JPH0362834A - Hydrogen-occlusion formed article - Google Patents

Hydrogen-occlusion formed article

Info

Publication number
JPH0362834A
JPH0362834A JP19887789A JP19887789A JPH0362834A JP H0362834 A JPH0362834 A JP H0362834A JP 19887789 A JP19887789 A JP 19887789A JP 19887789 A JP19887789 A JP 19887789A JP H0362834 A JPH0362834 A JP H0362834A
Authority
JP
Japan
Prior art keywords
hydrogen
molded body
hydrogen storage
particles
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19887789A
Other languages
Japanese (ja)
Inventor
Takatoshi Sasahara
孝利 笹原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP19887789A priority Critical patent/JPH0362834A/en
Publication of JPH0362834A publication Critical patent/JPH0362834A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject formed article free from the escape of hydrogen- occlusion alloy together with released hydrogen even if the alloy is pulverized into fine powder and capable of effectively utilizing the volume change accompanying to the occlusion and release of hydrogen by mixing hydrogen-occlusion alloy particles into a porous formed article of a resin. CONSTITUTION:A porous formed article 2 of a resin is mixed with hydrogen- occlusion alloy particles 3 to obtain the objective formed article 1. The hydrogen-occlusion alloy is e.g. LaNi4.65Al0.35. The formed article can be produced e.g. by uniformly mixing polypropylene particles and hydrogen-occlusion alloy particles at normal temperature, heating the mixture until the polypropylene particles are partially melted, cooling the mixture in a mold and pressing at a low pressure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水素吸蔵成形体に関するもので、詳しくは樹脂
多孔質成形体を母体とした水素吸蔵成形体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a hydrogen-absorbing molded article, and more particularly to a hydrogen-absorbing molded article using a porous resin molded article as a matrix.

〔従来の抜術〕[Traditional extraction technique]

町今、水素をエネルギー源として利用する研究が進めら
れており、その−環として水素を効率よく貯蔵すること
のできる水素吸蔵合金が注目されている。
Currently, research is underway to utilize hydrogen as an energy source, and hydrogen storage alloys that can efficiently store hydrogen as a ring are attracting attention.

ところで、上記水素吸蔵合金は、水素の吸蔵・hk出出
時膨脂収縮をくり返し、これによって微粉化するという
欠点がある。このため、水素吸蔵含金を燃料貯蔵手段と
して用いた水素エンジン等では、微粉化した合金か、放
出する水素とともに吸気系等に入り込み、上記吸気系に
損傷を及はす不都合がある。
By the way, the hydrogen storage alloy described above has the disadvantage that it repeats expansion and contraction during hydrogen storage and hk extraction, and is thereby pulverized. For this reason, in a hydrogen engine or the like that uses a hydrogen-absorbing metal as a fuel storage means, there is a disadvantage that the pulverized alloy or the released hydrogen enters the intake system, etc., causing damage to the intake system.

そこで、上記微粉化を防くため、一般に上記水素吸蔵合
金を焼結によって成形する等の手段かal&し、られて
いる。
Therefore, in order to prevent the above-mentioned pulverization, measures such as forming the above-mentioned hydrogen storage alloy by sintering are generally taken.

〔発明がM決し7ようとする課11′IU〕一方、上述
した水素吸蔵合金の膨脂・収縮による体積変化を、例え
ば水素の吸蔵量を知るために利用することが考えられて
いる。
[Section 11'IU where the invention is directed] On the other hand, it has been considered to utilize the above-mentioned volume change due to expansion and contraction of the hydrogen storage alloy to determine the amount of hydrogen storage, for example.

しかし、上述のように、水素吸蔵合金を焼結成形したち
のては、初Mの水素吸蔵II、′fにおける膨脹によっ
て塑性変形してしまうので、」二記合金の体積変化を利
用することはできない。また、粉体のままの水素吸蔵合
金では、上述した微粉化か進むにつれて嵩密度が変化し
たり、あるいは粉体か重力の影響を受けるために一株l
よ体積変化かvIられないといった理由により、上記合
金の体積変化を利用することができない。
However, as mentioned above, after the hydrogen storage alloy is sintered and formed, it is plastically deformed due to the expansion in the hydrogen storage II, 'f of the initial M. I can't. In addition, in the case of hydrogen storage alloys in powder form, the bulk density may change as the pulverization process described above progresses, or the powder may be affected by gravity, so it is difficult to make a
The volume change of the alloy cannot be utilized because the volume change cannot be measured.

