JPH0362827A - Production of uniform polymer granule - Google Patents

Production of uniform polymer granule

Info

Publication number
JPH0362827A
JPH0362827A JP19726789A JP19726789A JPH0362827A JP H0362827 A JPH0362827 A JP H0362827A JP 19726789 A JP19726789 A JP 19726789A JP 19726789 A JP19726789 A JP 19726789A JP H0362827 A JPH0362827 A JP H0362827A
Authority
JP
Japan
Prior art keywords
nozzle
droplets
dispersion medium
dispersion
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19726789A
Other languages
Japanese (ja)
Other versions
JP2921869B2 (en
Inventor
Tamiyuki Eguchi
江口 民行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP19726789A priority Critical patent/JP2921869B2/en
Publication of JPH0362827A publication Critical patent/JPH0362827A/en
Application granted granted Critical
Publication of JP2921869B2 publication Critical patent/JP2921869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

PURPOSE:To stably obtain the title fine granules for use as adsorbents, etc., without generating any noise by jetting a polymer-contg. solution of specified viscosity through a nozzle set in a dispersion medium toward an electrode equipped nearby while applying an alternate current voltage of constant period and by coagulating the resultant granule produced. CONSTITUTION:A solution containing a polymer for forming granules and <=50 cps in viscosity is introduced through an inlet 3 of a nozzle 2 set in a dispersion medium put into a dispersion tank 10 of a dispersion unit 1, and jetted through the nozzle 2 while applying an alternate current voltage of constant period, using an alternate current source 7, between the nozzle 2 and an electrode 8 equipped nearby said nozzle 2 in the medium, effecting formation, in the dispersion medium, of droplets of a number synchronous with the period of the alternate current voltage, followed by, in a moving tank 11, vaporizing the solvent in the droplets by a heating device 12, gelling through cooling, or adding a gelling accelerator to the dispersion to coagulate the droplets, thus obtaining the objective polymer granules.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は吸着剤やクロマトグラフィーの充填剤などに利
用できる均一な粒径を有するポリマ粒子(以下、均一ポ
リマー粒子という)の製沃に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the production of polymer particles having a uniform particle size (hereinafter referred to as uniform polymer particles) that can be used as adsorbents, chromatography fillers, and the like.

[従来の技術] 一定周期の機械的な振動を加えながら肢体をノズルから
気体中または分散媒中に噴出させると、振動数と同期し
た数の均一な液滴が形成されることを利用して、従来か
ら均一ポリマー粒子が製造されている。
[Prior art] This method takes advantage of the fact that when a limb is ejected from a nozzle into a gas or dispersion medium while applying mechanical vibration at a constant period, a uniform number of droplets are formed in synchronization with the vibration frequency. , uniform polymer particles have traditionally been produced.

この方法で、均一な液滴が形成される振動数は、lfk
体の粘性、表面張力、ノズル径、噴出流速、振動の振幅
などによって規定され、特定の範囲の値になる。一般に
、液滴径を小さくするためには振動数を大きくしなけれ
ばならないが、同期した状態にするためにはノズル径を
小さくし、噴出流速を大きくする必要がある。
In this method, the frequency at which uniform droplets are formed is lfk
It is determined by the viscosity of the body, surface tension, nozzle diameter, jet flow velocity, vibration amplitude, etc., and has a value within a specific range. Generally, in order to reduce the droplet diameter, it is necessary to increase the vibration frequency, but in order to achieve a synchronized state, it is necessary to reduce the nozzle diameter and increase the ejection flow velocity.

たとえば特開昭57−102095号公報には、重合性
モノマーを機械的な振動を加えながら液体分散媒中に噴
出させて均一な液滴にしたのち、重合させて均一ポリマ
ー粒子を製造することが記載されている。しかしながら
、前述のように、小さい液滴を作ろうとすれば噴出流速
を大きくしなければならないが、いたずらに噴出流速を
大きくすると分散媒との摩擦で噴出流が破砕される。し
たかって、この方法は、粒径約500珊以上の粒子をつ
るのに適用できる。
For example, JP-A-57-102095 discloses that a polymerizable monomer is ejected into a liquid dispersion medium while applying mechanical vibration to form uniform droplets, and then polymerized to produce uniform polymer particles. Are listed. However, as described above, if small droplets are to be produced, the ejection flow velocity must be increased, but if the ejection flow velocity is increased unnecessarily, the ejection flow will be broken by friction with the dispersion medium. Therefore, this method can be applied to hanging particles having a particle size of about 500 coral or more.

さらに小さい粒子を製造するために、特開昭[1l−8
3202号公報には重合性モノマーを機械的な振動を加
えながら気体中に噴出させて液滴にしたのちに重合させ
ることが記載されている。しかしなから、液滴径が小さ
くなるとともに液滴か気体中に長時間浮遊するようにな
り、あとから噴出した液滴と衝突して合体した液滴が多
数発生する。したかって、この方法で製造したポリマー
粒子は大きい粒径の粒子を多数含んでいる。また浮遊し
た液滴はノズルなどに付着して安定な製造を妨げる。
In order to produce even smaller particles, JP-A-Sho [1l-8
Publication No. 3202 describes that a polymerizable monomer is ejected into a gas while applying mechanical vibration to form droplets, and then polymerized. However, as the droplet diameter becomes smaller, the droplet becomes suspended in the gas for a longer period of time, and a large number of droplets are generated that collide with later ejected droplets and coalesce. Therefore, the polymer particles produced by this method contain many particles of large particle size. In addition, floating droplets adhere to nozzles and the like, interfering with stable production.

本発明者らは、特開昭03−117039号公報に記載
したように、直流電圧を与えたポリマー溶液に一定の機
械的な振動を加えながら同符号の電荷を帯びた液滴とし
て気体中に噴出させたのち、凝固液に侵入させて均一ポ
リマー粒子を製造する方法をすでに見出している。
As described in Japanese Unexamined Patent Publication No. 03-117039, the present inventors applied constant mechanical vibration to a polymer solution to which a DC voltage was applied, and formed droplets with the same electric charge into the gas. A method has already been found to produce uniform polymer particles by ejecting and then penetrating into a coagulation liquid.

しかし、この方法でも液滴が小さくなると長時間気体中
に浮遊し、ノズルや電極に付着して安定な製造が妨げら
れるばあいのあることがわかった。
However, even with this method, it has been found that if the droplets become small, they may remain suspended in the gas for a long time and adhere to the nozzle or electrode, interfering with stable production.

[発明が解決しようとする課題] 前記のように従来技術で粒径の小さい均一ポリマー粒子
を製造しようとすれば、まず気体中にその前駆体になる
液体の微小な液滴を形成させなければならないが、この
ような液滴は気体中に長時間ff−遊し、合体した液滴
が多数できる原因になったり、ノズルや電極に付着して
安定な製造を妨げる原因になったりする。
[Problems to be Solved by the Invention] As mentioned above, in order to produce uniform polymer particles with a small particle size using the conventional technology, it is necessary to first form minute droplets of a liquid that will become a precursor in a gas. However, such droplets remain ff- in the gas for a long time, causing the formation of a large number of combined droplets, or adhering to nozzles and electrodes, which hinders stable production.

また、従来の技術では振動源として機械的な振動か用い
られているが、そのため大きな騒音を発生するので特別
な防音対策が必要である。
Further, in the conventional technology, mechanical vibration is used as a vibration source, but this generates a large amount of noise, so special soundproofing measures are required.

