JPH0363165B2 - - Google Patents

Info

Publication number
JPH0363165B2
JPH0363165B2 JP1904480A JP1904480A JPH0363165B2 JP H0363165 B2 JPH0363165 B2 JP H0363165B2 JP 1904480 A JP1904480 A JP 1904480A JP 1904480 A JP1904480 A JP 1904480A JP H0363165 B2 JPH0363165 B2 JP H0363165B2
Authority
JP
Japan
Prior art keywords
lead
oil
tin
conductor
immersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1904480A
Other languages
Japanese (ja)
Other versions
JPS56118213A (en
Inventor
Yoshisuke Iwata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1904480A priority Critical patent/JPS56118213A/en
Publication of JPS56118213A publication Critical patent/JPS56118213A/en
Publication of JPH0363165B2 publication Critical patent/JPH0363165B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は油浸絶縁鉛被ケーブルの改良に関す
るものである。 一般に油浸絶縁鉛被ケーブルは、導体上にドデ
シルベンゼンの如き合成油または鉱油を含浸した
クラフト紙などを巻付けて油浸絶縁層を形成し、
更にこの上に遮敝層及び鉛被シースをこの順に形
成した基本構成のものが良く知られている。 ところで海底ケーブルに用いられる場合にはそ
の給油区間が著しく長いことから使用する絶縁油
の粘度は可能な限り低いことが望まれている。 かかる絶縁油として、電気特性は上記のドデシ
ルベンゼンと略同等でありしかもプラスチツクを
膨潤する作用も軽微で粘度がより低いジアリルア
ルカンまたはアルキルナフタレンの如き2以上の
ベンゼン環を有する絶縁油が注目されその適用研
究が行われている。 これらジアリルアルカンなどの絶縁油を用いた
油浸絶縁ケーブルは、そのシースとしてアルミニ
ウムを用いたものは特に問題が生じないが、鉛被
シースを施したものはその使用後短期間にて絶縁
油のtanδ及びρの急激な劣下が起りケーブル特性
を低下させる重大な問題があつた。 発明者は、かかる現象に着目し鋭意その原因を
究明した結果、上述した2以上のベンゼン環を有
する絶縁油は鉛の存在下では速やかに劣化すると
の知見を得た。 具体的にジアリルアルカンを純鉛と共存下に空
気中で115℃96時間加熱した結果、加熱前及び加
熱後のtanδ及びρの劣化は次の通りであつた。 tanδ0.01%→12%以上 ρ 5×1015Ω−cm→2×1012Ω−cm 又窒素ガス中で85℃168時間加熱した場合、 tanδ0.01%→0.7% ρ 5×1015Ω−cm→1×1014Ω−cm であつた。発明者はかかる現象を抑制する方法に
ついて更に研究を重ねた結果、純鉛に錫を0.5%
添加して同様に空気中にて85℃168時間加熱試験
を行つたところtanδ及びρの変化は tanδ0.01%→0.02 ρ 5×1015Ω−cm→4×1015Ω−cm と著しく抑制でき、しかも錫0.05%と微量添加し
た場合でも tanδ0.01%→0.5% ρ 5×1015Ω−cm→2×1015Ω−cm と微量の錫の存在でもジアリルアルカンの劣化が
著しく抑えられることが判明した。 ここに発明者等はかかる知見をもとに鋭意検討
を重ねた結果この発明を完成するに至つたもので
ある。 即ちこの発明は、導体上に、絶縁油としてジア
リルアルカンまたはアルキルナフタレンの如き2
以上のベンゼン環を有する絶縁油を含浸した油浸
絶縁層、金属遮敝層及び鉛被シースをこの順に形
成した基本構成を有する油浸絶縁鉛被ケーブルに
おいて、該絶縁油に触れるように、錫または錫化
合物を存在させたことを特徴とする油浸絶縁鉛被
ケーブルである。 この発明でいう油浸絶縁鉛被ケーブルとは前述
したように導体上に油浸絶縁層、金属遮敝層及び
鉛被シース層をこの順に設けた基本構成を有する
ものであり、代表的な一例は第1図に示すような
ものである。同図において1は銅を素材とした6
分割導体、2は油通路、3は例えばステンレステ
ープとカーボン紙とを合せ巻きして形成した導体
バインダー層、4は油浸絶縁層、5は金属化紙と
アルミニウムテープを合せ巻きしてなる金属遮敝
層、6は例えば銅線織込布テープなどの巻回によ
るコアバインダー層、そして7は鉛被シース、更
に8は塩化ビニルなどによる保護シースである。 この発明はこの図示構成に限定されるものでは
なく、又これら構成部分の諸材質は従来用いられ
ている各種が特に制限なく使用される。 この発明で使用される2以上のベンゼン環を有
する絶縁油としては、ジアリルアルカン、アルキ
ルナフタレンなどである。 そしてこの絶縁油に触れるようにして錫または
錫化合物を存在させる方法としては、 (i) 鉛被材中に所望量、好ましくは0.05〜0.5%
の錫または錫化合物を混入する (ii) 導体に錫メツキを施したものを用いる (iii) 上記導体のバインダー層、金属遮敝層、コア
バインダー層などの一部に錫箔または錫化合物
を用いる などの方法があり、特に(ii)、(iii)は鉛被シースの組
成変化による機械特性低下の恐れがなく好まし
い。 この発明は後記実施例からも明らかな如く、絶
縁材料として低損失のプラスチツク材を用い絶縁
油として従来のOFケーブル絶縁油(鉱油、
DDB)に比べプラスチツクを膨潤、溶解させる
ことの少ない又耐電圧の高いジアリルアルカン等
を用いた低キヤパシタンス油浸絶縁鉛被ケーブル
において該絶縁油に接するように錫を存在させた
ことにより絶縁油の特性低下の問題を著しく改善
し得るものであり、特に海底ケーブル等において
ジアリルアルカンの粘度が従来のOF油に比べ小
さいこと、上記ポリマーとの良好な組合せが実現
できること即ち低粘度故給油設計で、又低キヤパ
シタンス(プラスチツクと用いて)故長距離化が
図れるためその工業的価値が大である。 以下実施例によりこの発明を具体的に説明す
る。 実施例 次表1の仕様及び表2の如く絶縁油を用いると