本発明は、上記実状に鑑みて、水素吸蔵合金の微粉化に
よる不都合の発生を防止てき、併わせて水素の吸蔵・放
出Hj7の体積変化を有効に利用することのできる水素
吸蔵成形体を提供することを目的とする。
In view of the above-mentioned circumstances, the present invention prevents the occurrence of inconveniences due to pulverization of a hydrogen storage alloy, and provides a hydrogen storage molded body that can effectively utilize the volume change of hydrogen storage and release Hj7. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

そこで本発明では、樹脂多孔質成形体に水素吸蔵合金粒
子を混入して水素吸蔵成形体を構成した。
Therefore, in the present invention, a hydrogen-absorbing molded body is constructed by mixing hydrogen-absorbing alloy particles into a porous resin molded body.

〔f′1 用〕 上記水素吸蔵成形体によれば、合金粒子はも1.J脂多
孔質威形体に閉じ込められた格好となるので、微粉化し
ても放出される水素とともに成形体外へ流出することが
可及的に抑えられる。また、各合金粒子が水素を吸蔵・
放出して体積変化を起こすと、樹脂のぢり1性によって
成形体の全体が膨114・収縮する。
[For f'1] According to the hydrogen storage molded article, the alloy particles are also 1. Since it is confined in the J-lipid porous body, even when it is pulverized, it can be suppressed as much as possible from flowing out of the molded body together with the released hydrogen. In addition, each alloy particle absorbs and absorbs hydrogen.
When the resin is released to cause a change in volume, the entire molded article expands 114 and contracts due to the shrinkage properties of the resin.

〔実施例〕〔Example〕

以下、本発明を一実施例を示す図面に基づいて詳細に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on drawings showing one embodiment.

第1図に、本発明に関わる水素吸蔵1戊形体を概念的に
示す。
FIG. 1 conceptually shows a hydrogen storage 1-shaped body related to the present invention.

水素吸蔵成形体1は、ポリプロピレンを0料とする樹脂
多孔質成形体2と、この底形体2に混入されたランタン
・ニッケル系の水素吸蔵合金(LaNi   All 
  )の粒子3,3.・・・とを有し4.65  0.
35 ている。
The hydrogen storage molded body 1 includes a porous resin molded body 2 made of polypropylene as a material, and a lanthanum-nickel hydrogen storage alloy (LaNi All) mixed into the bottom body 2.
) particles 3, 3. ...and has 4.65 0.
35.

水素吸蔵成形体]における樹脂多孔質成形体2には、上
記合金粒子3,3.・とともに、銅月オ′−1から戊る
伝熱改良祠微粒子4,4.・・・が況人されている。上
記樹脂多孔質成形体2と0金抗子′3は、共に伝熱性か
悪いため、上記伝熱改良1イ微拉T−4を混入すること
によって水素吸蔵成形体1の伝熱性の向上が図られてい
る。
The porous resin molded body 2 in the hydrogen storage molded body] contains the alloy particles 3, 3.・Along with heat transfer improving grains 4,4. ...is being talked about. Since both the resin porous molded body 2 and the gold resistor '3 have poor heat conductivity, the heat conductivity of the hydrogen storage molded body 1 can be improved by mixing the heat conduction improvement 1. It is planned.

以下に、上記水素吸蔵成形体]の製造工程を述べる。The manufacturing process of the above-mentioned hydrogen storage molded article will be described below.

先ずポリプロピレン粒子と水素吸蔵0金拉rと伝熱改良
相粒子とを常温で均−at合する。ここで、上記ポリプ
ロピレン粒子、水素吸蔵含金粒子、および伝熱改良祠微
粒子は、それぞれ平均粒子径が200μm、60μm、
およびく63μmであり、重量割合が47%、40%、
および13%である。
First, polypropylene particles, hydrogen storage zero metal particles, and heat transfer improving phase particles are uniformly combined at room temperature. Here, the polypropylene particles, hydrogen-absorbing metal-containing particles, and heat transfer improving abrasive particles have average particle diameters of 200 μm, 60 μm, and 60 μm, respectively.
and 63 μm, and the weight percentage is 47%, 40%,
and 13%.

次いて、上記各粒子の混合物を、上記ポリプロピレン粒
子が゛1′、溶融状態、言い換えれば上記ポリプロピレ
ン粒子の中心部は固体のまま表面だけが溶けているよう
な状態になるまで加熱する。
Next, the mixture of each of the particles is heated until the polypropylene particles are in a molten state, in other words, the center of the polypropylene particles is solid and only the surface is melted.

こののち上記混合物を、金型内で冷却し、低圧成形する
ことによって、水素吸蔵成形体1が完成する。
Thereafter, the mixture is cooled in a mold and molded under low pressure to complete the hydrogen storage molded body 1.

上記ポリプロピレン粒子は、半溶融状態から冷却される
ことによって、その表面を介して他のポリプロピレン粒
子と亙いに結合される。これにより全体に亘って空隙を
有する樹脂多孔質成形体が形成される。一方、水素吸蔵
合金粒子および伝熱改良1微拉子は、上記樹脂多孔質成
形体を構成するポリプロピレン粒子間に閉し込められて
いる。
When the polypropylene particles are cooled from a semi-molten state, they are bonded to other polypropylene particles through their surfaces. As a result, a porous resin molded body having voids throughout is formed. On the other hand, the hydrogen storage alloy particles and the heat transfer improvement 1 particles are confined between the polypropylene particles constituting the porous resin molded body.

ここで、上記水素吸蔵成形体]における体積割合は、ポ
リプロピレン樹脂が58%、水素吸蔵合金が5.5%、
銅が1.5%、そして空隙が35%を占めている。なお
、この成形体1は、35%の空隙を有しているため、上
記成形体]に幻する水素分子の流入、流出時における、
圧力損失や透過性等に特に問題を生しることはない。ま
た、上記水素吸蔵成形体1は、従来の焼j111成形体
に化べて低温で成形でき、製造コストが非常に安い。ま
た、上記水素吸蔵成形体は、ベースが樹脂なので、良好
な耐薬品性等を有している。
Here, the volume ratio in the hydrogen storage molded article is 58% for polypropylene resin, 5.5% for hydrogen storage alloy,
Copper accounts for 1.5% and voids account for 35%. Note that this molded body 1 has 35% voids, so that when hydrogen molecules appear to flow in and out of the molded body above,
There are no particular problems with pressure loss or permeability. In addition, the hydrogen storage molded body 1 can be molded at a low temperature unlike the conventional sintered J111 molded body, and the manufacturing cost is very low. Furthermore, since the hydrogen storage molded body is made of resin as a base, it has good chemical resistance.

上記組成の水素吸蔵成形体]ては、第2図に示すように
水素吸蔵濃度C(H/M)、すなわち水素吸蔵合金の原
子数に対する水素の原子数が1・19人するのに従って
、歪みε(11ε)か2次的に増大する。
[Hydrogen storage molded body with the above composition] As shown in Fig. 2, the hydrogen storage concentration C (H/M), that is, the number of hydrogen atoms relative to the number of atoms of the hydrogen storage alloy is 1.19, and the strain ε(11ε) increases quadratically.

上記水素吸蔵成形体]の外部に水素が7f7[すると、
その水素は、樹脂多孔質成形体2の空隙(図示せず)を
通って各合金粒子3,3□ ・・に吸蔵される。
There is 7f7 of hydrogen on the outside of the above hydrogen storage molded body].
The hydrogen passes through the voids (not shown) of the porous resin molded body 2 and is stored in each of the alloy particles 3, 3□, .

各合金粒子3,3.・・・が水素を吸蔵して膨脂すると
、樹脂多孔質成形体2の全体が肌性変形して水素吸蔵成
形体1の体積が増大する。
Each alloy particle 3,3. ... absorbs hydrogen and expands, the entire porous resin molded body 2 undergoes skin deformation and the volume of the hydrogen storage molded body 1 increases.

一方、合金粒子3,3.・・・から水素が放出されると
、この水素は上記空隙を通って成形体1の外部へ放出さ
れる。このとき、各合金粒子3.3・・は水素を放出し
たことにより収縮し、成形体1の体積が減少する。
On the other hand, alloy particles 3, 3. When hydrogen is released from ..., this hydrogen is released to the outside of the molded body 1 through the above-mentioned voids. At this time, each alloy particle 3.3... contracts due to the release of hydrogen, and the volume of the compact 1 decreases.

第3図に、本発明に関わる水素吸蔵成形体を採用した水
素燃料残量計100を示す。
FIG. 3 shows a hydrogen fuel gauge 100 that employs the hydrogen storage molded body according to the present invention.

燃料タンク10内にlx4たされた水素ガスは、上記タ
ンクコ0内に収容されている水素吸蔵合金]]から焼結
金網フィルタ12を介して水素吸蔵成形体1に吸蔵され
る。上記成形体1が水素を吸蔵してその体積が膨脹する
と、下部磁石13が皿バネ14に抗して押し上げられ、
さらに下部磁石13に反発する磁性を備えた上部磁石1
5が上昇する。これにより、上部磁石15を支持してい
るダイヤフラム16が上動し、下気発生液体から成るl
&柱17の波面が上昇する。かくして液面の位置か、磁
性フロート]8と、該フロート18に吸弓される磁性を
持った磁性リング19と、該磁性リング]9に設けられ
た指針20とにより目盛2]」二に示され、これによっ
て水素の吸蔵量が視認される。なお、タンク10内の水
素ガス量か減少し、水素吸蔵成形体]から水素が放出さ
れた場合には、上記成形体1が収縮し、もって指針20
か下降してタンク10内の水素量が減ったことを示すの
は言うまでもない。
The hydrogen gas stored in the fuel tank 10 is stored in the hydrogen storage molded body 1 via the sintered wire mesh filter 12 from the hydrogen storage alloy contained in the tank 0. When the molded body 1 absorbs hydrogen and expands in volume, the lower magnet 13 is pushed up against the disc spring 14,
Furthermore, the upper magnet 1 has magnetism that repels the lower magnet 13.
5 rises. As a result, the diaphragm 16 supporting the upper magnet 15 moves upward, and the lubricant consisting of the lower air generated liquid
& The wave front of pillar 17 rises. Thus, the position of the liquid level is determined by the magnetic float 8, the magnetic ring 19 with magnetism that is absorbed by the float 18, and the pointer 20 provided on the magnetic ring 9, as shown in the scale 2. This allows the amount of hydrogen stored to be visually confirmed. Note that when the amount of hydrogen gas in the tank 10 decreases and hydrogen is released from the hydrogen storage molded body, the molded body 1 contracts and the pointer 20
Needless to say, this indicates that the amount of hydrogen in the tank 10 has decreased.

なお、実施例では樹脂多孔質成形体の材料としてポリプ
ロピレンを用いているが、樹脂多孔質成形体を作り得る
ものであれば様々な樹脂材tIを使用できることは勿論
である。また、水素吸蔵合金も、実施例のタンタル・ニ
ッケル系以外の合金、例えばチタン・鉄系の合金等を適
宜採用できることは言うまでもない。さらに、木実hア
例では、水素の吸蔵、放出時における成形体の体積変化
を利用しているが、多孔質成形体の利オ′、1どして中
11性串の低い、すなわち柔らかい樹脂を使うことによ
り、水素吸蔵合金粒子の膨脹・収縮による成形体の内部
応力を吸収することが可能となる。
In the examples, polypropylene is used as the material for the porous resin molded body, but it goes without saying that various resin materials tI can be used as long as the porous resin molded body can be made. It goes without saying that the hydrogen storage alloy may be any alloy other than the tantalum/nickel type used in the embodiments, such as a titanium/iron alloy. Furthermore, in the tree nut case example, the change in volume of the molded body during absorption and release of hydrogen is utilized; By using a resin, it becomes possible to absorb the internal stress of the molded body due to the expansion and contraction of the hydrogen storage alloy particles.

〔発明の効果〕〔Effect of the invention〕

以上、詳述した如く、本発明に関わる水素吸蔵成形体に
よれば、樹脂多孔質成形体に水素吸蔵合金粒子を混入し
ているので、上記合金粒子は上記樹脂に閉じ込められた
格好となる。このため、含金粒子が微粉化しても、この
合金微粉が水素ガスとともに成形体外部へ放出されるこ
とは珂及的に防止される。
As described above in detail, according to the hydrogen storage molded body of the present invention, hydrogen storage alloy particles are mixed into the resin porous molded body, so that the alloy particles are trapped in the resin. Therefore, even if the metal-containing particles are pulverized, this alloy fine powder is largely prevented from being released to the outside of the compact together with hydrogen gas.

また、本発明の水素吸蔵成形体では、各合金粒子は樹脂
を介して結合される格好となっている。
Further, in the hydrogen storage molded article of the present invention, each alloy particle is bonded via a resin.