また振動部は一般に力学的な同調構造になっており、荷
重の変化や温度変化に対して敏感で一定の振動数を長時
間保つのはきわめて難しい。
Furthermore, vibrating parts generally have a mechanically tuned structure, and are sensitive to changes in load and temperature, making it extremely difficult to maintain a constant frequency for long periods of time.

振動数か変われば当然粒子径も変わる。Naturally, if the vibration frequency changes, the particle size will also change.

このような問題点は、機械的ではない、より安定な振動
源を利用して、ポリマー粒子の前駆体となる均一な液滴
を直接その分散媒の中に形成することができれば解決さ
れる。
These problems can be solved if uniform droplets, which are precursors of polymer particles, can be formed directly in the dispersion medium using a more stable vibration source than is mechanical.

ところで、第一の液体を、この液体と溶は合わない第二
の液体中に設置したノズルから、ノズルの近傍の第二の
肢体中に設けた電極とノズルとの間に一定周期の交流電
圧を加えながら噴出させると、その周期と同期して第一
の肢体の液滴か形成されることはすでに特開昭5817
5 [i 68号公報に記載されている。しかしながら
この技術を均一ポリマー粒子の製造のために利用するこ
とは誰も試みてはいない。前記公報にもこのような利用
方法は全く示唆されていないし、第一の液体および第二
の液体が保有すべき特性、ノズルの口径、第一の液体の
噴出速度、これらの特性と交流の電圧と周期の関係など
に関する充分な記載がなく、この方法が実際に均一ポリ
マー粒子の製造に応用できるかどうかは全く予想できな
いことである。
By the way, a constant periodic alternating current voltage is applied between the nozzle, which is placed in a second liquid that does not dissolve the first liquid, and the nozzle and an electrode provided in the second limb near the nozzle. It has already been reported in Japanese Patent Application Laid-Open No. 5817 (1983) that when ejecting water while adding water, droplets of the first limb are formed in synchronization with the period.
5 [Described in i 68 publication. However, no one has attempted to utilize this technique for the production of uniform polymer particles. The above-mentioned publication does not suggest such a method of use at all, and the characteristics that the first liquid and the second liquid should have, the aperture of the nozzle, the ejection speed of the first liquid, these characteristics and the AC voltage are not discussed at all. There is no sufficient description of the relationship between the period and the period, and it is completely unpredictable whether this method can actually be applied to the production of uniform polymer particles.

本発明者は、この方法がポリマー粒子の製造に応用でき
るかどうか改めて見直し、さらに検討を重ねた結果、本
発明に到達した。
The present inventor reconsidered whether this method could be applied to the production of polymer particles, and as a result of further studies, the present invention was achieved.

[課題を解決するための手段] 本発明は、 粘度が50cps以下の粒子形成用高分子物質を含む溶
液を、この溶液の分散媒中に設置したノズルから、ノズ
ルの近傍の分散媒中に設けた電極とノズルとの間に一定
周期の交流電圧を加えながら噴出させることによって、
交流電圧の周期と同期した数の前記溶液の液滴を前記分
散媒中に生成させたのち、加熱によりこの液滴中の溶剤
を揮発させる、冷却によってゲル化させる、またはこの
分散波にゲル化促進剤を添加することによって前記液滴
を凝固させることを特徴とする均一ポリマー粒子の製法
および 粘度が50cps以下のビニル重合性モノマー液を、こ
の液の分散媒中に設置したノズルから、ノズルの近傍の
分散媒中に設けた電極とノズルとの間に一定周期の交流
電圧を加えながら噴出させることによって、交流電圧の
周期と同期した数の前記液の液滴を前記分散媒中に生成
させたのち、重合させることを特徴とする均一ポリマ粒
子の製法 に関する。
[Means for Solving the Problems] The present invention provides the following methods: A solution containing a particle-forming polymer substance having a viscosity of 50 cps or less is introduced into a dispersion medium near the nozzle through a nozzle installed in a dispersion medium of this solution. By ejecting while applying a constant alternating current voltage between the electrode and the nozzle,
After generating droplets of the solution in the dispersion medium in a number synchronized with the cycle of the alternating current voltage, the solvent in the droplets is volatilized by heating, gelled by cooling, or gelled by the dispersion wave. A method for producing uniform polymer particles characterized in that the droplets are solidified by adding an accelerator, and a vinyl polymerizable monomer liquid having a viscosity of 50 cps or less is passed through a nozzle installed in a dispersion medium of this liquid. A number of droplets of the liquid synchronized with the cycle of the AC voltage are generated in the dispersion medium by ejecting the liquid while applying a constant cycle of AC voltage between an electrode provided in the dispersion medium in the vicinity and the nozzle. The present invention relates to a method for producing uniform polymer particles, which is characterized in that the particles are then polymerized.

[実施例] まず、本発明の均一ポリマー粒子の製法の第1の製法を
具体的に説明する。
[Example] First, the first method for producing uniform polymer particles of the present invention will be specifically described.

第1の製法には、粒子形成用高分子物質を含む溶液が使
用される。
The first manufacturing method uses a solution containing a particle-forming polymeric substance.

この高分子物質には、一般に溶剤に可溶な任意のものが
使用できるので、利用目的に適したものを選へばよい。
Generally, any solvent-soluble polymer can be used as this polymeric substance, so it is sufficient to select one suitable for the purpose of use.

該高分子物質は、天然高分子物質であってもよく、合成
高分子物質であってもよい。
The polymeric substance may be a natural polymeric substance or a synthetic polymeric substance.

前記天然高分子物質の具体例としては、たとえば、セル
ロース、アガロース、カラゲーナン、アルギン酸塩、絹
ブイプロイン、コラーゲン、キチンなどの天然高分子物
質やそれらの誘導体があげられ、これらから製造した粒
子は優れた機能性吸着剤や担体として有用である。
Specific examples of the natural polymer substances include natural polymer substances and derivatives thereof such as cellulose, agarose, carrageenan, alginate, silk buproin, collagen, and chitin, and particles produced from these substances have excellent properties. It is useful as a functional adsorbent or carrier.

前記合成高分子物質としては、たとえばポリビニルアル
コール、ポリ −γ −メチル−L−グルタメート、メ
チルメタクリレ−;・/ヒドロキシエチルメタクリレー
ト共重合体などがあげられ、これらも機能性吸着剤や担
体として適した粒子となる。また、スチレン/ブタジェ
ン共重合体、スチレン/クロロメチル化スチレン共重合
体のように架橋構造とイオン交換基を導入することがて
きるポリマーは、イオン交換樹脂の母材としても有用で
ある。
Examples of the synthetic polymer substances include polyvinyl alcohol, poly-γ-methyl-L-glutamate, methyl methacrylate/hydroxyethyl methacrylate copolymer, and these are also suitable as functional adsorbents and carriers. becomes a particle. Furthermore, polymers into which crosslinked structures and ion exchange groups can be introduced, such as styrene/butadiene copolymers and styrene/chloromethylated styrene copolymers, are also useful as base materials for ion exchange resins.

これらの高分子物質は疎水性または親水性の溶剤に溶解
して本発明に使用される。該溶剤には、後述する分散媒
と非相溶ないし貧相溶性の液体が選ばれる。
These polymeric substances are used in the present invention after being dissolved in a hydrophobic or hydrophilic solvent. A liquid that is incompatible or poorly compatible with the dispersion medium described below is selected as the solvent.

