JPH0362985A - Distribution feedback type semiconductor and its manufacture method - Google Patents
Distribution feedback type semiconductor and its manufacture methodInfo
- Publication number
- JPH0362985A JPH0362985A JP19877289A JP19877289A JPH0362985A JP H0362985 A JPH0362985 A JP H0362985A JP 19877289 A JP19877289 A JP 19877289A JP 19877289 A JP19877289 A JP 19877289A JP H0362985 A JPH0362985 A JP H0362985A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- waveguide layer
- waveguide
- active layer
- ultra
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 238000009826 distribution Methods 0.000 title abstract description 3
- 238000000034 method Methods 0.000 title description 16
- 239000000872 buffer Substances 0.000 claims abstract description 16
- 239000000203 mixture Substances 0.000 claims abstract description 12
- 239000010409 thin film Substances 0.000 claims abstract description 7
- 238000001947 vapour-phase growth Methods 0.000 claims description 6
- 230000012010 growth Effects 0.000 abstract description 12
- 239000013078 crystal Substances 0.000 abstract description 7
- 230000004888 barrier function Effects 0.000 abstract description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 abstract 1
- 239000000758 substrate Substances 0.000 description 7
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005253 cladding Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 101100215641 Aeromonas salmonicida ash3 gene Proteins 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 1
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は分布帰還型半導体レーザおよびその製造方法に
関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a distributed feedback semiconductor laser and a method of manufacturing the same.
(従来の技術)
発光再結合する活性層に隣接して回折格子を有する分布
帰還型半導体レーザ(DFB−LD)は、光フアイバ伝
送用の光源として活発に研究開発が進められている。特
に数十穴オーダーの膜厚の半導体多層薄膜からなる多f
j量子井戸(MQW)DFI3−LDは高速変調時のス
ペクトル拡りiが小さく、かつ発振スペクトル線幅が狭
いことから直接検波系のみならず、コヒーレント系光フ
アイバ通信への応用においても極めて有望である。(Prior Art) Distributed feedback semiconductor lasers (DFB-LDs), which have a diffraction grating adjacent to an active layer that recombines light, are being actively researched and developed as a light source for optical fiber transmission. In particular, a multi-f film consisting of a semiconductor multilayer thin film with a film thickness on the order of tens of holes.
The quantum well (MQW) DFI3-LD has a small spectral spread i during high-speed modulation and a narrow oscillation spectral linewidth, so it is extremely promising not only for direct detection systems but also for applications in coherent optical fiber communications. be.
そのような半導体多層薄膜からなるMQW活性層を成長
するための方法として、近年特にMOVPE法のような
気相成長法が注目されている9例えば、MOVPE法に
よってMQWDFB−LDを成長する場合、InP回折
格子基板上にMQW活性層を成長する方法と、予めMQ
W活性層および導波層を成長しておき、導波層上に回折
格子を形成する方法とがある。As a method for growing an MQW active layer consisting of such a semiconductor multilayer thin film, a vapor phase growth method such as the MOVPE method has recently attracted particular attention.9 For example, when growing an MQWDFB-LD by the MOVPE method, InP A method for growing an MQW active layer on a diffraction grating substrate and a method for growing an MQW active layer on a diffraction grating substrate and
There is a method in which a W active layer and a waveguide layer are grown and a diffraction grating is formed on the waveguide layer.
素子の生産性の観点からは+)71者の方法の優位性は
明らかであり、InP系半導体レーザの場合P Hsと
同時にAs1〜■、を導入して回折格子の消失を防ぐ等
の方法が取られている。From the viewpoint of device productivity, the superiority of the method of +)71 is clear, and in the case of InP semiconductor lasers, methods such as introducing As1 to ■ at the same time as PHs to prevent the disappearance of the diffraction grating are recommended. It has been taken.
(発明が解決しようとする課題)
しかしながら、このような従来技術においては、InP
回折格子深さを十分大きく保ったまま高品質なMQW活
性層を再現性良く成長することは必ずしも容易ではなか
った0回折格子深さが小さい−とD F’ B −L
Dの発振しきい値上昇を招いたり、逆に回折格子が深ず
ぎるとMQW活性層中に転移が発生したりする場合があ
った。(Problem to be solved by the invention) However, in such conventional technology, InP
It is not always easy to grow a high-quality MQW active layer with good reproducibility while keeping the grating depth sufficiently large.
