JPH0363029A - Image processor for ophthalmic use - Google Patents

Image processor for ophthalmic use

Info

Publication number
JPH0363029A
JPH0363029A JP1198259A JP19825989A JPH0363029A JP H0363029 A JPH0363029 A JP H0363029A JP 1198259 A JP1198259 A JP 1198259A JP 19825989 A JP19825989 A JP 19825989A JP H0363029 A JPH0363029 A JP H0363029A
Authority
JP
Japan
Prior art keywords
image
points
fundus
blood vessel
binary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1198259A
Other languages
Japanese (ja)
Inventor
Kenichi Kashiwagi
健一 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1198259A priority Critical patent/JPH0363029A/en
Publication of JPH0363029A publication Critical patent/JPH0363029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To enable a measurement to be carried out objectively by detecting a concentration distribution between specified two points in a fundus image having multistage concentration levels, by converting the fundus image into a binary-coded image through setting a threshold value and by finding out a width of an identical binary-coded concentration range on a line linking the two points. CONSTITUTION:A fundus retinal image is picked up with a CCD camera 2 arranged in a fundus camera 1, the image is digitized by a converter 3 and stored in an image memory 6. The stored fundus image is displayed on a monitor 8 and two end points A, B of a vascular image including reflection region on a blood vessel 18 are specified by moving a cursor with a mouse 7. Next, a concentration distribution curve between the two points A and B is displayed on the monitor 8, a line (l) passing horizontally on the curve is set up, a binary-coded image is formed by making a concentration corresponding to height of the line (l) set up as a threshold value and the binary-coded image is displayed. Then the threshold value is varied in accordance with up and down of the mouse 7 and the inary-coded image is also varied. After a condition, wherein the binary-coded image indicates a total image of the blood vessel alone, is attained, numbers of picture elements of identical concentrations are counted and distances corresponding to the numbers of picture elements are calculated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は例えばデジタル眼底画像において、眼底網膜上
の動脈反射域の幅を計測する眼科用画像処理装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ophthalmological image processing device that measures the width of an arterial reflection zone on the retina of the fundus in, for example, a digital fundus image.

[従来の技術] 従来、網膜動脈硬化等に見られる血管中央の反射域の幅
やあるいは病変部のサイズ等の計測を行なう際には、測
定者が眼底画像が表示されるスライドビュワー上を観な
がら被測定部位の範囲を判断し、ノギス等を用いて計測
を行なっていた。
[Prior Art] Conventionally, when measuring the width of the reflection area at the center of a blood vessel or the size of a lesion seen in retinal arteriosclerosis, the measurer has to view the fundus image on a slide viewer. However, the range of the area to be measured was determined, and measurements were taken using calipers, etc.

[発明が解決しようとしている課題] しかしながら、眼底画像は一般に血管の反射部位や病変
部とそれ以外の領域との境界は明瞭ではないため、測定
者によって測定する範囲が異なリ、あるいは同一測定者
でも常に同一の測定を行なうことは難しく、測定結果が
客観性に欠ける問題点があった。
[Problems to be Solved by the Invention] However, in fundus images, the boundaries between reflective areas of blood vessels or lesions and other areas are generally not clear. However, it was difficult to always perform the same measurements, and the measurement results lacked objectivity.

[課題を解決するための手段] 上述した課題を解決する本発明は、多段階の濃度レベル
を持つ眼底画像中の所望の2点を指定する手段と、該指
定された2点間の濃度分布を検出する手段と、該濃度分
布内の濃度の極大値と極小値を基に閾値を設定する手段
と、該閾値により前記眼底画像を2値化画像に変換する
手段と、該2値化画像において前記2点を結ぶ線上での
前記2値化された同一濃度領域の幅を求める手段を有す
ることを特徴とする眼科用画像処理装置である。
[Means for Solving the Problems] The present invention that solves the above-mentioned problems includes a means for specifying two desired points in a fundus image having multiple density levels, and a means for specifying the density distribution between the two specified points. means for detecting, means for setting a threshold based on maximum and minimum values of density within the density distribution, means for converting the fundus image into a binarized image using the threshold, and the binarized image. The ophthalmological image processing apparatus is characterized in that it has means for determining the width of the binarized same density area on the line connecting the two points.