天然高分子物質およびその誘導体の溶剤は、高分子学会
高分子実験学編集委員会編、「天然高分子J (198
4)共立出版■や、サミュエル エム ハドソン(Sa
iuel M、Hudson)、ジョン エイ キュキ
ュo (John A、Cuculo)、「ジャーナル
 オブ マクロモレキュラー サイエンスレビュズ イ
ン マクロモレキュラー ケミストリー アンド フィ
ジクス(Journal ofMacroLIlole
cular Science−Reviews jnM
acromolecular  CheIllistr
y and Physics)J(1980)C18[
1)、1〜82な・どを参照して選ぶことができる。ま
た合成高分子物質の溶剤は、ジェイ ブランドラップ(
J、Brandrup)、「ポリマハンドブック セカ
ンド エデイジョン(Polymer l1andbo
ok、2nd edition) J (1975)、
ジョン ウィリー アンド サンス インコポレーテッ
ド(John Wiley and 5ons Inc
、)などを参考にして選ぶことができる。
Solvents for natural polymer substances and their derivatives are described in "Natural Polymer J (198
4) Kyoritsu Shuppan■ and Samuel M. Hudson (Sa.
iuel M, Hudson), John A, Cuculo, Journal of Macromolecular Science Reviews in Macromolecular Chemistry and Physics.
cular Science-Reviews jnM
acromolecular CheIllistr
y and Physics) J (1980) C18 [
1), 1 to 82, and so on. In addition, the solvent for synthetic polymer substances is J Brand Wrap (
J. Brandrup), “Polymer Handbook Second Edition”
OK, 2nd edition) J (1975),
John Wiley and Sons Inc.
, ), etc., can be used as a reference.

該溶剤の具体例としては、疎水性の溶剤としてはたとえ
ば塩化メチレン、クロロホルム、ジクロロエタン、トリ
クロロエタンなどの塩素化炭化水素が単独または2種類
以上混合して通常用いられる。これらの溶剤に凝固促進
剤として少量のメタノール、エタノールなどの低級アル
コールを添加することかできる。さらに、ポリマー粒子
を多孔質にするために炭素数が4〜12の脂肪族アルコ
ールを加えることもできる。親水性の溶剤としては、た
とえば水溶液、アセトン、テトラヒドロフラン、ジオキ
サン、ジメチルホルムアミド、ジメチルアセトアミド、
ジメチルスルホキシド、N−メチル−2−ピロリドンな
どの水溶性溶剤が通常用いられる。これらに凝固促進の
ため、またはポリマー粒子を多孔質にするために水溶性
低級アルコール、水溶性多価アルコール、無機塩類など
を加えることもできる。
As specific examples of the solvent, hydrophobic solvents such as chlorinated hydrocarbons such as methylene chloride, chloroform, dichloroethane, and trichloroethane are commonly used singly or in combination of two or more. A small amount of lower alcohol such as methanol or ethanol can be added to these solvents as a coagulation accelerator. Furthermore, an aliphatic alcohol having 4 to 12 carbon atoms can be added to make the polymer particles porous. Examples of hydrophilic solvents include aqueous solution, acetone, tetrahydrofuran, dioxane, dimethylformamide, dimethylacetamide,
Water-soluble solvents such as dimethyl sulfoxide and N-methyl-2-pyrrolidone are commonly used. Water-soluble lower alcohols, water-soluble polyhydric alcohols, inorganic salts, etc. can also be added to these to promote coagulation or to make the polymer particles porous.

前記粒子形成用高分子物質を含む溶液の粘度は、30℃
で50cps以下、好ましくは20cps以下である。
The viscosity of the solution containing the particle-forming polymer substance is 30°C.
is 50 cps or less, preferably 20 cps or less.

粘度が50cpsよりも大きくなると交流周期と同期し
た液滴にはなりにくい。また、この溶液の電気伝導度に
はとくに制限はない。
When the viscosity is greater than 50 cps, it is difficult to form droplets that are synchronized with the alternating current cycle. Further, there is no particular restriction on the electrical conductivity of this solution.

本発明においては、前記粒子形成用高分子物質を含む溶
液を、後述のごとくノズルから該溶液と非相溶性ないし
貧相溶性の分散媒中に噴出させることにより、液滴が形
成される。
In the present invention, droplets are formed by ejecting a solution containing the particle-forming polymeric substance from a nozzle into a dispersion medium that is incompatible or poorly compatible with the solution, as described below.

該分散媒は、高分子物質の溶剤が疎水性のばあいにはO
/W型の分散液ができるように非イオン性の界面活性剤
、たとえばゼラチン、メチルセルロース、ポリビニルア
ルコール、ポリオキシエチレンソルビタンモノラウレー
ト、ポリオキシエチレンラウリルエーテル、ポリエチレ
ングリコールモノステアレートなどを0.2〜5%(重
量%、以下同様)添加した水溶液が通常使1 用される。逆に、高分子物質の溶剤が親水性のばあいに
は分散媒として疎水性の有機液体が用いられる。有機液
体の具体例としては、たとえば流動パラフィン、リグロ
イン、テトラリンなどの炭化水素系液体、なたね油、綿
実油などの殖物油、四塩化炭素、1,1,2.2−テト
ラクロロエタンなどのハロゲン化炭化水素系溶剤などが
用いられる。これらにはW2O型の分散液ができるよう
にIII、B  (t(ydrophilic−Lip
ophiljc−Balance)(板目 博、「新界
面活性剤J (1981)三共出版■p、63〜70参
照)が3〜7の界面活性剤、たとえばグリセロールモノ
ステアレート、グリセロールモノオレエート、ソルビタ
ンモノオレエート4などが0,5〜5%程度添加される
The dispersion medium is O when the solvent for the polymeric substance is hydrophobic.
/W type dispersion by adding a nonionic surfactant such as gelatin, methylcellulose, polyvinyl alcohol, polyoxyethylene sorbitan monolaurate, polyoxyethylene lauryl ether, polyethylene glycol monostearate, etc. An aqueous solution containing ~5% (by weight, hereinafter the same) is usually used. Conversely, when the solvent for the polymeric substance is hydrophilic, a hydrophobic organic liquid is used as the dispersion medium. Specific examples of organic liquids include hydrocarbon liquids such as liquid paraffin, ligroin, and tetralin, cultivated oils such as rapeseed oil and cottonseed oil, and halogenated carbonates such as carbon tetrachloride and 1,1,2,2-tetrachloroethane. A hydrogen-based solvent or the like is used. III, B (t(hydrophilic-Lip
surfactants containing 3 to 7 surfactants, such as glycerol monostearate, glycerol monooleate, sorbitan mono Oleate 4 and the like are added in an amount of about 0.5 to 5%.

分散媒の粘度は小さい方が好ましく、30℃で50cp
s以下が好ましく 、20cps以下がさらに好ましく
、5 cps以下がとくに好ましい。粘度が大きくなる
とノズルから高流速で肢体を噴出させたとき粘性抵抗に
よって噴流が破壊され、均一な液滴ができにくくなる傾
向がある。
The smaller the viscosity of the dispersion medium, the lower the viscosity is, and the viscosity is 50 cp at 30°C.
s or less, more preferably 20 cps or less, particularly preferably 5 cps or less. When the viscosity increases, when the limb is ejected from the nozzle at a high flow rate, the jet stream is destroyed by viscous resistance, making it difficult to form uniform droplets.

