JPH0362999B2 - - Google Patents

Info

Publication number
JPH0362999B2
JPH0362999B2 JP57010024A JP1002482A JPH0362999B2 JP H0362999 B2 JPH0362999 B2 JP H0362999B2 JP 57010024 A JP57010024 A JP 57010024A JP 1002482 A JP1002482 A JP 1002482A JP H0362999 B2 JPH0362999 B2 JP H0362999B2
Authority
JP
Japan
Prior art keywords
seal ring
container
heat exchanger
header
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57010024A
Other languages
Japanese (ja)
Other versions
JPS58129196A (en
Inventor
Norimoto Matsuda
Susumu Harada
Sumio Okuno
Tetsuo Tsuchida
Masao Terasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1002482A priority Critical patent/JPS58129196A/en
Publication of JPS58129196A publication Critical patent/JPS58129196A/en
Publication of JPH0362999B2 publication Critical patent/JPH0362999B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/26Safety or protection arrangements; Arrangements for preventing malfunction for allowing differential expansion between elements

Abstract

PURPOSE:To keep the heat transfer efficiency of the titled heat exchanger in a favorable condition by a method wherein the formation of a gas between a sealing and a vessel at an extremely low temperature is prevented by the force of a backup spring. CONSTITUTION:A backup spring 19 is fitted between a seal ring 18 and the bottom of a groove 20 for the seal ring 18 so as to thrust the seal ring 18 constantly against the inner wall of a tubular section 10 of the vessel. In other words, when the temperature of a laminated member 9 becomes extremely low and the seal ring 18 contracts so that a gap is produced between the inner wall of the tubular section 10 and the seal ring 18, the seal ring 18 is expanded by the force of the backup spring 19 and thrusted constantly against the inner wall of the tubular section 10. As a consequence, a low temperature gas does not bypass through the gap between the laminated member 9 and the tubular section 10 of the vessel and the backup spring 19 performs a compensatory function with respect to the low temperature contraction of the seal ring 18.

Description

【発明の詳細な説明】 本発明は、積層形熱交換器に係り、特にヘリウ
ム冷凍機の如き極低温発生装置に好適な積層形熱
交換器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a laminated heat exchanger, and particularly to a laminated heat exchanger suitable for cryogenic generation devices such as helium refrigerators.

極低温発生装置(例えば空気分離装置、ヘリウ
ム冷凍機)に適用される熱交換器に対する要求機
能の一つにコンパクト性がある。そしてコンパク
トにするには熱交換器の単位体積当りの伝熱面積
を増すのが早道であり、その具体策の一つとして
従来から種々の積層形熱交換器が提案されてい
る。
One of the required functions for heat exchangers applied to cryogenic generation devices (eg, air separation devices, helium refrigerators) is compactness. In order to make the heat exchanger compact, the quickest way is to increase the heat transfer area per unit volume of the heat exchanger, and as one specific measure, various laminated heat exchangers have been proposed.

積層形熱交換器の基本形は熱伝導率の良い金属
製の伝熱板(多孔板またはスクリーン)と熱伝導
率が比較的悪く、流体の通路を高温側と低温側に
仕切るためのスペーサ(プラスチツクまたは樹脂
含浸紙)を交互に積層して接着したものが一般で
ある。
The basic form of a laminated heat exchanger is a metal heat transfer plate (perforated plate or screen) with good thermal conductivity and a spacer (plastic) with relatively poor thermal conductivity to partition the fluid passage into high temperature and low temperature sides. Or resin-impregnated paper) are generally laminated and bonded alternately.

