
As described above, formability is very sensitive to strain rate, and it is clear that selecting an appropriate strain rate is important in order to fully express this ability.

実施例5 炭素量を最大39ppm含有し、かつその他の成分が本
発明範囲内である鋼を、実施例1と同様の条件で焼鈍温
度を650〜1000℃に変化させて、ひずみ速度0.
IS−’で張出し高さを測定した。結果は第5図のよう
に、680〜950 ℃の間で良好な造形性が得られる
ことがわかる。
Example 5 A steel containing a maximum of 39 ppm of carbon and other components within the range of the present invention was annealed under the same conditions as in Example 1, with the annealing temperature varied from 650 to 1000°C, and the strain rate was reduced to 0.
The overhang height was measured using IS-'. As shown in FIG. 5, the results show that good formability can be obtained at temperatures between 680 and 950°C.

実施例6 炭素量を最大50ppm含有し、かつその他の成分が本
発明範囲内である鋼を、実施例3と同様の条件で巻取温
度を500〜820℃に変化させて、ひずみ速度0.1
5−’で張出し高さを測定した。結果は第6図のように
、620〜800℃の間で良好な造形性が得られること
がわかる。
Example 6 A steel containing a maximum of 50 ppm of carbon and other components within the range of the present invention was rolled up under the same conditions as in Example 3, with the coiling temperature varied from 500 to 820°C, and the strain rate was reduced to 0. 1
The overhang height was measured at 5-'. As shown in FIG. 6, the results show that good formability is obtained between 620 and 800°C.

9 0 (発明の効果) 以上説明したように、本発明によれば優れた造形性を有
する鋼板を適切に成形できて、造形性を実際の成形にお
いで発現することが可能になる。
90 (Effects of the Invention) As explained above, according to the present invention, a steel plate having excellent formability can be appropriately formed, and the formability can be expressed in actual forming.

それによって、鋼板をプレス成形して得られる部品のデ
ザインの自由度が増し、また成形の生産性を大幅に向上
できるなど、産業上きわめて有用な効果がもたらされる
This increases the degree of freedom in the design of parts obtained by press-forming steel plates, and greatly improves the productivity of forming, which is extremely useful in industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、尖頭円錐限界成形高さ試験装置の略式断面図
; 第2図は、ポンチの頂角と成形限界高さとの関係を表わ
すグラフ:および 第3図ないし第6図は、本発明の実施例の結果を表わす
グラフである。
Fig. 1 is a schematic cross-sectional view of the point-to-cone limit forming height test device; Fig. 2 is a graph showing the relationship between the apex angle of the punch and the forming limit height; and Figs. It is a graph showing the results of an example of the invention.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で、 C:0.0015%以下、Mn:0.03〜0.60%
、sol、Al:0.1%以下、Nb:0.003〜0
.015%、N:0.0020%以下 残部:Feおよび不可避的不純物 からなる鋼組成を有する鋼片に熱間圧延を施した後、6
80〜950℃の温度範囲で焼鈍を行い、次いで冷間圧
延と焼鈍とを施して冷延鋼板とし、それをプレス成形す
るに際して破断危険部の相当ひずみ速度が0.2S^−
^1以下になるように成形速度を制御することを特徴と
する、造形性の優れた鋼板のプレス成形方法。
(1) In weight%, C: 0.0015% or less, Mn: 0.03 to 0.60%
, sol, Al: 0.1% or less, Nb: 0.003-0
.. After hot rolling a steel piece having a steel composition consisting of 0.015%, N: 0.0020% or less, remainder: Fe and inevitable impurities, 6
Annealing is performed in a temperature range of 80 to 950°C, followed by cold rolling and annealing to obtain a cold rolled steel plate, and when press forming it, the equivalent strain rate at the fracture risk area is 0.2S^-
A press forming method for a steel plate with excellent formability, characterized by controlling the forming speed so that the forming speed is ^1 or less.
(2)請求項1記載の造形性の優れた鋼板のプレス成形
方法において、重量%で鋼片がさらに、 P≦0.008% を含有するとともに、680〜950℃の温度範囲での
焼鈍に替えて、620〜800℃の温度範囲での巻取り
を行うことを特徴とする造形性の優れた鋼板のプレス成
形方法。
(2) In the method for press forming a steel plate with excellent formability according to claim 1, the steel billet further contains P≦0.008% by weight, and is suitable for annealing in a temperature range of 680 to 950°C. A press-forming method for a steel plate with excellent formability, which is characterized in that winding is performed at a temperature range of 620 to 800°C.
JP1137685A 1989-05-31 1989-05-31 Press forming method for steel sheet excellent in formability Pending JPH036323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1137685A JPH036323A (en) 1989-05-31 1989-05-31 Press forming method for steel sheet excellent in formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1137685A JPH036323A (en) 1989-05-31 1989-05-31 Press forming method for steel sheet excellent in formability

Publications (1)

Publication Number Publication Date
JPH036323A true JPH036323A (en) 1991-01-11

Family

ID=15204415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1137685A Pending JPH036323A (en) 1989-05-31 1989-05-31 Press forming method for steel sheet excellent in formability

Country Status (1)

Country Link
JP (1) JPH036323A (en)

Similar Documents

Publication Publication Date Title
EP2053139B1 (en) Hot-rolled steel sheets excellent both in workability and in strength and toughness after heat treatment and process for production thereof
JP5609945B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
EP1350859B1 (en) High-tensile strength hot-rolled steel sheet excellent in elongation properties and stretch flangeability, and producing method thereof
CN106868398B (en) 1300MPa grades of ultra-fine grained ferrites/low temperature bainite dual-phase steel and preparation method thereof
JP5126399B2 (en) High-strength cold-rolled steel sheet with excellent stretch flangeability and manufacturing method thereof
CN104160055A (en) High-strength cold-rolled steel sheet and process for manufacturing same
CN108611568A (en) The 400MPa grades high reaming hot rolled steel plate of tensile strength and its manufacturing method
CN100374586C (en) High-strength hot-rolled steel sheet excellent in shape fixability and method of producing the same
CN109112416A (en) A kind of cold-rolled steel sheet and its manufacturing method of the high Oxygen potential of precision stamping
CN109207867A (en) A kind of cold rolled annealed dual phase steel, steel plate and its manufacturing method
JP5145315B2 (en) Aging-resistant cold-rolled steel sheet with excellent workability and method for producing the same
CN107760997A (en) Dual induced plastic high-strength steel and its manufacture method
JP3355970B2 (en) Manufacturing method of cold rolled steel sheet with excellent punchability
CN107385348A (en) A kind of precision stamping cold-rolled steel sheet and its manufacture method
JP4561136B2 (en) Steel sheet for nitriding treatment
JPH036324A (en) Press forming method for steel sheet excellent in formability
JP6628018B1 (en) Hot rolled steel sheet
EP3686293B1 (en) A high strength high ductility complex phase cold rolled steel strip or sheet
JPH036323A (en) Press forming method for steel sheet excellent in formability
JP2003041342A (en) Cold rolled steel sheet superior in stamping property
JP7355994B2 (en) High carbon steel plate and its manufacturing method
JPS6233290B2 (en)
SE542818C2 (en) A high strength high ductility complex phase cold rolled steel strip or sheet
WO2022196733A1 (en) Steel sheet, steel member, and coated steel member
JPH02156023A (en) Manufacture of cold rolled steel sheet having good formability