2 分散媒の電気伝導度はI Q−10〜10μslam、
さらには10−7〜10−0μs/cmであるのが好ま
しい。また誘電率は大きいほうが好ましい。電気伝導度
が大きすぎても小さすぎても均一な液滴はできにくくな
る傾向がある。その理由は充分解明されていないが、お
そらく電気伝導度が大きすぎると液滴になる直前のノズ
ルにある液体の電荷が直ちに中和され、電極とその液体
との間に1力が働かなくなるからだと思われる。また電
気伝導度が小さく、誘電率も小さいばあいには、ノズル
のまわりの分散媒に多量の電荷が誘発されず、ノズル口
にある同じ符号の液体との間に大きな反発力が働かなく
なるからだと思われる。
2 The electrical conductivity of the dispersion medium is IQ-10 to 10 μslam,
More preferably, it is 10-7 to 10-0 μs/cm. Further, it is preferable that the dielectric constant is large. If the electrical conductivity is too high or too low, uniform droplets tend to be difficult to form. The reason for this is not fully understood, but it is probably because if the electrical conductivity is too high, the electric charge of the liquid in the nozzle just before it becomes a droplet is immediately neutralized, and no single force acts between the electrode and the liquid. I think that the. Also, if the electrical conductivity and dielectric constant are small, a large amount of charge will not be induced in the dispersion medium around the nozzle, and a large repulsive force will not work between it and the liquid of the same sign at the nozzle opening. I think that the.

前記噴出は、粒子形成用高分子物質を含む溶液を、分散
媒中に設置したノズルから、ノズルの近傍の分散媒中に
設けた電極とノズルとの間に一定周期の交流電圧を加え
ながら噴出するという方法で行なわれる。
The jetting is performed by jetting a solution containing a particle-forming polymer substance from a nozzle placed in a dispersion medium while applying a constant alternating current voltage between the nozzle and an electrode placed in the dispersion medium near the nozzle. It is done in this way.

本発明では、このように噴出が分散媒中で行なわれるた
め、液滴に空中を経由させる方法のようにあとから噴出
した液滴と合体して粒径が大きくなったり、液滴がノズ
ルや電極に付着することかほとんど生じなくなる。また
液滴が交流電圧の周期により形成され、機械的振動によ
らないため、噴出流速をそれほど大きくしなくても粒径
を小さくすることができ、騒音の問題かなく、しかも周
期が安定しているので、液滴の粒径が一定化する。
In the present invention, since ejection is performed in a dispersion medium in this way, the droplets may coalesce with later ejected droplets and become larger in size, or the droplets may not reach the nozzle or Almost no adhesion to the electrodes occurs. In addition, since the droplets are formed by the cycle of AC voltage and are not dependent on mechanical vibrations, the droplet size can be reduced without increasing the ejection flow rate, there is no noise problem, and the cycle is stable. Because of this, the particle size of the droplets becomes constant.

つぎに前記噴出により液滴を形成する方法を、第1図に
基づいて説明する。
Next, a method of forming droplets by the jetting will be explained based on FIG. 1.

第1図は、本発明に使用しつる装置の一例を示す一部断
面図である。第1図に示される分散装置(1)では、液
滴にすべき高分子物質の溶液は矢印で示すようにノズル
(2)の入口(3)から分散槽00の中に一定流量で噴
出せしめられる。
FIG. 1 is a partially sectional view showing an example of a hanging device used in the present invention. In the dispersion device (1) shown in Fig. 1, a solution of a polymeric substance to be formed into droplets is ejected at a constant flow rate from the inlet (3) of the nozzle (2) into the dispersion tank 00 as shown by the arrow. It will be done.

ノズル(2)は一般に金属製のものが用いられ、図示し
たように分散媒と接する部分(4)は針状の先端を除い
て電気絶縁被覆が施されている。第1図の装置では、第
2図(ノズル先端部の断面の拡大図)に示すような単孔
のノズルを使用しているが、多孔ノズルを使用すること
も勿論可能である。またノズルの液体噴出口041の口
径は通常20〜250摩であるが、250um以下の比
較的粒径の小さい液滴を作るためには口径は200ρ以
下が好ましく、ノズルの目詰りをさけるためには402
/m以上が好ましい。
The nozzle (2) is generally made of metal, and as shown in the figure, the part (4) that comes into contact with the dispersion medium is covered with an electrically insulating coating except for the needle-like tip. Although the apparatus shown in FIG. 1 uses a single-hole nozzle as shown in FIG. 2 (enlarged cross-sectional view of the nozzle tip), it is of course possible to use a multi-hole nozzle. In addition, the diameter of the liquid ejection port 041 of the nozzle is normally 20 to 250μ, but in order to produce droplets with a relatively small particle size of 250um or less, the diameter is preferably 200μ or less, and in order to avoid clogging of the nozzle. is 402
/m or more is preferable.

分散媒は矢印で示すように人口(5)から電気絶縁体製
の整流板(6)を経て分散槽00内に送り込まれる。(
8)は電極であり、たとえばステンレススチールなどの
金属製で内径10〜20mn+程度のリング状であり、
ノズル(2)の近傍、好ましくはノズル(2)の先端か
ら10〜50fflffI程度離れた位置に、ノズル(
2)から噴出する高分子物質の溶液がリング内を通過す
るように設置されている。電極(8)からのリード線は
、分散槽の)の壁面から電気絶縁的に引出口(9)を経
て、取り出され、交流電源(7)に接続されている。交
流電源(刀からのリード線のもう一端はノズル(2)に
接続される。移動槽01)には分散液の温度を調節する
ためのジャケット02)が付されている。
The dispersion medium is fed into the dispersion tank 00 from the population (5) through the current plate (6) made of an electrical insulator as shown by the arrow. (
8) is an electrode, which is made of metal such as stainless steel and has a ring shape with an inner diameter of about 10 to 20 mm,
The nozzle (2) is placed near the nozzle (2), preferably at a position approximately 10 to 50 fflffI away from the tip of the nozzle (2).
2) The ring is installed so that a solution of a polymer substance ejected from the ring passes through the ring. The lead wire from the electrode (8) is taken out from the wall of the dispersion tank via the outlet (9) in an electrically insulating manner, and is connected to the AC power source (7). The other end of the lead wire from the AC power source (the other end of the lead wire from the sword is connected to the nozzle (2). The moving tank 01) is equipped with a jacket 02) for adjusting the temperature of the dispersion liquid.

5 ノズル(2)からの高分子物質を含む溶液の吐出量はレ
イノルズ数に換算したとき10〜100[1の範囲であ
ることが好ましく、さらに好ましくは20〜500であ
る。レイノルズ数がlO以下では液滴の生産量が少なく
なり、一方1000をこえると同期状態に達する交流の
電圧と周期が数kV、 10kllzをこえ、安定した
状態を維持することが難しくなる傾向がある。
5. The discharge amount of the solution containing the polymeric substance from the nozzle (2) is preferably in the range of 10 to 100[1], more preferably 20 to 500 when converted to Reynolds number. When the Reynolds number is less than 1O, the amount of droplets produced decreases, while when it exceeds 1000, the AC voltage and period that reach the synchronized state exceed several kV and 10kllz, and it tends to be difficult to maintain a stable state. .