This may lead to an increase in the oscillation threshold of D, or conversely, if the diffraction grating is too deep, dislocation may occur in the MQW active layer.
本発明の目的は高い生産性、再現性を有する高性能な分
布帰還型半導体レーザおよびその製造方法を提供するこ
とにある。An object of the present invention is to provide a high-performance distributed feedback semiconductor laser with high productivity and reproducibility, and a method for manufacturing the same.
(課題を解決するための手段〉
前述の課題を解決するために本発明の分布帰還型半導体
レーザは、活性層近傍に回折格子を有する導波層が形成
されている分布帰還型半導体レーザにおいて、前記活性
層および前記FP導波層間に半導体多層薄膜よりなる超
格子バッファ層が形成されている。(Means for Solving the Problems) In order to solve the above-mentioned problems, the distributed feedback semiconductor laser of the present invention includes a waveguide layer having a diffraction grating near the active layer. A superlattice buffer layer made of a semiconductor multilayer thin film is formed between the active layer and the FP waveguide layer.
また、その製造方法は、活性層近傍に回折格子をイfす
る導波層が形成され、前記活性層および前記導波層の間
に半導体多層薄膜よりなる超格子バッファ層が形成され
ている分布帰還型半導体レーザの製造方法において前記
導波層を複数個の気相成長によって、前記各気相成長の
間に待機時間を設けて形成する。Further, the manufacturing method includes a distribution in which a waveguide layer forming a diffraction grating is formed near the active layer, and a superlattice buffer layer made of a semiconductor multilayer thin film is formed between the active layer and the waveguide layer. In the method for manufacturing a feedback semiconductor laser, the waveguide layer is formed by a plurality of vapor phase growths, with a standby time provided between each vapor phase growth.
(作用)
水頭の発明者らはInP回折格子基板上にMQW活性層
を気相成長によって成長する場合に、活性層と導波層の
間に超格子バッファ層を形成することにより導波層に発
生した結晶の歪を超格子バッファ層によって有効に吸収
でき、さらに、導波層を組成の異なる複数の半導体層に
よって形成し、また、導波層成長中に数回にわたって成
長を中断し、待機時間を設けることによって回折格子上
の成長結晶層の表面の平坦性を増すことかでき、その結
果、上述の従来の問題点を克服できることを見出だした
。この点が本発明の基本的な作用・原理である。(Function) When the inventors of Hydrohead grow an MQW active layer on an InP diffraction grating substrate by vapor phase growth, they form a superlattice buffer layer between the active layer and the waveguide layer. The generated crystal strain can be effectively absorbed by the superlattice buffer layer.Furthermore, the waveguide layer can be formed of multiple semiconductor layers with different compositions, and the growth can be interrupted several times during the waveguide layer growth to allow the waiting time. It has been found that by providing a certain amount of time, the surface flatness of the grown crystal layer on the diffraction grating can be increased, and as a result, the above-mentioned conventional problems can be overcome. This point is the basic operation and principle of the present invention.
(実施例) 以下、図面を用いて本発明をより詳細に説明する。(Example) Hereinafter, the present invention will be explained in more detail using the drawings.
第1図は本発明の第1の実施例であるl nGaAsP
系MQW−DFB−LDの断面図である。FIG. 1 shows the first embodiment of the present invention.
It is a sectional view of system MQW-DFB-LD.
結晶成長は有機金属気相成長法(MOVPE法)によっ
て行われる。用いられる原料は、トリメチルガリウム(
TMG)、トリメチルインジウム(TM I ’) 、
アルシン(ASH3)、ホスフィン(PH1)である。Crystal growth is performed by metal organic vapor phase epitaxy (MOVPE). The raw material used is trimethyl gallium (
TMG), trimethylindium (TM I'),
They are arsine (ASH3) and phosphine (PH1).