[実施例] 第1図は本発明の実施例の構成図であり、同図において
1は眼底カメラ、2はCCDカメラ、3はA/Dコンバ
ータ、4はスライドスキャナ、5は画像処置プロセッサ
、6は画像メモリ、7は画像処理プロセッサ5へ指示を
送るマウス、8は画像や文字情報等を表示するモニタで
ある。なお指示手段としてはマウス以外に、キーボード
、デジタイザ、トラックボール等様々な入力手段を用い
ることができる。
[Embodiment] FIG. 1 is a block diagram of an embodiment of the present invention, in which 1 is a fundus camera, 2 is a CCD camera, 3 is an A/D converter, 4 is a slide scanner, 5 is an image processing processor, 6 is an image memory, 7 is a mouse that sends instructions to the image processing processor 5, and 8 is a monitor that displays images, text information, etc. In addition to the mouse, various input means such as a keyboard, digitizer, trackball, etc. can be used as the instruction means.

第2図は本実施例の処理の手順を示したフローチャート
である。まず眼底カメラ1に取付けられたCCDカメラ
2により被検眼の眼底網膜像を撮像し、得られた眼底画
像をA/Dコンバータ3を介してデジタル化して画像メ
モリ6へ格納する(第2図−9)。本実施例においては
眼底画像はカラー画像であるが、白黒画像であっても良
い。なおりラー眼底画像の入力は35mmカラースライ
ドをスライドスキャナ4を用いて入力する方法、あるい
はスチールビデオ、ビデオレコーダ等のアナログ媒体の
出力をA/D変換して入力とすることもできる。
FIG. 2 is a flowchart showing the processing procedure of this embodiment. First, the CCD camera 2 attached to the fundus camera 1 captures a fundus retinal image of the eye to be examined, and the obtained fundus image is digitized via the A/D converter 3 and stored in the image memory 6 (Fig. 2- 9). Although the fundus image is a color image in this embodiment, it may be a black and white image. The natural fundus image can be input by inputting a 35 mm color slide using the slide scanner 4, or by A/D converting the output of an analog medium such as a still video or a video recorder.

次に画像メモリ6に格納された眼底画像を第3図のよう
にモニタ8上に表示し、マウス7によりモニタ上でカー
ソルを動かし、第3図に示されるように、反射部分を有
する血管18上の計測したい反射領域部分を含む血管像
の2つの端点(血管壁)A、Bを指定する(第2図−1
0)。なお、点A、Bは血管壁には限らず、これらを通
る直線状の任意の2点としても良い。
Next, display the fundus image stored in the image memory 6 on the monitor 8 as shown in FIG. 3, move the cursor on the monitor with the mouse 7, and as shown in FIG. Specify the two end points (blood vessel wall) A and B of the blood vessel image that includes the reflection area you want to measure above (Figure 2-1
0). Note that points A and B are not limited to the blood vessel wall, and may be any two points on a straight line passing through them.

次にモニタ8上に、2点A−B間の濃度分布を表わす曲
線を第4図の下部に示すように表示し、更にこの濃度分
布曲線上を水平に通過するライン℃を設定し、このライ
ン℃の高さに対応する濃度を閾値とし、この閾値を境に
2分される上側と下側で2値化画像を形成し、モニタ8
上に2値画像も表示する(第2図−11)。
Next, a curve representing the concentration distribution between the two points A and B is displayed on the monitor 8 as shown in the lower part of Fig. 4, and a line ℃ passing horizontally on this concentration distribution curve is set. The density corresponding to the height of the line °C is set as a threshold, and a binarized image is formed on the upper and lower sides divided into two by this threshold.
A binary image is also displayed on top (Figure 2-11).

次に測定者がマウス7を上下させるのに対応してライン
Aを上下に移動して閾値を変化させる。
Next, as the measurer moves the mouse 7 up and down, the line A is moved up and down to change the threshold value.

この時、ライン℃を移動すると、それに従い2値化の閾
値も変化し、2値化画像も変化する。これはリアルタイ
ムに処理表示される。ここで必要なリアルタイム2値化
処理、並びに血管径22の画素数計測処理は画像処理プ
ロセッサ5にて実行される。
At this time, when the line °C is moved, the binarization threshold changes accordingly, and the binarized image also changes. This is processed and displayed in real time. The real-time binarization process and the pixel count measurement process of the blood vessel diameter 22 that are necessary here are executed by the image processing processor 5.