一方、極低温発生装置における熱交換器は真空
断熱されたコールドボツクス中に配置されるのが
普通であるため、積層形熱交換器の中を流れる作
動流体の漏洩に対しては微量でも許容されないの
が一般である。これまで積層形熱交換器の試作は
多く発表されてもなかなか実際の製品に適用され
なかつたのは、極低温発生装置に適用した場合、
長い年月にわたつて常温から極低温までの温度変
化を繰返されるうちに伝熱板とスペーサの接着層
にわすかでもクラツクが発生すれば、そこから作
動流体が漏洩して、該漏洩により積層体で熱交換
に寄与しないガスが生じて熱交換効率が低下する
ようになるためであり、また、漏洩ガスによりコ
ールドボツクス内に収納されている熱交換器をは
じめとした各機器への熱侵入が増加して極低温は
発生装置の正常運転ができなくなるからである。
On the other hand, the heat exchanger in a cryogenic generator is usually placed in a vacuum-insulated cold box, so there is no tolerance for leakage of the working fluid flowing through the laminated heat exchanger, even in the slightest. This is common. Although many prototypes of laminated heat exchangers have been announced, the reason why they have not been applied to actual products is that when applied to cryogenic generators,
If even the slightest crack occurs in the adhesive layer between the heat exchanger plate and the spacer as the temperature changes from room temperature to extremely low temperatures over a long period of time, the working fluid will leak from there, and the leakage will cause damage to the laminated layers. This is because gas that does not contribute to heat exchange is generated in the cold box, reducing heat exchange efficiency.Also, leaking gas may cause heat to enter the heat exchanger and other equipment housed in the cold box. This is because the generation equipment cannot operate normally at extremely low temperatures.

本発明は、熱交換率の低下並びに真空雰囲気の
真空度の低下を防止できる積層形熱交換器を提供
することを目的としたもので、高温作動流体と低
温作動流体とがそれぞれ流通する流路を形成して
伝熱板とスペーサとが交互に積層され前記作動流
体の出入口端にヘツダーが設けられた積層体を、
密閉された容器内に前記ヘツダーと前記容器の両
端部分とで空間を保持した設け、該空間にそれぞ
れ連通して前記作動流体の一方の給排管を前記容
器に連結し、端部を前記空間に位置させて前記容
器を連結された前記作動流体の他方の給排管の少
なくとも一つを伸縮手段を介して前記ヘツダーに
連結し、前記空間で前記作動流体の一方が排出さ
れる空間を形成する前記ヘツダーの側面と前記容
器の内壁面との間に前記作動流体の一方のシール
部材を摺動可能に配設したことを特徴とするもの
である。
An object of the present invention is to provide a laminated heat exchanger that can prevent a decrease in heat exchange efficiency and a decrease in the degree of vacuum in a vacuum atmosphere. A laminate in which heat exchanger plates and spacers are alternately stacked and a header is provided at the inlet and outlet end of the working fluid,
A space is maintained in a sealed container between the header and both end portions of the container, and one supply/discharge pipe for the working fluid is connected to the container by communicating with the space, and the end portion is connected to the space. At least one of the other supply and discharge pipes for the working fluid connected to the container is connected to the header via a telescoping means, and a space is formed in the space from which one of the working fluids is discharged. One of the sealing members for the working fluid is slidably disposed between a side surface of the header and an inner wall surface of the container.

本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described with reference to FIG.

1は金属製の伝熱板(多孔板またはスクリー
ン)、2はプラスチツク製のスペーサ、3は伝熱
板1とスペーサ2を交互に積層していくことによ
つて構成される高温作動流体、例えば、高温ガス
が流通する高温ガス流路4は同じく低温作動流
体、例えば、低温ガスが流通する低温ガス流路、
5,6はヘツダー、7,8は高温ガス配管、9は
伝熱板1、スペーサ2によつて構成される積層
体、10は積層体9を収納する容器筒部、11,
12は容器端部、13,14は容器端部に連結さ
れた低温ガス配管、15,16はヘツダー5,6
に設けられた低温ガス流通孔、17は積層体9が
低温になるとき収縮するので配管の熱応力を緩和
するためのペローズ、18は積層体9と容器筒部
10との隙間を、この場合、低温ガスがバイパス
するのを防止するためのシールリングである。
1 is a metal heat transfer plate (perforated plate or screen), 2 is a plastic spacer, and 3 is a high-temperature working fluid constituted by alternately stacking the heat transfer plate 1 and the spacer 2, e.g. , the high-temperature gas flow path 4 through which the high-temperature gas flows is also a low-temperature working fluid, for example, a low-temperature gas flow path through which low-temperature gas flows;
5 and 6 are headers, 7 and 8 are high-temperature gas pipes, 9 is a laminate constituted by a heat exchanger plate 1 and a spacer 2, 10 is a container cylinder portion for housing the laminate 9, 11,
12 is the end of the container, 13 and 14 are low temperature gas pipes connected to the end of the container, and 15 and 16 are headers 5 and 6.
17 is a hole for relaxing the thermal stress of the piping since the laminate 9 contracts when the temperature becomes low; 18 is a gap between the laminate 9 and the container cylindrical portion 10; , a seal ring to prevent cold gas from bypassing.