共に錫を存在させて図に示した構成の油浸絶縁鉛
被ケーブルを得た。
This invention relates to improvements in oil-immersed insulated lead-sheathed cables. Generally, oil-immersed insulated lead-sheathed cables are made by wrapping kraft paper or the like impregnated with synthetic oil such as dodecylbenzene or mineral oil on the conductor to form an oil-immersed insulation layer.
Further, a basic configuration in which a barrier layer and a lead-covered sheath are formed in this order on top of this is well known. By the way, when used in submarine cables, the viscosity of the insulating oil used is desired to be as low as possible because the oil supply section is extremely long. As such an insulating oil, an insulating oil having two or more benzene rings such as diallylalkane or alkylnaphthalene, which has almost the same electrical properties as the above-mentioned dodecylbenzene, has a slight swelling effect on plastics, and has a lower viscosity, has attracted attention. Applied research is being conducted. Oil-immersed insulated cables using diarylalkane or other insulating oils do not have any particular problems when the sheath is made of aluminum, but those with a lead sheath lose their insulating oil within a short period of time after use. There was a serious problem in which the tan δ and ρ deteriorated rapidly and the cable characteristics deteriorated. The inventor paid attention to this phenomenon and, as a result of diligently investigating its cause, found that the above-mentioned insulating oil having two or more benzene rings deteriorates rapidly in the presence of lead. Specifically, diallylalkane was heated in air at 115°C for 96 hours in the presence of pure lead, and the deterioration of tan δ and ρ before and after heating was as follows. tan δ 0.01% → 12% or more ρ 5 × 10 15 Ω−cm → 2 × 10 12 Ω−cm When heated in nitrogen gas at 85°C for 168 hours, tan δ 0.01% → 0.7% ρ 5 × 10 15 Ω -cm→1×10 14 Ω−cm. As a result of further research on how to suppress this phenomenon, the inventor decided to add 0.5% tin to pure lead.
When a similar heating test was conducted at 85°C in air for 168 hours, the changes in tanδ and ρ were significantly suppressed from tanδ0.01% to 0.02 ρ 5×10 15 Ω-cm → 4×10 15 Ω-cm Moreover, even when a trace amount of tin (0.05%) is added, the deterioration of diallylalkane is significantly suppressed even in the presence of a trace amount of tin (tanδ0.01% → 0.5% ρ 5 × 10 15 Ω−cm → 2 × 10 15 Ω−cm) It has been found. The inventors have completed this invention as a result of intensive studies based on this knowledge. That is, this invention provides dielectric oil such as diallylalkane or alkylnaphthalene as an insulating oil on a conductor.