ここで第5図(a)の℃1の位置、即ち第4図の2値化
画像が血管像18の全体像のみを表示する状態になった
ら、測定者がマウス7のボタンクリックにより指示を行
ない、この指示を受けて画像処理プロセッサにて、指定
2点を結ぶ線上での同一濃度の画素数、すなわち血管径
22を表わす画素数をカウントし、画素数に応じた距離
を算出する(第2図−12,13)。
Here, when the position of ℃1 in FIG. 5(a), that is, the binarized image in FIG. In response to this instruction, the image processing processor counts the number of pixels of the same density on the line connecting the two specified points, that is, the number of pixels representing the blood vessel diameter 22, and calculates the distance according to the number of pixels. Figure 2-12, 13).

同様にして血管画像内の反射部の幅に関しても操作者が
マウスにより第4図のライン℃を上下に移動させ、第5
図(b)のI12の位置、即ち第4図の2値画像が第3
図の血管像18の反射部のみを表示する状態になったら
、再びマウス7のボタンクリックにより、血管像の反射
部の幅23に対応する指定2点間の同一濃度の画素の数
をカウントし、画素数に応じた距離を算出する(第2図
−14,15)。
Similarly, regarding the width of the reflective part in the blood vessel image, the operator moves the line C in Fig. 4 up and down using the mouse, and
The position of I12 in Figure (b), that is, the binary image in Figure 4 is the third
When only the reflective part of the blood vessel image 18 shown in the figure is displayed, click the button of the mouse 7 again to count the number of pixels with the same density between two specified points corresponding to the width 23 of the reflective part of the blood vessel image. , calculate the distance according to the number of pixels (Fig. 2-14, 15).

以上の処理により計測された血管径と反射の幅はそれぞ
れ第6図の22.23に示されるような関係にある。す
なわち第5図(a)の点C,Dはそれぞれ第6図のA、
Bに対応するので、℃。
The blood vessel diameter and the reflection width measured by the above processing have a relationship as shown at 22.23 in FIG. 6, respectively. That is, points C and D in FIG. 5(a) are respectively A and D in FIG.
Since it corresponds to B, ℃.

のラインで切られた線分22は血管径22を表わす。又
、反射の幅23は第5図(b)の最も暗い部分、即ち濃
度の極小値に相当するE、G点と、最も明るい部分(反
射の中心)、即ち濃度の極大値に相当するF点の中間に
位置する2点を結んだ距離23に相当するので、℃2の
ラインで切られた内側の線分23は反射部の幅を表わす
A line segment 22 cut along the line represents the blood vessel diameter 22. Further, the reflection width 23 is the darkest part in FIG. 5(b), that is, points E and G corresponding to the minimum value of density, and the brightest part (center of reflection), that is, points F corresponding to the maximum value of density. Since it corresponds to the distance 23 connecting two points located in the middle of the points, the inner line segment 23 cut by the line of 0.degree. C. 2 represents the width of the reflective section.

なお、測定者が所望のA、B点の指示を行なった後の処
理は、測定者の指示を介さずに自動化することもできる
。この場合、第5図のC,D点間の濃度分布曲線の極大
値F、極小値E、Gを演算により算出し、次にE、Fの
中間値、F、Gの中間値を演算してf12を自動的に求
める。中間値は極大値と極小値の和の2分の1の濃度で
あっても良いし、それ以外の所定の割合の中間値であっ
ても良い。あるいは極大値又は極小値と同一の値であっ
ても良い。
Note that the processing after the measurer specifies the desired points A and B can be automated without the measurer's instructions. In this case, calculate the maximum value F, minimum value E, and G of the concentration distribution curve between points C and D in Figure 5, and then calculate the intermediate value between E and F, and the intermediate value between F and G. automatically calculate f12. The intermediate value may be a density that is half the sum of the local maximum value and the local minimum value, or may be an intermediate value of a predetermined ratio other than that. Alternatively, it may be the same value as the maximum value or the minimum value.

以上のようにして血管径及び反射部の幅を求めた後に、
血管径22と反射の幅23の比を計算しく実際には r
atio=反射の幅/血管径)、その結果をモニタ8へ
表示する(第2図−16,17)。この際、事前にスケ
ールの設定がされていれば、結果を絶対値として出力す
ることも可能である。
After determining the blood vessel diameter and the width of the reflective part as described above,
To calculate the ratio of the blood vessel diameter 22 and the reflection width 23, actually r
atio=reflection width/vessel diameter), and the results are displayed on the monitor 8 (FIG. 2-16, 17). At this time, if the scale has been set in advance, it is also possible to output the results as absolute values.