まず、回折格子2を有するn型1nP基板1上に発光波
長1.3μm組成のSiドーグn型InGaAsP導波
層3、IrtP、1.3μmμm組成InGaAsP各
人05層よりなる超格子バッファ層4、波長1.3μm
組成のノンドープInGaAsPバリア層(厚さ150
人)およびノンドープI nGaAs量子井戸層(厚さ
75人)4層からなる量子井戸活性層5、Znトド−1
P型InPラッド層6 (P ”−5X 1017>−
’、厚さ1.0μm)を順次積層する。成長後の回折格
子深さは約350人、導波層3の厚さは1500人、超
格子バッファ層4の総厚は200人とすれば良い。First, on an n-type 1nP substrate 1 having a diffraction grating 2, a Si dog n-type InGaAsP waveguide layer 3 having an emission wavelength of 1.3 μm, a superlattice buffer layer 4 consisting of IrtP, and 05 layers of InGaAsP each having a composition of 1.3 μm μm; Wavelength 1.3μm
A non-doped InGaAsP barrier layer (thickness 150
Quantum well active layer 5 consisting of 4 layers of non-doped I nGaAs quantum well layer (thickness 75 mm) and Zn todo-1
P-type InP rad layer 6 (P”-5X 1017>-
', thickness 1.0 μm) are sequentially laminated. The depth of the diffraction grating after growth may be about 350 layers, the thickness of the waveguide layer 3 may be 1500 layers, and the total thickness of the superlattice buffer layer 4 may be 200 layers.
このような半導体ウェハをメサエッチング工程等を経て
D C−r’ B H補遺に埋め込んで特性を評価すれ
ば、発振しきい値電流、特性温度TO1しきい値の2
t?iにおける緩和振動周波数はそれぞれ10mA、1
10K、8GHzと超格子バッファ1倒4を用いない場
合と比べていずれも20〜40%の改善が期待される。If such a semiconductor wafer is embedded in a D C-r' B H supplement through a mesa etching process and its characteristics are evaluated, the oscillation threshold current and the characteristic temperature TO1 threshold value will be
T? The relaxation oscillation frequencies at i are 10 mA and 1, respectively.
An improvement of 20 to 40% is expected for both 10K and 8GHz compared to the case where one to four superlattice buffers are not used.
この改善効果は超格子バッファ層4の導入により、回折
格子上に成長した導波層3の結晶歪が活性M5に及ばず
影響を大幅に緩和することができることに起因する。This improvement effect is due to the fact that by introducing the superlattice buffer layer 4, the crystal strain of the waveguide layer 3 grown on the diffraction grating does not affect the active M5, and the influence can be significantly alleviated.
第2図は本発明の第2の実施例の断面図を示す。FIG. 2 shows a cross-sectional view of a second embodiment of the invention.
回折格子2を有する基板l上に基板1に近い方から発光
波長1.35μmから1.2μm相当になるように連続
的に組成が変化するI nGaAsP層厚さ1400人
からなる導波層3、活性M5、クラッド層6を順次成長
する。活性層5は第1の実施例と同様の構成とすれば良
い0回折格子法さは約350人とする。この場合にはM
OVPE成長法ではInPに近い組成のものほど成長層
表面が平坦になりやすいので、回折格子の影響を活性層
5に伝えず、従来例と比べると大幅に平坦性の良い導波
層3の表面上に活性層5を成長することが可能となる6
本実施例によっても第1の実施例と同様な特性改首が期
待できる。また、ここでは活性層5に近づくほどInP
に近い組成のInGaAsP層を成長したが、逆により
波長組成の長いInGaAsP層を成長していっても良
い。A waveguide layer 3 consisting of an InGaAsP layer with a thickness of 1,400 layers whose composition changes continuously from the side closest to the substrate 1 so that the emission wavelength corresponds to 1.35 μm to 1.2 μm on a substrate 1 having a diffraction grating 2; Active M5 and cladding layer 6 are grown in sequence. The active layer 5 may have a structure similar to that of the first embodiment, and the number of diffraction gratings is approximately 350. In this case M
In the OVPE growth method, the surface of the grown layer is more likely to be flat as the composition is closer to InP, so the influence of the diffraction grating is not transmitted to the active layer 5, and the surface of the waveguide layer 3 has a much better flatness than the conventional example. It becomes possible to grow an active layer 5 on top 6
This embodiment can also be expected to have the same characteristic changes as the first embodiment. Moreover, here, the closer to the active layer 5, the more InP
Although an InGaAsP layer having a composition close to that of 2 is grown, an InGaAsP layer having a longer wavelength composition may be grown conversely.
その場合には比較的深い回折格子を用いて、導波1ホ3
成長の初期の段階から、結合係数を大きく保った:&よ
、成長層表面をより平坦にすることができる。In that case, a relatively deep diffraction grating is used to
From the early stages of growth, the coupling coefficient was kept large: & the surface of the grown layer could be made flatter.