In an oil-immersed insulated lead-sheathed cable having a basic structure in which an oil-immersed insulating layer impregnated with an insulating oil having a benzene ring, a metal barrier layer, and a lead-sheathed sheath are formed in this order, tin is in contact with the insulating oil. Alternatively, it is an oil-immersed insulated lead-sheathed cable characterized by the presence of a tin compound. As mentioned above, the oil-immersed insulated lead-sheathed cable referred to in this invention has a basic structure in which an oil-immersed insulation layer, a metal shielding layer, and a lead-sheathed layer are provided in this order on a conductor, and one typical example is is as shown in FIG. In the figure, 1 is 6 made of copper.
Divided conductor, 2 is an oil passage, 3 is a conductive binder layer formed by winding together, for example, stainless steel tape and carbon paper, 4 is an oil-immersed insulating layer, and 5 is a metal formed by winding metallized paper and aluminum tape together. The shielding layer 6 is a core binder layer made of, for example, a copper wire woven cloth tape, 7 is a lead sheath, and 8 is a protective sheath made of vinyl chloride or the like. The present invention is not limited to the illustrated configuration, and various conventionally used materials for these constituent parts may be used without particular limitation. Examples of the insulating oil having two or more benzene rings used in this invention include diallylalkane and alkylnaphthalene. The method for making tin or a tin compound present in contact with this insulating oil is as follows: (i) Adding a desired amount, preferably 0.05 to 0.5%, to the lead coating material;
(ii) Using tin plating on the conductor (iii) Using tin foil or a tin compound in part of the binder layer, metal barrier layer, core binder layer, etc. of the above conductor, etc. There are methods (ii) and (iii) in particular, which are preferred since there is no risk of deterioration in mechanical properties due to compositional changes in the lead-covered sheath. As will be clear from the examples described later, this invention uses a low-loss plastic material as the insulating material, and uses conventional OF cable insulating oil (mineral oil, mineral oil, etc.) as the insulating oil.
In a low capacitance oil-immersed insulated lead-sheathed cable using diallyl alkane, etc., which is less likely to swell or dissolve plastics than DDB) and which has a high withstand voltage, tin is present in contact with the insulating oil. It can significantly improve the problem of property deterioration, especially in submarine cables, etc., because the viscosity of diallylalkane is lower than that of conventional OF oil, and it can be combined well with the above polymers. Also, because of its low capacitance (using plastic) it can be used over long distances, so it has great industrial value. The present invention will be specifically explained below with reference to Examples. EXAMPLE An oil-immersed insulated lead-sheathed cable having the structure shown in the figure was obtained by using insulating oil as shown in Table 1 and in the presence of tin as shown in Table 2 below.

【表】【table】

【表】【table】

【表】【table】

【表】 上記各例のケーブルに関して105℃1ケ月間の
加熱テストを行つたところ実施例1〜3品は絶縁
油のtanδが初期0.01%から夫々0.03%、0.02%、
0.03%と余り低下しないのに対し、比較例1は
0.9%と著しく低下していた。 又実施例4は0.008%→0.02%とアルキルナフ
タレンもジアリルアルカンと同様の傾向を示し
た。
[Table] When the cables of each of the above examples were subjected to a heating test at 105°C for one month, the tan δ of the insulating oil for Examples 1 to 3 increased from the initial 0.01% to 0.03%, 0.02%, respectively.
Comparative Example 1 did not decrease much at 0.03%.
This was a significant decrease of 0.9%. In addition, in Example 4, the content of alkylnaphthalene was 0.008% → 0.02%, showing the same tendency as diallylalkane.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明によるケーブルの断面図であ
る。 1…導体、4…油浸絶縁層、5…金属遮敝層、
7…鉛被シース。
The drawing is a sectional view of a cable according to the invention. DESCRIPTION OF SYMBOLS 1...Conductor, 4...Oil-immersed insulation layer, 5...Metal barrier layer,
7...Lead-covered sheath.

Claims (1)

【特許請求の範囲】 1 導体上に、ジアリルアルカンまたはアルキル
ナフタレンの如き2以上のベンゼン環を有する絶
縁油を含浸した油浸絶縁層、金属遮敝層及び鉛被
シースをこの順に形成した基本構成を有する油浸
絶縁鉛被ケーブルにおいて、該絶縁油に触れるよ
うに錫または錫化合物を存在させたことを特徴と
する油浸絶縁鉛被ケーブル。 2 導体を錫メツキ導体にて形成したことを特徴
とする1項記載の鉛被ケーブル。 3 鉛に錫を混入してなる鉛合金にて鉛被シース
を施したことを特徴とする1項記載の鉛被ケーブ
ル。 4 ケーブルの遮敝層などケーブルコアー材料の
一部に錫箔もしくは錫化合物を用いたことを特徴
とする1項記載の鉛被ケーブル。
[Claims] 1. A basic structure in which an oil-immersed insulating layer impregnated with an insulating oil having two or more benzene rings such as diallyl alkane or alkylnaphthalene, a metal barrier layer, and a lead sheath are formed in this order on a conductor. An oil-immersed insulated lead-sheathed cable having tin or a tin compound present in contact with the insulating oil. 2. The lead-sheathed cable according to item 1, wherein the conductor is formed of a tin-plated conductor. 3. The lead-sheathed cable according to item 1, characterized in that the lead-sheath is made of a lead alloy made of lead mixed with tin. 4. The lead-sheathed cable according to item 1, characterized in that tin foil or a tin compound is used as a part of the cable core material such as the shielding layer of the cable.
JP1904480A 1980-02-20 1980-02-20 Oillimmersed insulated leaddcovered cable Granted JPS56118213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1904480A JPS56118213A (en) 1980-02-20 1980-02-20 Oillimmersed insulated leaddcovered cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1904480A JPS56118213A (en) 1980-02-20 1980-02-20 Oillimmersed insulated leaddcovered cable

Publications (2)

Publication Number Publication Date
JPS56118213A JPS56118213A (en) 1981-09-17
JPH0363165B2 true JPH0363165B2 (en) 1991-09-30

Family

ID=11988415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1904480A Granted JPS56118213A (en) 1980-02-20 1980-02-20 Oillimmersed insulated leaddcovered cable

Country Status (1)

Country Link
JP (1) JPS56118213A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102622923B1 (en) * 2016-09-30 2024-01-10 한국전력공사 System of calculating oil supply plan of ofcable

Also Published As

Publication number Publication date
JPS56118213A (en) 1981-09-17

Similar Documents

Publication Publication Date Title
KR920000223B1 (en) Electrical cable
US1883269A (en) Electrical conductor
JPH029461Y2 (en)
CS207711B2 (en) Screened power cable
JPH0261083B2 (en)
US2688652A (en) Lead cadmium coated soldered brass cable armor
US2995616A (en) Nicolas
US2438956A (en) High-frequency cable
US3126358A (en) Polypropylene
US2586345A (en) Electric cable having a nonmigratory insulating compound
US2102129A (en) Electric cable
US3424957A (en) Electrical capacitor and dielectric material therefor
JPH0363165B2 (en)
US3080446A (en) High voltage cable
US2332891A (en) Migrationproof electric device
US1705949A (en) Insulated cable
RU184466U9 (en) ONLINE WIRE
US2196855A (en) Protective coating for copper wires
US1982784A (en) Submarine cable
CN206332869U (en) A kind of mineral insulation electric-heating belt
US2135985A (en) Electric cable
JP3614484B2 (en) High viscosity oil immersion insulated cable
CN205582603U (en) Compensation cable used for thermoelectric couple
GB2062671A (en) Electric device comprising electrical insulating material
US2536904A (en) Cable with air insulation