交流の電圧と周期はそれぞれ数kVおよび10kHz以
下であることが好ましい。しかしながら、同期状態かえ
られる電圧と周期は独立には設定できないため、通常3
00〜5000V、  500〜10000Hzの範囲
で比例的に設定される。
The voltage and period of the alternating current are preferably several kV and 10 kHz or less, respectively. However, since the voltage and period at which the synchronization state can be changed cannot be set independently, there are usually 3
It is set proportionally in the range of 00 to 5000V and 500 to 10000Hz.

分散媒の流量は分散液中の液滴の濃度が5容量%以下に
なるようにするのが好ましく、さらに好ましくは3容量
%以下である。このような流量で分散媒を流すことによ
り電極のまわりに液滴が滞留して液滴同士の再結合や電
極への付着が生じることなく液滴が分散媒で流し去られ
る。
The flow rate of the dispersion medium is preferably such that the concentration of droplets in the dispersion liquid is 5% by volume or less, more preferably 3% by volume or less. By flowing the dispersion medium at such a flow rate, the droplets can be washed away by the dispersion medium without causing the droplets to accumulate around the electrode and cause the droplets to recombine with each other or adhere to the electrode.

6 以」二のようにして噴出せしめられた高分子物質を含む
溶液は、交流の周期と同期した均一な粒径を有する液滴
状(すでに凝固粒子になっているばあいもある)となっ
て分散媒中に分散し、矢印で示すように分散液流出口0
3)から取り出され、追加処理檜(図示せず)に送られ
る。
6. The solution containing the polymer substance ejected as described above becomes droplets (in some cases, they may already be solidified particles) with a uniform particle size that is synchronized with the cycle of the alternating current. The dispersion liquid is dispersed in the dispersion medium, and the dispersion liquid outlet 0 is dispersed as shown by the arrow.
3) and sent to additional processing cypress (not shown).

ついで、たとえば加熱によって液滴中の溶剤を揮発させ
る、冷却によってゲル化させる、この分散液にゲル化促
進剤を添加するなどの方法によって凝固させることによ
り、目的の均一ポリマー粒子が製造される。これらのう
ちのいずれを用いて液滴を凝固するかは主にその溶液特
性によって決めればよい。
Next, the desired uniform polymer particles are produced by solidifying the droplets by, for example, volatilizing the solvent in the droplets by heating, gelling them by cooling, or adding a gelling promoter to this dispersion. Which of these methods is used to solidify the droplets can be determined mainly based on the solution properties.

たとえば、溶剤として高分子物質の揮発性の良溶剤と難
揮発性の非溶剤との混合溶剤を使用した液滴は、加熱し
て分散媒中で良溶剤を揮発させることにより凝固させう
る。
For example, droplets using a mixed solvent of a volatile good solvent of a polymeric substance and a hardly volatile non-solvent as a solvent can be solidified by heating to volatilize the good solvent in the dispersion medium.

また高分子物質を含む溶液としである温度以下でゾルか
らゲルへ転移する溶液を用いるばあい、ゾル状態の溶液
から液滴を作り、温度を下げてその液滴をゲル化させる
ことにより凝固させうる。
In addition, when using a solution containing a polymer substance that transitions from sol to gel at a certain temperature or lower, droplets are created from the solution in a sol state, and the droplets are solidified by lowering the temperature and turning the droplets into a gel. sell.

このような方法では液滴を凝固させることができないば
あいには、ゲル化促進剤を徐々に添加してその液滴を凝
固させることかできる。ゲル化促進剤としては、液滴の
溶剤とはよく溶は合うが、高分子物質の非溶剤である液
体、たとえば溶剤として前記の疎水性の溶剤を使用する
ばあいには、ゲル化促進剤として炭素数が1〜4の一価
もしくは多価アルコールなどを用いることができる。そ
の他、高分子物質間の架橋剤を含む液体、加水分解など
の化学変化をもたらして溶解性を失わせる試薬を含む液
体などがあげられる。
If the droplets cannot be solidified by such methods, a gelling promoter can be gradually added to solidify the droplets. The gelation promoter is a liquid that dissolves well in the solvent of the droplets, but is a non-solvent for the polymeric substance, for example, when the above-mentioned hydrophobic solvent is used as the solvent, the gelation promoter is used. As the alcohol, a monohydric or polyhydric alcohol having 1 to 4 carbon atoms can be used. Other examples include liquids containing cross-linking agents between polymeric substances, and liquids containing reagents that cause chemical changes such as hydrolysis to cause loss of solubility.

ポリマー粒子の微細構造も種々の方法で調整しうるが、
一般に、稀薄な溶、波状態で液滴を凝固させると多孔質
になり、逆に濃厚な溶液にしてから凝固させると緻密な
構造になる。たとえば揮発性の溶剤たけに高分子物質を
溶かしてなる液滴を、この溶剤を揮発させることによっ
て凝固させるときわめて緻密なポリマー粒子かえられる
。しかし、この溶液に高分子物質の難揮発性の非溶剤を
多量に加えることによって、良溶剤が少量揮発するだけ
で液滴がゲル化するようにするときわめて多孔質な構造
のポリマー粒子になる。その他の凝固方法を採用するば
あいにも基本的には同様な考え方によってポリマー粒子
の描込は調整できる。
The microstructure of polymer particles can also be adjusted in various ways, including
Generally, if a droplet is solidified in a dilute solution or wave state, it becomes porous, and conversely, if it is made into a concentrated solution and then solidified, it becomes a dense structure. For example, if droplets made by dissolving a polymer substance in a volatile solvent are solidified by volatilizing the solvent, extremely dense polymer particles can be obtained. However, by adding a large amount of a non-volatile polymeric non-solvent to this solution, the droplets will gel with just a small amount of volatilization of the good solvent, resulting in polymer particles with an extremely porous structure. When other coagulation methods are adopted, the patterning of polymer particles can be adjusted basically using the same concept.

前記のようにして分散媒中で凝固した液滴には、一般に
、さらに強度を上げるために架橋反応させたり、加水分
解処理したり、イオン交換基や抗体などの生理活性物質
などを導入したりして使用目的に滴した処理が加えられ
る。
The droplets coagulated in the dispersion medium as described above are generally subjected to a crosslinking reaction, hydrolyzed, or introduced with ion exchange groups, antibodies, or other physiologically active substances to further increase their strength. It is then processed according to the intended use.

つぎに本発明の均一ポリマー粒子の製法の第2の製法を
説明する。
Next, a second method for producing uniform polymer particles of the present invention will be explained.

第2の製法には、高分子物質の溶液ではなく、ビニル重
合性モノマー液が使用される。該ビニル重合性モノマー
液は、後述のごとくモノマ液と非相溶性ないし貧相溶性
の分散媒中に均一液滴状に分散させたのち、公知の懸濁
重合法に9 よって重合させて均一ポリマー粒子とされる。
In the second manufacturing method, a vinyl polymerizable monomer solution is used instead of a solution of a polymeric substance. The vinyl polymerizable monomer liquid is dispersed in the form of uniform droplets in a dispersion medium that is incompatible or poorly compatible with the monomer liquid, as described below, and then polymerized by a known suspension polymerization method to form uniform polymer particles. It is said that

該分散液は0/W型でもよいためモノマーは疎水性であ
ってもよ< 、W2O型でもよいためモノマは親水性で
あってもよい。またビニル重合性モノマーは単独で用い
てもよいし二押類以上併用してもよい。またビニル基を
二つ以上有するモノマーを加えてもよい。このようなモ
ノマからなるビニル重合性モノマー液には、えられるポ
リマー粒子の構造を調整するために非反応性の希釈剤を
加えてもよい。希釈剤の具体例としては、たとえばベン
ゼン、ジエチルベンゼン、キシレン、トルエンなど、炭
素数が5〜12の脂肪族飽和炭化水素、炭素数が5〜1
2の脂肪族低級アルコールなどがあげられる。
The dispersion may be of the 0/W type, so the monomers may be hydrophobic, or the dispersion may be of the W2O type, so the monomers may be hydrophilic. Further, the vinyl polymerizable monomers may be used alone or in combination of two or more. Furthermore, a monomer having two or more vinyl groups may be added. A non-reactive diluent may be added to the vinyl polymerizable monomer liquid composed of such monomers in order to adjust the structure of the resulting polymer particles. Specific examples of diluents include aliphatic saturated hydrocarbons having 5 to 12 carbon atoms, such as benzene, diethylbenzene, xylene, toluene, and 5 to 1 carbon atoms.
2 aliphatic lower alcohols, etc.

前記疎水性モノマーの具体例としては、たとえばスチレ
ン、エチルスチレン、クロロメチル化スチレン、アクリ
ル酸メチル、メタクリル酸メチル、アクリロニトリル、
無水マレイン酸、酢酸ビニルなどのモノビニルモノマー
 ジビニルベンゼン、エチレングリコールジメタクリレ
0 ト、ポリエチレングリコールジメタクリレート、フタル
酸ジアリルなどのポリビニルモノマなどがあげられる。
Specific examples of the hydrophobic monomer include styrene, ethylstyrene, chloromethylated styrene, methyl acrylate, methyl methacrylate, acrylonitrile,
Examples include monovinyl monomers such as maleic anhydride and vinyl acetate; polyvinyl monomers such as divinylbenzene, ethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, and diallyl phthalate.

これらのうちで、スチレン−ジビニルベンゼン、クロロ
メチル化スチレン−ジビニルベンゼン、スチレン−無水
マレイン酸−ジビニルベンゼン、メタクリル酸メチル−
ジビニルベンゼン、メタクリル酸メチル−エチレングリ
コールジメタクリレートなどの組合わせはとくに好まし
い。これらの疎水性モノマー液には、たとえば過酸化ベ
ンゾイル、アゾビスイソブチロニトリルなどの紫外線照
射や加熱によってフリーラジカルを生成させうる重合開
始剤が添加される。
Among these, styrene-divinylbenzene, chloromethylated styrene-divinylbenzene, styrene-maleic anhydride-divinylbenzene, methyl methacrylate-
Combinations such as divinylbenzene and methyl methacrylate-ethylene glycol dimethacrylate are particularly preferred. A polymerization initiator, such as benzoyl peroxide or azobisisobutyronitrile, which can generate free radicals by ultraviolet irradiation or heating is added to these hydrophobic monomer liquids.

前記親水性モノマーの具体例としては、たとえばアクリ
ルアミド、種々のアルキルアクリルアミド、ヒドロキシ
エチルメタクリレート、アクリル酸、ビニルスルホン酸
、N−ビニルピロリドンなどがあげられる。これらのポ
リマーは水溶性であるので通常架橋剤と共重合させて不
溶化するために架橋剤が併用される。架橋剤には、たと
えばメチレンビスアクリルアミド、ポリエチレングリコ
ールジメタクリレートなどが用いられる。さらに重合開
始剤として、たとえば親水性の加硫酸アンモニウムなど
が添加される。
Specific examples of the hydrophilic monomer include acrylamide, various alkyl acrylamides, hydroxyethyl methacrylate, acrylic acid, vinyl sulfonic acid, N-vinylpyrrolidone, and the like. Since these polymers are water-soluble, a crosslinking agent is usually used in combination to make them insolubilized by copolymerization with a crosslinking agent. Examples of crosslinking agents used include methylene bisacrylamide and polyethylene glycol dimethacrylate. Further, as a polymerization initiator, for example, hydrophilic ammonium sulfate or the like is added.

前記ビニルモノマー液の粘度は、前述の高分子物質を含
む液と同様に30℃で50cps以下、好ましくは20
cps以下である。また、この液の電気伝導度にはとく
に制限はない。
The viscosity of the vinyl monomer liquid is 50 cps or less at 30°C, preferably 20
cps or less. Further, there is no particular limit to the electrical conductivity of this liquid.

前記分散媒としては、疎水性モノマーを用いるばあい、
第1の製法と同じように通常ゼラチン、メチルセルロー
ス、ポリビニルアルコールはどの非イオン性の界面活性
剤を(0,2〜5%程度)添加した水溶液が用いられる
When a hydrophobic monomer is used as the dispersion medium,
As in the first production method, an aqueous solution of gelatin, methylcellulose, and polyvinyl alcohol to which any nonionic surfactant (approximately 0.2 to 5%) is added is usually used.

また、親水性モノマーを用いるばあい、たとえばトルエ
ン、キシレン、テトラリン、リグロイン、流動パラフィ
ンなどの炭化水素系溶剤、四塩化炭素、トリクロロエチ
レン、1,1,2.2−テトラクロロエチレン、クロロ
ベンゼンなどのハロゲン化物、ひまし油、綿実油などの
植物油、シリコーンオイルなどが用いられ、これらに旧
、B値が3〜6の界面活性剤、たとえばソルビタンモノ
オレエート、グリセロールモノステアレートなどが05
〜5%程度添加される。
In addition, when using hydrophilic monomers, for example, hydrocarbon solvents such as toluene, xylene, tetralin, ligroin, liquid paraffin, halides such as carbon tetrachloride, trichloroethylene, 1,1,2.2-tetrachloroethylene, and chlorobenzene, Vegetable oils such as castor oil and cottonseed oil, silicone oils, etc. are used, and in the past, surfactants with a B value of 3 to 6, such as sorbitan monooleate and glycerol monostearate, are used.
~5% is added.

このような分散媒の物性(粘度、電気伝導度、誘導率な
ど)は、第1の製法に用いる分散媒と同様でよい。
The physical properties (viscosity, electrical conductivity, inductivity, etc.) of such a dispersion medium may be the same as those of the dispersion medium used in the first production method.

第2の製法においては、前記ビニルモノマ液および分散
媒を用い、たとえば第1図に示されるような装置を用い
て第1の製法と同様にして交流の周期と同期した液滴が
形成される。このような方法で液滴を形成させることに
より、ノズルや電極に液滴が付着することなく、粒径の
小さい均一な液滴を安定して製造することができる。
In the second manufacturing method, droplets are formed in synchronization with the cycle of alternating current in the same manner as in the first manufacturing method using the vinyl monomer liquid and the dispersion medium using, for example, an apparatus as shown in FIG. By forming droplets using such a method, it is possible to stably produce small, uniform droplets without adhering the droplets to the nozzle or electrode.

このようにして生成した液滴は、分散媒とともに分散液
流出口03)から取り出され、追加処理搏に送られる。
The droplets thus generated are taken out from the dispersion liquid outlet 03) together with the dispersion medium and sent to additional processing.

ついで加熱や紫外線照射によって重合させることにより
、目的の均一ポリマーが製造される。
The desired homogeneous polymer is then produced by polymerizing by heating or UV irradiation.

前記のようにしてえられた粒子は、使用目的3 によってはさらに親水基、イオン交換基、さらには抗体
などの生理活性物質などを導入する処理が加えられる。
The particles obtained as described above may be further processed to introduce hydrophilic groups, ion exchange groups, and physiologically active substances such as antibodies, depending on the intended use.

以上のごとき第1および第2の製法により、容積平均粒
子径(前記特開昭63−117039号公報参照)が2
0〜250umの微小なポリマー粒子であるにもかかわ
らす、全粒子容積の95%以上が該平均粒子径の±20
%以内であるというきわめて均一なポリマー粒子かえら
れる。
By the first and second manufacturing methods as described above, the volume average particle diameter (see the above-mentioned Japanese Patent Application Laid-open No. 117039/1983) is 2.
Although they are small polymer particles with a diameter of 0 to 250 um, more than 95% of the total particle volume is within ±20 um of the average particle diameter.
The result is extremely uniform polymer particles within 10% of each other.

以下に本発明の方法を実施例によってさらに具体的に説
明する。
The method of the present invention will be explained in more detail below using Examples.

実施例1 セルローストリアセテート5部(重量部、以下同様)を
、n−ブタノール20部と塩化メチレン75部の混合溶
剤に溶かした。この溶液の粘度は30℃で5 cpsで
あった。分散媒としてポリビニルアルコールの1%水溶
液を使用した。この水溶液の電気伝導度は0.6μs/
cmであった。
Example 1 5 parts (by weight, the same applies below) of cellulose triacetate was dissolved in a mixed solvent of 20 parts of n-butanol and 75 parts of methylene chloride. The viscosity of this solution was 5 cps at 30°C. A 1% aqueous solution of polyvinyl alcohol was used as a dispersion medium. The electrical conductivity of this aqueous solution is 0.6 μs/
It was cm.

これらの分散液を、第1図に示す分散装置(1)を用い
て以下のようにして製造した。
These dispersions were produced in the following manner using the dispersion apparatus (1) shown in FIG.

4 分散装置(1)は内径約60mm、長さ約1000 m
mの円筒状であり、ノズル(2)には口径100洞のス
テンレススチール製のものを使用した。電極(8)には
ステンレススチール製で内径20 mmのリング状のも
のを使用した。ノズルと定量ポンプ(図示せず)との間
はステンレススチール製パイプで接続した。たたし、ポ
ンプとの接続部には絶縁性材料を使用した。すなわち、
ポンプ以前の配管部材はノズルとは電気的に絶縁した。
4 Dispersion device (1) has an inner diameter of approximately 60 mm and a length of approximately 1000 m.
The nozzle (2) was made of stainless steel and had a diameter of 100 mm. The electrode (8) was made of stainless steel and had a ring shape with an inner diameter of 20 mm. A stainless steel pipe was connected between the nozzle and a metering pump (not shown). However, an insulating material was used for the connection to the pump. That is,
The piping components before the pump were electrically isolated from the nozzle.

セルローストリアセテートの溶液、分散媒の流量をそれ
ぞれ0.2ml/分(レイノルズ数に換算すると11に
相当する)および50m1/分にした。
The flow rates of the cellulose triacetate solution and the dispersion medium were set to 0.2 ml/min (corresponding to 11 when converted to Reynolds number) and 50 ml/min, respectively.

また、温度はともに30℃に保持した。Further, the temperature was maintained at 30°C in both cases.

電極はノズルの上方20mmの位置に固定し、4000
 II z、700Vの交流電圧をノズルと電極との間
に印加した。
The electrode was fixed at a position 20 mm above the nozzle, and
II z, an AC voltage of 700 V was applied between the nozzle and the electrode.

この状態で、交流の周期に同期した液滴か形成された。In this state, droplets were formed that were synchronized with the cycle of the alternating current.

なお、移動槽01)内は、30℃になるようにジャケッ
ト02)により調節されている。
Note that the temperature inside the transfer tank 01) is adjusted to 30° C. by a jacket 02).

この分散波を流出口03)からゆっくり回転する撹拌機
の付いたタンクに移し、35°C,5時間で塩化メチレ
ンを揮発させて液滴を凝固させた。
This dispersion wave was transferred from the outlet 03) to a tank equipped with a slowly rotating stirrer, and the methylene chloride was volatilized at 35°C for 5 hours to solidify the droplets.

この粒子を20℃で0.6%のカ性ソーダ水溶戒にzo
ne;間分散させたのち水洗してセルロース粒子をえた
。この粒子は、容積平均粒子径が901部mの真球状で
、少なくとも99%の粒子が容積平均粒子径の±20%
以内であるきわめて均一性の高いものであった。
The particles were dissolved in 0.6% caustic soda water at 20°C.
ne; After being dispersed, cellulose particles were obtained by washing with water. The particles have a true spherical shape with a volume average particle size of 901 parts m, and at least 99% of the particles are ±20% of the volume average particle size.
The uniformity was within the range of 1.

この粒子の製造を8時間連続して行なったが、ノズル(
2)や電極(8)に粒子の付着は詔められなかった。
The production of these particles was carried out continuously for 8 hours, but the nozzle (
2) and the electrode (8) were not found to have adhered to each other.

実施例2 セルローストリアセテート溶液の代りに、スチレン、ジ
ビニルベンゼン、希釈剤のトルエン/ヘプタン(容量比
3/1)混合液および重合開始剤の過酸化ベンゾイルが
、それぞれ75部、25部、100部および1部からな
る溶液を用いた。この溶液の粘度は30℃で約0.7c
psであった。また分散媒には実施例1と同じポリビニ
ルアルコルの1%水溶液を使用した。
Example 2 Instead of the cellulose triacetate solution, styrene, divinylbenzene, a diluent toluene/heptane (volume ratio 3/1) mixed solution, and a polymerization initiator benzoyl peroxide were used in amounts of 75 parts, 25 parts, 100 parts, and 100 parts, respectively. A solution consisting of 1 part was used. The viscosity of this solution is approximately 0.7c at 30℃
It was ps. Furthermore, the same 1% aqueous solution of polyvinyl alcohol as in Example 1 was used as the dispersion medium.

前記のモノマー液および分散媒を用い、実施例1と同じ
条件で交流電圧の周期と同期した液滴を形成させた。え
られた分散液を移動槽aDで75℃まで加熱してから流
出口03)から撹拌機の付いたタンクに移し、この温度
でさらに10時間保持した。重合終了後、粒子を集めて
アセトンで洗って溶剤を除いた。
Using the monomer liquid and dispersion medium described above, droplets were formed in synchronization with the cycle of the AC voltage under the same conditions as in Example 1. The resulting dispersion was heated to 75° C. in a transfer tank aD, then transferred from the outlet 03) to a tank equipped with a stirrer, and maintained at this temperature for an additional 10 hours. After the polymerization was completed, the particles were collected and washed with acetone to remove the solvent.

この粒子ちまた真球状で、容積平均粒子径が110疋で
少なくとも99%の粒子が容積平均粒子径の±20%以
内にあるきわめて均一性の高いものであった。
The particles were also perfectly spherical, had a volume average particle diameter of 110 mm, and had extremely high uniformity with at least 99% of the particles falling within ±20% of the volume average particle diameter.