次にこの積層形熱交換器の作用について説明す
ると、高温ガスは一方の高温ガス配管7から供給
され、ベローズ17、ヘツダー5、高温ガス流路
3、ヘツダー6および他方の高温ガス配管8を通
つて次の機器へ送られる。また低温ガス配管14
からヘツダー6と容器端部12とでなる空間に供
給され、該空間、ヘツダー6の低温ガス流通孔1
6、低温ガス流路4、ヘツダー5の低温ガス流通
孔15、ヘツダー5と容器端部11とでなる空間
および他方の低温ガス配管13を通つて次の機器
へ送られる。このような積層形熱交換器におい
て、熱は高温ガス流路3を流れる高温ガスから伝
熱板1に伝えられ、伝熱板1を通つて低温ガス流
路4に対向して流れている低温ガスへと伝達され
る。
Next, to explain the operation of this laminated heat exchanger, high temperature gas is supplied from one high temperature gas pipe 7, and passes through the bellows 17, header 5, high temperature gas passage 3, header 6, and high temperature gas pipe 8 on the other side. and then sent to the next device. In addition, the low temperature gas pipe 14
The cold gas is supplied from the header 6 to the space formed by the header 6 and the container end 12, and the low temperature gas flow hole 1 of the header 6
6. The low temperature gas flow path 4, the low temperature gas flow hole 15 of the header 5, the space between the header 5 and the container end 11, and the other low temperature gas pipe 13 are sent to the next device. In such a laminated heat exchanger, heat is transferred from high-temperature gas flowing through high-temperature gas flow path 3 to heat exchanger plate 1, and from low-temperature gas flowing oppositely through heat exchanger plate 1 to low-temperature gas flow path 4. transferred to the gas.

本実施例では、積層体が容器内に低温ガス、高
温ガスの流通方向にベローズにより伸縮可能に設
けられているため、常温から極低温までの温度変
化を繰り返し受けても積層体にクラツクが発生す
るのを防止でき、積層体からの低温ガス等の漏洩
を防止できる。従つて、それによる熱交換率の低
下を防止できる。また、この場合、低温ガスの一
部は、構成上、ヘツダー6、積層体9、ヘツダー
5と容器筒部10との間に入り込みヘツダー5と
容器筒部10との間を通つてヘツダー5と容器端
部11とでなる空間へバイパスしようとするが、
このバイパスはシールリング18により防止さ
れ、積層体9での熱交換に寄与させられるので、
熱交換効率の低下を防止できる。更に、何等かの
原因で積層体からガスが漏洩しても、該漏洩ガス
のコールドボツクス内への漏出は容器により防止
でき、また、漏洩ガスのバイパスは、シールリン
グにより防止される。
In this example, the laminate is provided in the container so that it can expand and contract in the direction of flow of low-temperature gas and high-temperature gas using bellows, so even if the laminate is repeatedly subjected to temperature changes from room temperature to extremely low temperatures, cracks will not occur in the laminate. It is possible to prevent leakage of low-temperature gas, etc. from the laminate. Therefore, it is possible to prevent a decrease in heat exchange efficiency due to this. In addition, in this case, due to the structure, some of the low-temperature gas enters between the header 6, the laminate 9, the header 5, and the container cylindrical portion 10, passes between the header 5 and the container cylindrical portion 10, and reaches the header 5. Although an attempt is made to bypass the space formed by the container end 11,
This bypass is prevented by the seal ring 18 and contributes to heat exchange in the laminate 9, so
A decrease in heat exchange efficiency can be prevented. Furthermore, even if gas leaks from the laminate for some reason, the leakage of the leaked gas into the cold box can be prevented by the container, and bypassing of the leaked gas can be prevented by the seal ring.

上記一実施例において、容器として金属で形成
された容器を、また、シールリングとして高分子
材で形成されたシールリングを用いた積層形熱交
換器を極低温発生装置に適用した場合、極温度に
おいて、高分子材で形成されたシールリングの半
径方向の収縮が金属で形成された容器の半径方向
の収縮よりも大きいために、シールリングと容器
との間で隙間が生じ、したがつて、低温ガスの一
部は積層体の層体からの漏洩ガスは隙間を通つて
バイパスするようになり、また、低温ガス流路を
通らず隙間を通つてバイパスするようになる。こ
のバイパスした漏洩ガスや低温ガスは熱交換に寄
与せず、このため、積層形熱交換器の効率が低下
するといつた問題が生じる。
In the above embodiment, when a laminated heat exchanger using a container made of metal as a container and a seal ring made of a polymeric material as a seal ring is applied to a cryogenic generator, In this case, since the radial contraction of the seal ring made of a polymeric material is larger than the radial contraction of the container made of metal, a gap is created between the seal ring and the container, and therefore, Part of the low temperature gas leaks from the layered bodies of the stacked body and bypasses through the gap, and also bypasses through the gap without passing through the low temperature gas flow path. This bypassed leakage gas and low-temperature gas do not contribute to heat exchange, resulting in problems such as a decrease in the efficiency of the stacked heat exchanger.

このような問題を解決できる実施例を次に説明
する。
An embodiment that can solve such problems will be described next.

本発明の第2の実施例を第2図によつて説明す
る。なお、第2図で、第1図と同一部品は同一符
号で示し説明を省略する。
A second embodiment of the present invention will be explained with reference to FIG. Note that in FIG. 2, parts that are the same as those in FIG.

19は金属で環状に形成されたバツクアツプ用
バネで、バツクアツプ用バネ19は、シールリン
グ18とシールリング溝20の底面とに介装さ
れ、シールリング18を常に容器筒部10の内壁
にバネ力で押付ける役目をもつている。すなわ
ち、本実施例によれば積層体9が極低温になつて
シールリング18が収縮し、容器筒部10の内壁
との間に隙間が生じるようになると、バツクアツ
プ用バネ19のバネ力によつて押拡げられ、常に
容器筒部10の内壁に押付けられるので積層体9
から漏洩したガスや低温ガスが積層体9と容器筒
部10との間の隙間を通つてバイパスすることは
なくなり、熱交換器の効率低下を防止できる。な
お、バツクアツプ用バネ19の幅は、シールリン
グ溝20の幅よりも若干余裕をもつて狭くしてお
くのが良い。それによつてヘツダー5とバツクア
ツプ用バネ19との線膨張係数の差による収縮量
の相違によつてバツクアツプ用バネ19がシール
リング溝20の中に冷し嵌めの形で閉じ込められ
るのを防止できる。
Reference numeral 19 denotes a back-up spring made of metal and formed into an annular shape. The back-up spring 19 is interposed between the seal ring 18 and the bottom surface of the seal ring groove 20, and always applies a spring force to the seal ring 18 against the inner wall of the container cylindrical portion 10. It has the role of pushing. That is, according to this embodiment, when the laminate 9 becomes extremely low temperature and the seal ring 18 contracts and a gap is created between it and the inner wall of the container cylindrical portion 10, the spring force of the back-up spring 19 causes the seal ring 18 to contract. The laminate 9 is always pressed against the inner wall of the container cylindrical portion 10.
The leaked gas and low-temperature gas will no longer bypass through the gap between the stacked body 9 and the container cylindrical portion 10, and a decrease in efficiency of the heat exchanger can be prevented. The width of the back-up spring 19 is preferably narrower than the width of the seal ring groove 20 with some margin. Thereby, it is possible to prevent the backup spring 19 from being trapped in the seal ring groove 20 in the form of a cold fit due to the difference in the amount of contraction due to the difference in linear expansion coefficient between the header 5 and the backup spring 19.

本発明の第3の実施例を第3図で説明する。第
3図で、バツクアツプ用バネ19が幅方向に少な
くとも2分割され、しかも合せ目21,21′が
同じ位置にならないように周方向にずらせてあ
る。
A third embodiment of the present invention will be explained with reference to FIG. In FIG. 3, the backup spring 19 is divided into at least two parts in the width direction, and the seams 21 and 21' are shifted in the circumferential direction so that they are not in the same position.

本実施例によれば、バツクアツプ用バネの合せ
目からの積層体からの漏洩ガスや低温ガスの漏れ
が少なくなるうえに、合せ目をずらすことによつ
てシールリングを支える部分が1か所でとぎれ合
せ目でシールリングを傷めることがなくなる。
According to this embodiment, leakage of gas or low-temperature gas from the laminate through the seams of the back-up springs is reduced, and by shifting the seams, there is only one part to support the seal ring. The seal ring will not be damaged by the joint.

本発明の更に第4の実施例を第4図で説明す
る。第4図で、シールリング溝20にはシールリ
ング18′に板バネ22が内設されたバネ付シー
ルリングが環装され、シールリング18′とシー
ルリング溝20の底面とにバツクアつプ用バネ1
9が介装されている。この場合、板バネ22を内
設したシールリング18′は、拡げることができ
ないのでヘツダー5の一部を分割して押え板23
ならびに止めネジ24を必要とする。
A fourth embodiment of the present invention will be described with reference to FIG. In FIG. 4, the seal ring groove 20 is equipped with a spring-loaded seal ring having a leaf spring 22 installed inside the seal ring 18', and the seal ring 18' and the bottom of the seal ring groove 20 are connected to each other for back-up. Spring 1
9 is interposed. In this case, since the seal ring 18' with the leaf spring 22 installed therein cannot be expanded, a part of the header 5 is divided and the presser plate 23 is
In addition, a set screw 24 is required.

本実施例によれば、バネが2重になつているの
で、更に低温収縮に対する補正機能を増大でき
る。
According to this embodiment, since the spring is doubled, the correction function for low-temperature shrinkage can be further increased.

尚、以上の各実施例においては、作動流体のバ
イパスをシールリング等を用いて防止するように
しているが、この他に溶接やブレージング等を用
いて治金的にシールするようにしても良く、ま
た、容器部材と熱膨張率が比較的近く極低温下で
も割れ等の不都合を生じにくい、例えば、エポキ
シ系樹脂を用いてシールするようにしても良い。
In each of the above embodiments, a seal ring or the like is used to prevent the bypass of the working fluid, but metallurgical sealing may also be performed using welding, brazing, etc. Alternatively, the sealing may be performed using, for example, an epoxy resin, which has a coefficient of thermal expansion relatively close to that of the container member and is unlikely to cause problems such as cracking even at extremely low temperatures.

本発明によれば、積層形熱交換器の熱交換効率
の低下並びに真空雰囲気の真空度の低下を防止で
きるという効果がある。
According to the present invention, it is possible to prevent a decrease in heat exchange efficiency of a laminated heat exchanger and a decrease in the degree of vacuum of a vacuum atmosphere.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の積層形熱交換器
の縦断面図、第2図ないし第4図は、本発明の第
2ないし第4の実施例の積層形熱交換器の部分縦
断面図である。 1……伝熱板、2……スペーサ、5,6……ヘ
ツダー、7,8……高温ガス配管、9……積層
体、10……容器筒部、11,12……容器端
部、13,14……低温ガス配管、18,18′
……シールリング、19……バツクアツプ用バ
ネ、20……シールリング溝、22……板バネ、
23……押え板、24……止めネジ。
FIG. 1 is a vertical cross-sectional view of a laminated heat exchanger according to an embodiment of the present invention, and FIGS. 2 to 4 are sections of a laminated heat exchanger according to second to fourth embodiments of the present invention. FIG. DESCRIPTION OF SYMBOLS 1... Heat exchanger plate, 2... Spacer, 5, 6... Header, 7, 8... High temperature gas piping, 9... Laminated body, 10... Container cylinder part, 11, 12... Container end part, 13, 14...Low temperature gas piping, 18, 18'
... Seal ring, 19 ... Backup spring, 20 ... Seal ring groove, 22 ... Leaf spring,
23... Pressing plate, 24... Set screw.