第3図は本発明の第3の実施例の断面図を示す。FIG. 3 shows a cross-sectional view of a third embodiment of the invention.
口折格子上への導波層3の成長のためには成長待機時間
を設けた多段成長法を採用する。1,3μIn波長組成
のInGaAsP層を500人ずつ3回に分けて成長を
行えば良い、実際には■族原料ガスを導入せず、V族原
料ガスのみを流す時間を2分間設ける。このような成長
待機によって導波層3中の結晶歪が緩和され、その上に
高品質な活性層5を成長することができる。この場合に
も第1の実施例と同様な特性改傳を期待できる。In order to grow the waveguide layer 3 on the opening grating, a multi-stage growth method in which a growth waiting time is provided is adopted. An InGaAsP layer having a wavelength composition of 1.3 .mu.In can be grown in 3 times with 500 people each.Actually, a time period of 2 minutes is provided during which only the group V source gas is allowed to flow without introducing the group Ⅰ source gas. By waiting for growth in this manner, crystal strain in the waveguide layer 3 is relaxed, and a high quality active layer 5 can be grown thereon. In this case as well, characteristics modification similar to that of the first embodiment can be expected.
なお、本実施例においてはInGaAsP系の量子井戸
′WJ造半導体レーザを例に示したが、もちろん用いる
材料系はこれに限るものではない、また構造も量子井戸
構造に限らず、通常のバルク活性層にも効果がある。さ
らに量子細線横道や、量子箱補遺においてより有効であ
ることが推測される。もちろん上述の方法を組み合わせ
て成長することも有効である。In this example, an InGaAsP-based quantum well 'WJ semiconductor laser was used as an example, but the material system used is of course not limited to this, and the structure is not limited to the quantum well structure, but may also be a normal bulk active semiconductor laser. Layers also have an effect. Furthermore, it is presumed that it is more effective in quantum wire alleyways and quantum box supplements. Of course, it is also effective to grow by combining the above methods.
(発明の効果)
以上説明したように本発明は分布帰還型半導体レーザに
おいて活性層と導波層の間に超格子バッファ層を形成し
ており、導波層の結晶組成を段階的に変(ヒさせている
。また、導&Jt、層の成長を多段の成長層に分けて行
っている。その結果、それによって結合係数を大きく保
ったまま、高品質な活性層を成長することが可能となり
、高い生産性で、高性能な分布帰還型半導体レーザを提
供することが可能となる。(Effects of the Invention) As explained above, the present invention forms a superlattice buffer layer between an active layer and a waveguide layer in a distributed feedback semiconductor laser, and changes the crystal composition of the waveguide layer in stages. In addition, the growth of conductive & Jt layers is performed in multiple growth layers.As a result, it is possible to grow a high-quality active layer while maintaining a large coupling coefficient. , it becomes possible to provide a high-performance distributed feedback semiconductor laser with high productivity.
第1図、第2図および第3図はそれぞれ本発明の第1、
第2および第3の実施例である分布帰還型半導体レーザ
の補選を示ず断面図である。
1・・・基板、2・・・回折格子、3・・・導波層、4
・・・超格子バッファ層、5・・・活性層、6・・・ク
ラッド層。FIG. 1, FIG. 2, and FIG. 3 are the first and second embodiments of the present invention, respectively.
FIG. 7 is a cross-sectional view of the distributed feedback semiconductor lasers according to the second and third embodiments, without showing supplementary selection. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Diffraction grating, 3... Waveguide layer, 4
... superlattice buffer layer, 5 ... active layer, 6 ... cladding layer.
Claims (3)
ている分布帰還型半導体レーザにおいて、前記活性層お
よび前記導波層の間に半導体多層薄膜よりなる超格子バ
ッファ層が形成されていることを特徴とする分布帰還型
半導体レーザ。(1) In a distributed feedback semiconductor laser in which a waveguide layer having a diffraction grating is formed near the active layer, a superlattice buffer layer made of a semiconductor multilayer thin film is formed between the active layer and the waveguide layer. A distributed feedback semiconductor laser characterized by:
あることを特徴とする請求項1に記載の分布帰還型半導
体レーザ。(2) The distributed feedback semiconductor laser according to claim 1, wherein the waveguide layer is a semiconductor layer whose composition changes continuously.