このため、水素の吸蔵、放出によって各合金粒子が膨脹
・収縮すると、上記樹脂の伸性によって成形体全体が弾
性変形する。よって上記成形体の体積変化を、水素吸蔵
量等を知るための手段として有効に利用することができ
る。
Therefore, when each alloy particle expands and contracts due to absorption and release of hydrogen, the entire molded body is elastically deformed due to the extensibility of the resin. Therefore, the change in volume of the molded body can be effectively used as a means for determining the hydrogen storage amount and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に関わる水素吸蔵成形体の一部を破断じ
て示す概念図、第2図は本発明の水素吸蔵成形体におけ
る吸蔵水素濃度と歪との関係を表わすグラフであり、第
3図は本発明に関わる水素吸蔵成形体を用いた水素燃料
残量51の側面断面図である。 1・・・水素吸蔵成形体、 2・・ 樹脂多孔質成形体、 3・・・水素吸蔵合金粒子、 4 ・・ 伝熱性改良利微粒子、 0・・・水素燃料残量計。 出廓人 枠木自動車T業株式会′f−1 ]
FIG. 1 is a conceptual diagram showing a partially broken hydrogen storage molded body according to the present invention, FIG. 2 is a graph showing the relationship between the occluded hydrogen concentration and strain in the hydrogen storage molded body of the present invention, and FIG. The figure is a side cross-sectional view of the remaining hydrogen fuel amount 51 using the hydrogen storage molded body according to the present invention. DESCRIPTION OF SYMBOLS 1...Hydrogen storage molded body, 2...Porous resin molded body, 3...Hydrogen storage alloy particles, 4...Heat conductivity improved fine particles, 0...Hydrogen fuel remaining amount meter. Outer Frame Automotive T Industry Co., Ltd.'f-1]

Claims (1)

【特許請求の範囲】[Claims]  樹脂多孔質成形体に、水素吸蔵合金粒子を混入して成
る水素吸蔵成形体。
A hydrogen-absorbing molded body made by mixing hydrogen-absorbing alloy particles into a porous resin molded body.
JP19887789A 1989-07-31 1989-07-31 Hydrogen-occlusion formed article Pending JPH0362834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19887789A JPH0362834A (en) 1989-07-31 1989-07-31 Hydrogen-occlusion formed article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19887789A JPH0362834A (en) 1989-07-31 1989-07-31 Hydrogen-occlusion formed article

Publications (1)

Publication Number Publication Date
JPH0362834A true JPH0362834A (en) 1991-03-18

Family

ID=16398410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19887789A Pending JPH0362834A (en) 1989-07-31 1989-07-31 Hydrogen-occlusion formed article

Country Status (1)

Country Link
JP (1) JPH0362834A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145002A (en) * 1981-01-19 1982-09-07 Mpd Technology Polymer structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145002A (en) * 1981-01-19 1982-09-07 Mpd Technology Polymer structure

Similar Documents

Publication Publication Date Title
US8628609B2 (en) Hydrogen storage tank
US5625742A (en) Thermally insulating jacket under reversible vacuum utilizing hydrogen getter in combination with non-evaporable promoter getter
US4110425A (en) Form retaining hydrogen-storing material
Stanev et al. Open-cell metallic porous materials obtained through space holders—Part I: Production methods. A review
Kim et al. Development of LaNi5/Cu/Sn metal hydride powder composites
JP2011508659A (en) Hydrogen storage materials based on magnesium hydride
KR20030007578A (en) Tank for the reversible storage of hydrogen
JPS61132501A (en) Formed hydrogen storage alloy
US5460745A (en) Hydride compositions
JPH0362834A (en) Hydrogen-occlusion formed article
Murray et al. Reactive Sintering and Reactive Hot Isostatic Compaction of Niobium Aluminide NbAl3
US6672372B1 (en) Hydrogen storage device for avoiding powder dispersion
Nam et al. Freeze casting is a facile method to create solid solution alloy foams: Cu–Ni alloy foams via freeze casting
JPH01119501A (en) Hydrogen storage body
JPH0359968B2 (en)
JPS5992902A (en) Hydrogen from ammonia
JP4721597B2 (en) Method for producing Mg-based hydrogen storage alloy
Silva et al. Thermodynamic effect of pressure on nucleation activation energy
JPH10194701A (en) Absorption and release of hydrogen and vessel for storing hydrogen
JPH06221500A (en) Alloy storage tank for storing hydrogen
Romanov et al. Use of Carbon Nano Fibers in the Production of Metal Hydride Compacts
Kallweit et al. Effective thermal conductivity of metal hydride powders: measurement and theoretical modelling
Romanov et al. Enhancing metal hydride thermal conductivity by forming compacts
Noohi et al. Use of Low Melting Point Metals and Alloys (Tm< 420◦ C) as Phase Change Materials: A Review. Metals 2022, 12, 945
JP4267418B2 (en) Method for producing molded body of hydrogen storage alloy