Claims (1)

【特許請求の範囲】 1 高温作動流体と低温作動流体とがそれぞれ流
通する通路を形成して伝熱板とスペーサとが交互
に積層され前記作動流体の出入口端にヘツダーが
設けられた積層体を、密閉された容器内に前記ヘ
ツダーと前記容器の両端部分とで空間を保持して
設け、該空間にそれぞれ連通して前記作動流体の
一方の給排管を前記容器に連結し、端部を前記空
間に位置させて前記容器に連結された前記作動流
体の他方の給排管の少なくとも一つを伸縮手段を
介して前記ヘツダーに連結し、前記空間で前記作
動流体の一方が排出される空間を形成する前記ヘ
ツダーの側面と前記容器の内癖面との間に前記作
動流体の一方のシール部材を摺動可能に配設した
ことを特徴とする積層形熱交換器。 2 前記高温作動流体が流通する流路の回りに前
記低温作動流体が流通する流路を形成し、該流路
に前記ヘツダー及び前記空間を介して前記低温作
動流体を給排可能とした特許請求の範囲第1項記
載の積層形熱交換器。 3 前記低温作動流体が排出される前記空間を形
成する前記ヘツダーの前記容器の内壁面と対応す
る側面全周にシールリング溝を形成し、該シール
リング溝にシールリングを環装した特許請求の範
囲第2項記載の積層形熱交換器。 4 前記低温作動流体が排出される前記空間を形
成する前記ヘツダーの前記容器の金属製内壁面と
対応する側面全周にシールリング溝を形成し、該
シールリング溝に高分子材料でなるシールリング
を環装し、該シールリングと前記シールリング溝
の底面との間に金属で形成されたバツクアツプ用
バネを介装した特許請求の範囲第2項記載の積層
形熱交換器。 5 前記バツクアツプ用バネの幅を、前記シール
リング溝の幅よりも狭くした特許請求の範囲第4
項記載の積層形熱交換器。 6 前記バツクアツプ用バネを幅方法に少なくと
も2分割し、該分割されたバツクアツプ用バネの
それぞれの合せ目を周方向でずらせた特許請求の
範囲第5項記載の積層形熱交換器。 7 前記シールリングを、バネ付シールリングと
した特許請求の範囲第3項又は第4項記載の積層
形熱交換器。
[Claims] 1. A stacked body in which heat transfer plates and spacers are alternately stacked to form passages through which high-temperature working fluids and low-temperature working fluids flow, and headers are provided at the inlet and outlet ends of the working fluids. A space is provided in a sealed container between the header and both end portions of the container, one supply/discharge pipe for the working fluid is connected to the container by communicating with the space, and the end portions are connected to the container. At least one of the other supply and discharge pipes for the working fluid located in the space and connected to the container is connected to the header via a telescoping means, and one of the working fluids is discharged from the space. 1. A laminated heat exchanger characterized in that one sealing member for the working fluid is slidably disposed between a side surface of the header forming the header and an internal curved surface of the container. 2 A patent claim in which a flow path through which the low-temperature working fluid flows is formed around the flow path through which the high-temperature working fluid flows, and the low-temperature working fluid can be supplied to and discharged from the flow path through the header and the space. The laminated heat exchanger according to item 1. 3. A seal ring groove is formed on the entire circumference of a side surface of the header that forms the space from which the low-temperature working fluid is discharged, and corresponds to the inner wall surface of the container, and a seal ring is encircled in the seal ring groove. A laminated heat exchanger according to scope 2. 4. A seal ring groove is formed on the entire circumference of the side surface of the header that corresponds to the metal inner wall surface of the container of the header forming the space from which the low-temperature working fluid is discharged, and a seal ring made of a polymeric material is provided in the seal ring groove. 3. The laminated heat exchanger according to claim 2, wherein a back-up spring made of metal is interposed between the seal ring and the bottom surface of the seal ring groove. 5. Claim 4, wherein the width of the back-up spring is narrower than the width of the seal ring groove.
The laminated heat exchanger described in . 6. The laminated heat exchanger according to claim 5, wherein the backup spring is divided into at least two parts in widthwise direction, and the joints of the divided backup springs are shifted in the circumferential direction. 7. The laminated heat exchanger according to claim 3 or 4, wherein the seal ring is a spring-loaded seal ring.
JP1002482A 1982-01-27 1982-01-27 Laminated heat exchanger Granted JPS58129196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1002482A JPS58129196A (en) 1982-01-27 1982-01-27 Laminated heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1002482A JPS58129196A (en) 1982-01-27 1982-01-27 Laminated heat exchanger

Publications (2)

Publication Number Publication Date
JPS58129196A JPS58129196A (en) 1983-08-02
JPH0362999B2 true JPH0362999B2 (en) 1991-09-27

Family

ID=11738824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1002482A Granted JPS58129196A (en) 1982-01-27 1982-01-27 Laminated heat exchanger

Country Status (1)

Country Link
JP (1) JPS58129196A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5174369A (en) * 1991-09-09 1992-12-29 Custom Metalcraft Inc. Sanitary concentric tube heat exchanger
US10962293B2 (en) * 2018-02-23 2021-03-30 Unison Industries, Llc Heat exchanger assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3692099A (en) * 1968-06-20 1972-09-19 Gen Electric Ultra low temperature thermal regenerator
JPS56137093A (en) * 1980-03-28 1981-10-26 Enaajii Dainamitsukusu Inc Heat exchanger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156856U (en) * 1976-05-24 1977-11-29
JPS5493659U (en) * 1977-12-15 1979-07-03
JPS5928202Y2 (en) * 1978-10-17 1984-08-15 株式会社明電舎 Heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3692099A (en) * 1968-06-20 1972-09-19 Gen Electric Ultra low temperature thermal regenerator
JPS56137093A (en) * 1980-03-28 1981-10-26 Enaajii Dainamitsukusu Inc Heat exchanger

Also Published As

Publication number Publication date
JPS58129196A (en) 1983-08-02

Similar Documents

Publication Publication Date Title
JP3868503B2 (en) Heat exchanger
JP2630504B2 (en) Flat plate heat exchanger
US6474408B1 (en) Heat exchanger with bypass seal allowing differential thermal expansion
US4229868A (en) Apparatus for reinforcement of thin plate, high pressure fluid heat exchangers
US3825061A (en) Leak protected heat exchanger
US20090101321A1 (en) Heat Exchanger
US20100139900A1 (en) Gas Turbine Regenerator Apparatus and Method of Manufacture
US11173575B2 (en) Film heat exchanger coupling system and method
US3894581A (en) Method of manifold construction for formed tube-sheet heat exchanger and structure formed thereby
JPH0684852B2 (en) Cryogenic refrigerator
US20120198834A1 (en) Thermodynamic machine with stirling cycle
US4682472A (en) Coupling device for tubes, tubular elbows and end plates of thermoelectric devices
KR100742431B1 (en) Involute foil regenerator
US3451474A (en) Corrugated plate type heat exchanger
JPH0362999B2 (en)
JPH0829077A (en) Laminated plate type heat exchanger
EP4184107A1 (en) Heat shrink assembly heat exchangers
JPS6161037B2 (en)
US20170176111A1 (en) Multichamber heat exchanger
JPH07229687A (en) Plate type heat exchanger
SE467893B (en) CAR COOLERS WHEN THE RUBBER END WAS WELDED IN THE FLANES ON THE COOLING SIDE OF THE END PLATES AND LOADED ON THE AIR SIDE
JPS62206380A (en) Laminated heat exchanger
JP3919998B2 (en) Manufacturing method of heat exchange device
JPH04369395A (en) Lamination type heat exchanger
JPS6099989A (en) Layered type heat exchanger