なお、血管径22、反射の幅23を決定する他の方法と
して、第5図において測定者がマウス7により直接C,
D点の指定を行なって血管径22を抽出、更にE、F、
G点を指定してE、Fの中点、F、Gの中点を結ぶこと
により反射の幅23を抽出することもできる。
In addition, as another method for determining the blood vessel diameter 22 and the reflection width 23, in FIG.
Specify point D, extract blood vessel diameter 22, and then extract E, F,
The reflection width 23 can also be extracted by specifying point G and connecting the midpoint between E and F and the midpoint between F and G.

以上説明したように、多段階の濃度レベルを持つデジタ
ル眼底画像において、計測したい動脈反射域の幅を含む
領域の濃度分布情報を用いて反射部の幅を計測すること
により、濃度分布曲線の形状から容易に反射部の幅を抽
出することができ、又、決まったアルゴリズムで計測す
るため、測定者の主観が入らず安定した計測値を得るこ
とができる。
As explained above, in a digital fundus image with multiple density levels, the shape of the density distribution curve is Since the width of the reflective part can be easily extracted from the measured value, and since the measurement is performed using a fixed algorithm, stable measurement values can be obtained without the subjectivity of the measurer.

又、反射域の幅と同様のアルゴリズムで血管径も計測で
きるので、反射域の幅と血管径の比を求めることにより
、倍率に左右されることなく反射域の幅の程度を計測す
ることができ、これによって他の反射部位との比較も倍
率の違いに関係なく容易に行なうことができる。
In addition, the diameter of the blood vessel can be measured using the same algorithm as the width of the reflection area, so by finding the ratio between the width of the reflection area and the diameter of the blood vessel, it is possible to measure the width of the reflection area without being affected by magnification. As a result, comparisons with other reflection sites can be easily made regardless of the difference in magnification.

なお、本発明は上述のように血管の測定以外にも、例え
ば眼底上の病変部のサイズの測定等にも適用できる。
Note that the present invention is applicable not only to the measurement of blood vessels as described above but also to, for example, the measurement of the size of a lesion on the fundus of the eye.

[発明の効果] 以上本発明によれば、眼底画像上で所望の部位の幅を客
覗的に求めることができる。
[Effects of the Invention] According to the present invention, the width of a desired region on a fundus image can be visually determined.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の構成国、 第2図は実施例の処理手順を示すフローチャート、 第3図は動脈反射像を含む人力眼底画像、第4図は人力
眼底画像を2値化処理した画像、第5図(a)(b)は
2点間の濃度分布を処理する手順の説明図、 第6図は血管径と反射部の幅の関係を示す図、であり、
図中の主な符号は、 1・・・・眼底カメラ、 2・・・・CCDカメラ、 3・・・・A/Dコンバータ、 4・・・・スライドスキャナ、 5・・・・画像処理プロセッサ、 6・・・・画像メモリ、 7・・・・マウス、 8・・・・モニタ、 煉 と 図 (λ) (b) 2ど
Figure 1 is the constituent countries of the embodiment of the present invention, Figure 2 is a flowchart showing the processing procedure of the embodiment, Figure 3 is a human fundus image including an arterial reflection image, and Figure 4 is the binarization of the human fundus image. The processed images, FIGS. 5(a) and 5(b), are explanatory diagrams of the procedure for processing the density distribution between two points, and FIG. 6 is a diagram showing the relationship between the blood vessel diameter and the width of the reflective part,
The main symbols in the diagram are: 1. Fundus camera, 2. CCD camera, 3. A/D converter, 4. Slide scanner, 5. Image processing processor. , 6...image memory, 7...mouse, 8...monitor, diagram (λ) (b) 2.

Claims (3)

【特許請求の範囲】[Claims] (1)多段階の濃度レベルを持つ眼底画像中の所望の2
点を指定する手段、 該指定された2点間の濃度分布を検出する手段、 該濃度分布内の濃度の極大値と極小値を基に閾値を設定
する手段、 該閾値により前記眼底画像を2値化画像に変換する手段
、 該2値化画像において前記2点を結ぶ線上での前記2値
化された同一濃度領域の幅を求める手段、 を有することを特徴とする眼科用画像処理装置。
(1) Desired 2 images in a fundus image with multiple density levels
means for specifying a point; means for detecting a density distribution between the two specified points; means for setting a threshold based on the maximum and minimum values of density within the density distribution; An ophthalmological image processing apparatus comprising: means for converting into a digitized image; and means for determining the width of the binarized same density area on a line connecting the two points in the binarized image.
(2)前記指定する2点は眼底画像中の血管像外径を表
わす端点であり、血管像内の反射部とそれ以外で2値化
画像に変換し、血管の反射部の幅を求める請求項(1)
記載の眼科用画像処理装置。
(2) The specified two points are end points representing the outer diameter of the blood vessel image in the fundus image, and the reflection part and other points in the blood vessel image are converted into a binarized image, and the width of the reflection part of the blood vessel is determined. Section (1)
The ophthalmological image processing device described.
(3)前記指定する2点間の距離から求まる血管の外径
と、前記血管の反射部の幅との比を求める請求項(2)
記載の眼科用画像処理装置。
(3) Claim (2) in which the ratio between the outer diameter of the blood vessel determined from the distance between the two designated points and the width of the reflective part of the blood vessel is determined.
The ophthalmological image processing device described.
JP1198259A 1989-07-31 1989-07-31 Image processor for ophthalmic use Pending JPH0363029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1198259A JPH0363029A (en) 1989-07-31 1989-07-31 Image processor for ophthalmic use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1198259A JPH0363029A (en) 1989-07-31 1989-07-31 Image processor for ophthalmic use

Publications (1)

Publication Number Publication Date
JPH0363029A true JPH0363029A (en) 1991-03-19

Family

ID=16388155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1198259A Pending JPH0363029A (en) 1989-07-31 1989-07-31 Image processor for ophthalmic use

Country Status (1)

Country Link
JP (1) JPH0363029A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107291A (en) * 2000-10-03 2002-04-10 Sysmex Corp Non-invasive biological measuring device and method
JP2007319403A (en) * 2006-05-31 2007-12-13 Topcon Corp Medical support system, apparatus, and program
JP6090505B1 (en) * 2016-04-12 2017-03-08 株式会社網膜情報診断研究所 Fundus image analysis system and its program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107291A (en) * 2000-10-03 2002-04-10 Sysmex Corp Non-invasive biological measuring device and method
JP4607308B2 (en) * 2000-10-03 2011-01-05 シスメックス株式会社 Noninvasive living body measurement apparatus and method
JP2007319403A (en) * 2006-05-31 2007-12-13 Topcon Corp Medical support system, apparatus, and program
JP6090505B1 (en) * 2016-04-12 2017-03-08 株式会社網膜情報診断研究所 Fundus image analysis system and its program
JP2017189292A (en) * 2016-04-12 2017-10-19 株式会社網膜情報診断研究所 Fundus image analysis system and its program
WO2017179495A1 (en) * 2016-04-12 2017-10-19 株式会社網膜情報診断研究所 System and program for analyzing image of ocular fundus

Similar Documents

Publication Publication Date Title
US11861830B2 (en) Image analysis
Gregori et al. Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration
Wittenberg et al. Computer-based image analysis for plus disease diagnosis in retinopathy of prematurity
US7661820B2 (en) Ophthalmologic instrument
CN102469981B (en) Ultrasonic diagnostic apparatus and region-of-interest
US10219693B2 (en) Systems and methods for combined structure and function evaluation of retina
JPH05509015A (en) Method and apparatus for obtaining topography of an object
JPH09313447A (en) Analysis device for eyeground disease
RU2005133397A (en) AUTOMATIC SKIN DETECTION
JP2007319403A (en) Medical support system, apparatus, and program
Berger et al. Computerized stereochronoscopy and alternation flicker to detect optic nerve head contour change
JP6814172B2 (en) Skin internal structure estimation method, skin internal structure estimation program, and skin internal structure estimation device
Suzuki Direct measurement of retinal vessel diameter: comparison with microdensitometric methods based on fundus photographs
JPH0363029A (en) Image processor for ophthalmic use
US6134341A (en) Method for analyzing a stereoscopic image of a fundus, and an apparatus for executing that method
JP3508111B2 (en) Analyzer for fundus disease
JPH0779913A (en) Perimeter
JP2009022506A (en) System for analyzing fundus examination image and program for analyzing fundus examination image
Carvalho et al. Preliminary tests and construction of a computerized quantitative surgical keratometer
JP3479788B2 (en) Fundus disease analyzer
CN113012112A (en) Evaluation method and system for thrombus detection
JPH0560539A (en) Size measurement device
JPS63221488A (en) In-image light and shade area detector
Gramer et al. Optic nerve head measurements: the optic nerve head analyzer—its advantages and its limitations
JPS63161935A (en) Apparatus for quentitative measuring skin irritations