、前記活性層および前記導波層の間に半導体多層薄膜よ
りなる超格子バッファ層が形成されている分布帰還型半
導体レーザの製造方法において、前記導波層を複数個の
気相成長によつて、前記各気相成長の間に待機時間を設
けて形成することを特徴とする分布帰還型半導体レーザ
の製造方法。(3) Manufacturing a distributed feedback semiconductor laser in which a waveguide layer having a diffraction grating is formed near the active layer, and a superlattice buffer layer made of a semiconductor multilayer thin film is formed between the active layer and the waveguide layer. A method of manufacturing a distributed feedback semiconductor laser, characterized in that the waveguide layer is formed by a plurality of vapor phase growths, with a standby time provided between each vapor phase growth.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1198772A JP2546381B2 (en) | 1989-07-31 | 1989-07-31 | Distributed feedback semiconductor laser and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1198772A JP2546381B2 (en) | 1989-07-31 | 1989-07-31 | Distributed feedback semiconductor laser and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0362985A true JPH0362985A (en) | 1991-03-19 |
JP2546381B2 JP2546381B2 (en) | 1996-10-23 |
Family
ID=16396674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1198772A Expired - Fee Related JP2546381B2 (en) | 1989-07-31 | 1989-07-31 | Distributed feedback semiconductor laser and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2546381B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007258269A (en) * | 2006-03-20 | 2007-10-04 | Sumitomo Electric Ind Ltd | Semiconductor optical element |
JP2014220386A (en) * | 2013-05-08 | 2014-11-20 | 富士通株式会社 | Optical semiconductor device and method of manufacturing optical semiconductor device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61242090A (en) * | 1985-04-19 | 1986-10-28 | Matsushita Electric Ind Co Ltd | Semiconductor laser |
-
1989
- 1989-07-31 JP JP1198772A patent/JP2546381B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61242090A (en) * | 1985-04-19 | 1986-10-28 | Matsushita Electric Ind Co Ltd | Semiconductor laser |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007258269A (en) * | 2006-03-20 | 2007-10-04 | Sumitomo Electric Ind Ltd | Semiconductor optical element |
US7769065B2 (en) | 2006-03-20 | 2010-08-03 | Sumitomo Electric Industries Ltd. | Semiconductor optical device |
JP2014220386A (en) * | 2013-05-08 | 2014-11-20 | 富士通株式会社 | Optical semiconductor device and method of manufacturing optical semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP2546381B2 (en) | 1996-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0476689B1 (en) | Semiconductor laser and manufacturing method of the same | |
JP2842292B2 (en) | Semiconductor optical integrated device and manufacturing method | |
JPS6254988A (en) | Semiconductor laser | |
JP4006729B2 (en) | Semiconductor light-emitting device using self-assembled quantum dots | |
JP3045115B2 (en) | Method for manufacturing optical semiconductor device | |
JPH08195530A (en) | Semiconductor laser device | |
JP3171307B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JPH08274295A (en) | Manufacture of optical semiconductor device | |
JPH0362985A (en) | Distribution feedback type semiconductor and its manufacture method | |
JP2000277867A (en) | Semiconductor laser device | |
JPH07147461A (en) | Semiconductor device and manufacture thereof | |
JP2641484B2 (en) | Semiconductor element | |
JP2004022833A (en) | Method of manufacturing compound semiconductor epitaxial wafer, and compound semiconductor epitaxial wafer | |
JPH11145549A (en) | Multiple quantum well structure, and optical semiconductor device and light modulator having the same | |
JP2000031596A (en) | Semiconductor laser and its manufacture | |
JPH0439988A (en) | Semiconductor light emitting device | |
JPS63150982A (en) | Semiconductor light emitting device | |
JP2618677B2 (en) | Semiconductor light emitting device | |
JP2682482B2 (en) | Method for manufacturing compound semiconductor integrated circuit | |
JPS61202487A (en) | Distributed feedback type semiconductor laser | |
JPS63152194A (en) | Semiconductor laser | |
JP2957198B2 (en) | Semiconductor laser device | |
JP3030932B2 (en) | Manufacturing method of semiconductor fine structure | |
JP3298572B2 (en) | Method for manufacturing optical semiconductor device | |
JP2000353861A (en) | Manufacture of iii-v semiconductor light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |