JPH0363033B2 - - Google Patents

Info

Publication number
JPH0363033B2
JPH0363033B2 JP57089500A JP8950082A JPH0363033B2 JP H0363033 B2 JPH0363033 B2 JP H0363033B2 JP 57089500 A JP57089500 A JP 57089500A JP 8950082 A JP8950082 A JP 8950082A JP H0363033 B2 JPH0363033 B2 JP H0363033B2
Authority
JP
Japan
Prior art keywords
optical fiber
fiber loop
phase difference
laser
waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57089500A
Other languages
Japanese (ja)
Other versions
JPS58205882A (en
Inventor
Shigefumi Masuda
Akira Okamoto
Takeo Iwama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57089500A priority Critical patent/JPS58205882A/en
Publication of JPS58205882A publication Critical patent/JPS58205882A/en
Publication of JPH0363033B2 publication Critical patent/JPH0363033B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/01Measuring or predicting earthquakes

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】 発明の技術分野 本発明は、光フアイバを用いて地震を効率良く
検出し得るようにした地震センサに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to an earthquake sensor capable of efficiently detecting earthquakes using optical fibers.

従来技術と問題点 従来の地震計は、例えば岩盤に長い孔を掘り、
その孔にHe―Neレーザ装置等からのレーザ光の
往復径路を形成し、レーザ光の干渉縞の検出によ
り地震を検出する構成を有するものであつた。し
かし、岩盤に精度良く孔を形成するのは容易でな
く、又自動車等の走行に伴う局部的な振動も検出
することになり、地震とを区別するのが困難であ
つた。従つて従来の地震計は、自動車等による振
動の影響を受けないように地中深く設置すること
になり、設置個所が限定されると共に、地震計の
設置に要する費用が非常に大きくなる欠点があつ
た。
Conventional technology and problems Conventional seismometers use, for example, a long hole drilled in bedrock.
The hole formed a reciprocating path for laser light from a He--Ne laser device, etc., and was configured to detect earthquakes by detecting interference fringes of the laser light. However, it is not easy to form holes in bedrock with high precision, and local vibrations caused by the movement of automobiles and the like are also detected, making it difficult to distinguish them from earthquakes. Therefore, conventional seismometers have to be installed deep underground to avoid being affected by vibrations caused by automobiles, etc., which limits the locations where they can be installed and also has the disadvantage that the cost of installing a seismometer is extremely high. It was hot.

発明の目的 本発明は、局部的な振動の影響を除去して地震
のみを簡単な構成で検出し得るようにすることを
目的とするものである。以下実施例について詳細
に説明する。
OBJECT OF THE INVENTION The object of the present invention is to eliminate the influence of local vibrations and to detect only earthquakes with a simple configuration. Examples will be described in detail below.

発明の実施例 第1図は、本発明の原理説明図であり、シング
ルモードの光フアイバループ1のそれぞれ端部に
He―Neレーザや半導体レーザ等のレーザ装置2
からのレーザ光をスプリツタ3により2分割して
入射させ、それぞれ光フアイバループ1を伝播し
て端部から出射したレーザ光をホトダイオード等
の光検出器4に入射する、それぞれの端部からの
レーザ光の位相差に応じた信号が光検出器4から
出力される。光フアイバループ1の半径をa、光
フアイバループ1の全長をL、真空中の光の速度
をc、その光の波長をλとし、光フアイバループ
1の中心軸に回りにΩの角速度で回転したとき、
光フアイバループ1の両端から出射されるレーザ
光の位相差θは、次式で表される。
Embodiment of the Invention FIG. 1 is an explanatory diagram of the principle of the present invention, in which each end of a single mode optical fiber loop 1 is
Laser equipment 2 such as He-Ne laser or semiconductor laser
A splitter 3 splits the laser beam into two parts, and each laser beam propagates through the optical fiber loop 1 and is emitted from each end. A signal corresponding to the phase difference of the light is output from the photodetector 4. The radius of the optical fiber loop 1 is a, the total length of the optical fiber loop 1 is L, the speed of light in vacuum is c, the wavelength of the light is λ, and it rotates around the central axis of the optical fiber loop 1 at an angular velocity of Ω. When I did,
The phase difference θ between the laser beams emitted from both ends of the optical fiber loop 1 is expressed by the following equation.

θ=(2πLa/cλ)Ω ………(1) このような効果はサグナツク(Sagnac)効果
と称されるものであり、回転により生じる位相差
は光フアイバループの全長Lと半径aとの積に比
例し、全長Lは光フアイバの巻数に比例するか
ら、比較的小さい半径でも巻数を多くすることに
より回転の角速度Ωを高感度で検出することがで
きるものとなる。
θ=(2πLa/cλ)Ω (1) This effect is called the Sagnac effect, and the phase difference caused by rotation is the product of the total length L and radius a of the optical fiber loop. Since the total length L is proportional to the number of turns of the optical fiber, the angular velocity of rotation Ω can be detected with high sensitivity even with a relatively small radius by increasing the number of turns.

本発明は、前述の如き原理を利用したものであ
り、第2図はその実施例の斜視図を示す。同図に
於て、10は硬質基板、11は光フアイバを1回
或いは複数回巻回した光フアイバループ、12は
レーザ装置や光検出器等を含む測定部である。光
フアイバループ11はできるだけ長い方が望まし
いものであり、又平行に配置された部分は相互に
接触しないように硬質基板10上に固定される。
The present invention utilizes the principle as described above, and FIG. 2 shows a perspective view of an embodiment thereof. In the figure, 10 is a hard substrate, 11 is an optical fiber loop formed by winding an optical fiber once or multiple times, and 12 is a measuring section including a laser device, a photodetector, etc. It is desirable that the optical fiber loop 11 be as long as possible, and the parallel portions are fixed on the rigid substrate 10 so that they do not come into contact with each other.

第3図及び第4図は地震波と局部的な振動波と
による検出動作の説明図であり、光フアイバルー
プ11の概略の変形を示す。この光フアイバルー
プ11は、前述のように、岩盤等の硬質基板に固
定されるものであり、その長さlは、前述のよう
に、できるだけ長くするもので、例えば10Km等の
長さとするものである。又光フアイバループ11
の幅dは、平行に配置された光フアイバが相互に
接触しないように且つ所望のループ面積が得られ
るように選定される。この光フアイバループ11
の中心Oに対して△φの回転成分が加えられる
と、光フアイバループ11の両端から出射したレ
ーザ光の位相差△Zは次式となる。
FIGS. 3 and 4 are explanatory diagrams of detection operations using seismic waves and local vibration waves, and schematically show deformations of the optical fiber loop 11. FIG. As described above, this optical fiber loop 11 is fixed to a hard substrate such as rock, and its length l is as long as possible, for example, 10 km, as described above. It is. Also optical fiber loop 11
The width d of is selected so that the optical fibers arranged in parallel do not touch each other and the desired loop area is obtained. This optical fiber loop 11
When a rotational component of Δφ is added to the center O of , the phase difference ΔZ of the laser beams emitted from both ends of the optical fiber loop 11 becomes the following equation.

△Z=8ΩSn/λc ………(2) 但し、Sは光フアイバループ11の面積で、約l
×dに相当する。又nは光フアイバループ11の
巻数、Ωは回転成分の角速度、λは光の波長、c
は真空中の光速度である。
△Z=8ΩSn/λc……(2) However, S is the area of the optical fiber loop 11, which is approximately l
Corresponds to ×d. Also, n is the number of turns of the optical fiber loop 11, Ω is the angular velocity of the rotational component, λ is the wavelength of light, and c
is the speed of light in vacuum.

地震波が光フアイバループ11の長手方向或い
は幅方向と直角に加えられた場合は、光フアイバ
ループ11の各辺は平行移動するだけで、回転成
分は生じないことになり、その場合の角速度Ωは
零であるから、レーザ光の位相差△Zも零とな
る。
If seismic waves are applied perpendicularly to the longitudinal direction or width direction of the optical fiber loop 11, each side of the optical fiber loop 11 will only move in parallel and no rotational component will occur, and the angular velocity Ω in that case is Since it is zero, the phase difference ΔZ of the laser beam is also zero.

又地震波が第3図の矢印で示すように光フアイ
バループ11に対して或る角度で加えられると、
光フアイバループ11の一端側から他端側に向か
つて地震波が伝播されることになり、光フアイバ
ループ11には、点線から実線で示す部分的な移
動による回転成分△φが生じる。従つて、この回
転成分△φの角速度Ωに従つたレーザ光の位相差
△Zが(2)式に示すように生じることになる。
Also, when a seismic wave is applied to the optical fiber loop 11 at a certain angle as shown by the arrow in FIG.
Seismic waves are propagated from one end of the optical fiber loop 11 to the other end, and a rotational component Δφ is generated in the optical fiber loop 11 due to partial movement indicated by a solid line from a dotted line. Therefore, a phase difference ΔZ of the laser beam according to the angular velocity Ω of this rotational component Δφ occurs as shown in equation (2).

この位相差△Zは、第2図に示す測定部12に
より測定されるもので、地震の大きさにほぼ従つ
た位相差△Zとなるから、地震を検出することが
できる。又光フアイバループ11の両端に入射す
るレーザ光の位相を同一とする以外に、例えば、
90゜の位相差を与えることも可能である。又光フ
アイバループ11を伝播したレーザ光は、楕円偏
波となるので、偏光板を設けて一方向成分のみを
取り出すようにすることも可能である。
This phase difference ΔZ is measured by the measuring unit 12 shown in FIG. 2, and since the phase difference ΔZ substantially follows the magnitude of the earthquake, the earthquake can be detected. In addition to making the phases of the laser beams incident on both ends of the optical fiber loop 11 the same, for example,
It is also possible to provide a phase difference of 90°. Furthermore, since the laser light propagated through the optical fiber loop 11 becomes elliptically polarized, it is also possible to provide a polarizing plate to extract only one direction component.

又地震波ではなく、自動車の通過等による局部
的な振動波の場合は、光フアイバループ11の一
端側に加えられた振動波が、他端側には減衰して
伝播しないか、或いは、複数の局部的な振動波が
ランダム的に光フアイバループ11の長手方向に
沿つた異なる位置に加えられることにより、第4
図の点線から実線で示す局部的な移動が生じるの
みとなり、回転成分は生じない。従つて、レーザ
光の位相差△Zは零となる。
In addition, in the case of local vibration waves caused by passing automobiles, etc., instead of seismic waves, the vibration waves applied to one end of the optical fiber loop 11 may be attenuated and not propagated to the other end, or there may be multiple vibration waves. By randomly applying local vibration waves to different positions along the length of the optical fiber loop 11, the fourth
Only the local movement shown by the solid line from the dotted line in the figure occurs, and no rotational component occurs. Therefore, the phase difference ΔZ of the laser beam becomes zero.

前述のように、数10Km等のできるだけ長い光フ
アイバループ11を岩盤等の硬質基板上に固定す
ることにより、地震波によつてのみレーザ光の位
相差△Zが生じる構成となり、局部的な振動波の
影響を受けないで地震を検出することができる。
As mentioned above, by fixing the optical fiber loop 11 as long as possible, such as several tens of kilometers, on a hard substrate such as rock, a configuration is created in which the phase difference △Z of the laser beam is generated only by seismic waves, and local vibration waves are generated. Earthquakes can be detected without being affected by

第5図は、共通の基板20上にそれぞれ配置方
向を相違させて光フアイバループ11a〜11d
を固定した硬質基板10a〜10dを配置した実
施例を示すものである。基板20を岩盤等に水平
に固定したとすると、光フアイバループ11a,
11bにより水平方向の地震の波動を検出するこ
とができ、光フアイバループ11c,11dによ
り垂直方向の地震の波動を検出することができる
ことになる。又波動の伝播方向は各光フアイバル
ープによる検出位相差をもとに求めることができ
る。なお水平面に120゜間隔で3個の光フアイバル
ープを固定した硬質基板を配置すれば、水平面内
の何れの方向からの波動の伝播を容易に求めるこ
とができるので効果的である。
FIG. 5 shows optical fiber loops 11a to 11d arranged in different directions on a common substrate 20.
This shows an example in which hard substrates 10a to 10d having fixed thereon are arranged. Assuming that the substrate 20 is fixed horizontally to a bedrock etc., the optical fiber loops 11a,
11b can detect earthquake waves in the horizontal direction, and optical fiber loops 11c and 11d can detect earthquake waves in the vertical direction. Further, the wave propagation direction can be determined based on the phase difference detected by each optical fiber loop. Note that it is effective to arrange a rigid substrate on which three optical fiber loops are fixed at 120° intervals on a horizontal plane, since the propagation of waves from any direction within the horizontal plane can be easily determined.

発明の効果 以上説明したように、本発明は、硬質基板上に
光フアイバループを固定したものであるから、地
震の波動による光フアイバループへの回転成分に
より、レーザ光の位相差△Zが生じ、これを検出
することにより、局部的な振動による影響を受け
ることなく、地震を検出することができる。
Effects of the Invention As explained above, in the present invention, since an optical fiber loop is fixed on a hard substrate, a phase difference △Z of the laser beam is caused by rotational components of the optical fiber loop due to earthquake waves. By detecting this, earthquakes can be detected without being affected by local vibrations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理説明図、第2図は本発明
の実施例の斜視図、第3図及び第4図は検出動作
の説明図、第5図は本発明の実施例の上面図であ
る。 10,10a〜10dは硬質基板、11,11
a〜11dは光フアイバループ、20は共通の基
板である。
Fig. 1 is an illustration of the principle of the present invention, Fig. 2 is a perspective view of an embodiment of the invention, Figs. 3 and 4 are illustrations of detection operation, and Fig. 5 is a top view of the embodiment of the invention. It is. 10, 10a to 10d are hard substrates, 11, 11
A to 11d are optical fiber loops, and 20 is a common substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 硬質基板上に部分的な振動に対しては位相差
が生じない長さの光フアイバループを固定し、該
光フアイバループの両端部にそれぞれレーザ光を
入射し、該両端部からそれぞれ出射した前記レー
ザ光の位相差により、前記光フアイバループの回
転角速度を検出する構成としたことを特徴とする
地震センサ。
1. An optical fiber loop of such a length that no phase difference occurs due to local vibrations was fixed on a hard substrate, and laser light was incident on both ends of the optical fiber loop, and emitted from both ends. An earthquake sensor characterized in that the seismic sensor is configured to detect the rotational angular velocity of the optical fiber loop based on the phase difference of the laser beam.
JP57089500A 1982-05-26 1982-05-26 Earthquake sensor Granted JPS58205882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57089500A JPS58205882A (en) 1982-05-26 1982-05-26 Earthquake sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57089500A JPS58205882A (en) 1982-05-26 1982-05-26 Earthquake sensor

Publications (2)

Publication Number Publication Date
JPS58205882A JPS58205882A (en) 1983-11-30
JPH0363033B2 true JPH0363033B2 (en) 1991-09-27

Family

ID=13972478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57089500A Granted JPS58205882A (en) 1982-05-26 1982-05-26 Earthquake sensor

Country Status (1)

Country Link
JP (1) JPS58205882A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276419A (en) * 1986-05-24 1987-12-01 Sumitomo Electric Ind Ltd Sound pressure sensor
JPH07111461B2 (en) * 1989-02-14 1995-11-29 科学技術庁防災科学技術研究所長 Block displacement measurement method
PT1126290E (en) * 2000-02-16 2008-02-12 Europ Economic Community Improvements in or relating to seismic wave measuring devices

Also Published As

Publication number Publication date
JPS58205882A (en) 1983-11-30

Similar Documents

Publication Publication Date Title
US6529444B2 (en) Folded sagnac sensor array
US6667935B2 (en) Apparatus and method for processing optical signals from two delay coils to increase the dynamic range of a sagnac-based fiber optic sensor array
US4885462A (en) Optical fiber sensing systems
CA2535057C (en) Optical accelerometer, optical inclinometer and seismic sensor system using such accelerometer and inclinometer
AU561742B2 (en) Multimode fiber optic rotation sensor
AU569251B2 (en) Improved fiber optic sensor for detecting very small displacements of a surface
US4652744A (en) Fiber optic sensor for detecting very small displacements of a surface
JP2005517948A (en) Light sensor with appropriate modulation
EP1175599B1 (en) Methods and apparatus for enhancing dynamic range, sensitivity, accuracy, and resolution in fiber optic sensor systems
US10598544B2 (en) Low crosstalk, common path, dual ring sagnac interferometer for disturbance sensing
US5477324A (en) Method and apparatus for detecting surface wave vector dynamics using three beams of coherent light
US4408882A (en) Optical gyroscope with time dependent wavelength
US20140260605A1 (en) Polarized Beam, Matched Coincident Beam Path, Interferometric Gradiometer Apparatus and Method
JPH0363033B2 (en)
US4918303A (en) Detecting disturbance with cross polarized fiber optic sensing
Jaroszewicz et al. Absolute rotation measurement based on the Sagnac effect
Kurzych et al. Rotational components of the seismic fields caused by local events
Seat et al. An extrinsic fibre optic interferometer with possible signal fading compensation for vibrometric applications
Dandridge Fiber-optic sensors make waves in acoustics, control, and navigation
US5652390A (en) Method and device for autonomous measurement of an irregular movement based on resonatory sensor
Jaroszewicz et al. Measurement of short-period weak rotation signals
Kersey et al. Two-Wavelength, Wide-Dynamic Range Fiber Gyroscope
Kurzych et al. Perspective instrumentation for rotational motion investigation in seismology
Fabiny et al. Fiber optic velocity sensor for monitoring of structural vibrations
Turner et al. Interferometric Quasi-Autocollimator