この粒子の製造を8時間連続して行なったが、ノズル(
2)や電極(8)に粒子の付着は認められなかった。
The production of these particles was carried out continuously for 8 hours, but the nozzle (
No particles were observed to adhere to 2) or the electrode (8).

[発明の効果] 本発明の製法では微小な液滴が直接その分散媒の中に形
成されるので、気体中に形成させていた従来の方法の問
題であった浮遊液滴のノズルや電極への付着または液滴
同士の衝突による合体が避けられるだけでなく、機械的
な振動に7 伴う騒音の発生もなく、微小なポリマー粒子を長時間安
定して製造することができる。
[Effects of the Invention] In the manufacturing method of the present invention, minute droplets are directly formed in the dispersion medium, so there is no problem with the conventional method in which floating droplets are formed in a gas, such as the nozzle or electrode. Not only is it possible to avoid adhesion of droplets or coalescence due to collision of droplets, but also there is no noise caused by mechanical vibration, and minute polymer particles can be produced stably for a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例で使用した均一な液滴の製造装
置(分散装置)の一部所面図、第2図はノズル先端部の
断面の拡大図である。 (図面の主要ね号) (2)、ノズル (7);交流電源 (8):電 極
FIG. 1 is a partial view of a uniform droplet production device (dispersion device) used in an example of the present invention, and FIG. 2 is an enlarged cross-sectional view of the nozzle tip. (Main numbers in the drawing) (2), Nozzle (7); AC power supply (8): Electrode

Claims (1)

【特許請求の範囲】 1 粘度が50cps以下の粒子形成用高分子物質を含
む溶液を、この溶液の分散媒中に設置したノズルから、
ノズルの近傍の分散媒中に設けた電極とノズルとの間に
一定周期の交流電圧を加えながら噴出させることによっ
て、交流電圧の周期と同期した数の前記溶液の液滴を前
記分散媒中に生成させたのち、加熱により液滴中の溶剤
を揮発させる、冷却によってゲル化させる、または分散
液にゲル化促進剤を添加することによって前記液滴を凝
固させることを特徴とする均一なポリマー粒子の製造方
法。 2 粘度が50cps以下のビニル重合性モノマー液を
、この液の分散媒中に設置したノズルから、ノズルの近
傍の分散媒中に設けた電極とノズルとの間に一定周期の
交流電圧を加えながら噴出させることによって、交流電
圧の周期と同期した数の前記液の液滴を前記分散媒中に
生成させたのち、重合させることを特徴とする均一なポ
リマー粒子の製造方法。
[Claims] 1. A solution containing a particle-forming polymer substance having a viscosity of 50 cps or less is passed through a nozzle installed in a dispersion medium of this solution,
A number of droplets of the solution synchronized with the cycle of the AC voltage are ejected into the dispersion medium by ejecting them while applying a constant cycle of AC voltage between the nozzle and an electrode provided in the dispersion medium near the nozzle. Uniform polymer particles that are produced and then solidified by evaporating the solvent in the droplets by heating, gelling by cooling, or solidifying the droplets by adding a gelling promoter to the dispersion. manufacturing method. 2 A vinyl polymerizable monomer liquid with a viscosity of 50 cps or less is applied from a nozzle placed in the dispersion medium of this liquid, while applying a constant alternating current voltage between the nozzle and an electrode placed in the dispersion medium near the nozzle. A method for producing uniform polymer particles, characterized in that droplets of the liquid are generated in the dispersion medium in a number synchronized with the cycle of the alternating current voltage by jetting, and then polymerized.
JP19726789A 1989-07-29 1989-07-29 Method for producing uniform polymer particles Expired - Fee Related JP2921869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19726789A JP2921869B2 (en) 1989-07-29 1989-07-29 Method for producing uniform polymer particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19726789A JP2921869B2 (en) 1989-07-29 1989-07-29 Method for producing uniform polymer particles

Publications (2)

Publication Number Publication Date
JPH0362827A true JPH0362827A (en) 1991-03-18
JP2921869B2 JP2921869B2 (en) 1999-07-19

Family

ID=16371631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19726789A Expired - Fee Related JP2921869B2 (en) 1989-07-29 1989-07-29 Method for producing uniform polymer particles

Country Status (1)

Country Link
JP (1) JP2921869B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279590A (en) * 2004-03-30 2005-10-13 Hiroshima Univ Manufacturing device of liquid-liquid emulsion and manufacturing method of liquid-liquid emulsion
JP2007521135A (en) * 2003-12-18 2007-08-02 ゲーアーテー・フォルムラツィオーン・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Continuous multi-microencapsulation method for improving the stability and shelf life of biologically active ingredients
JP2011162715A (en) * 2010-02-12 2011-08-25 Nagoya Univ Cellulosic material particle and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007521135A (en) * 2003-12-18 2007-08-02 ゲーアーテー・フォルムラツィオーン・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Continuous multi-microencapsulation method for improving the stability and shelf life of biologically active ingredients
JP2005279590A (en) * 2004-03-30 2005-10-13 Hiroshima Univ Manufacturing device of liquid-liquid emulsion and manufacturing method of liquid-liquid emulsion
JP2011162715A (en) * 2010-02-12 2011-08-25 Nagoya Univ Cellulosic material particle and method for producing the same

Also Published As

Publication number Publication date
JP2921869B2 (en) 1999-07-19

Similar Documents

Publication Publication Date Title
EP0265924B2 (en) Uniform polymer particles
FI80278C (en) FOERFARANDE OCH ANORDNING FOER FRAMSTAELLNING AV POLYMERPARTIKLAR AV LIKA STORLEK.
JP4448930B2 (en) Hollow polymer fine particles and production method thereof
JPH03232525A (en) Formation of uniform liquid drop
JPS61268346A (en) Method for forming liquid droplet
JPH09290179A (en) Electrostatic atomization method and apparatus
JPH11507094A (en) Polymerization method, apparatus and polymer
JP2000512893A (en) Method for producing dry powder particles, powder produced by the method, and electrode and apparatus used in the method
CN107262064A (en) A kind of preparation method of daiamid grafted graphene oxide cladded type biological micromolecule adsorbent
US5021201A (en) Process for preparing uniform discoid particles
JPH0362827A (en) Production of uniform polymer granule
JP2854390B2 (en) Method for forming uniform droplets
JP2016501307A (en) Generation of monomer droplets
JP2015516483A (en) Products and methods for producing uniform spherical acrylic polymer beads
WO2001019885A1 (en) Single stage seed polymerisation for the production of large polymer particles with a narrow size distribution
JPH0580937B2 (en)
JPH0564964B2 (en)
JPS61225254A (en) Fine particle having uniform particle size and production thereof
JP2002105104A (en) Method for producing solid polymer particle or hollow polymer particle
JPH06102730B2 (en) Bimodal particles for separation materials
JPS63117039A (en) Production of uniform polymer particle
CA1053871A (en) Manufacture of thermoplastics fibrids
Zhao et al. Formation of grains in a suspension of poly (vinyl chloride)
JP2882669B2 (en) Method and apparatus for producing polymer fine particles having uniform particle size
JPH03258338A (en) Device for producing uniform liquid droplets

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees