JPH0362224B2 - - Google Patents

Info

Publication number
JPH0362224B2
JPH0362224B2 JP59183507A JP18350784A JPH0362224B2 JP H0362224 B2 JPH0362224 B2 JP H0362224B2 JP 59183507 A JP59183507 A JP 59183507A JP 18350784 A JP18350784 A JP 18350784A JP H0362224 B2 JPH0362224 B2 JP H0362224B2
Authority
JP
Japan
Prior art keywords
humidity
humidity sensor
circuit
parallel
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59183507A
Other languages
Japanese (ja)
Other versions
JPS61159145A (en
Inventor
Nobutoshi Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP18350784A priority Critical patent/JPS61159145A/en
Publication of JPS61159145A publication Critical patent/JPS61159145A/en
Publication of JPH0362224B2 publication Critical patent/JPH0362224B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/122Circuits particularly adapted therefor, e.g. linearising circuits

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は湿度センサ回路出力特性の直線化法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for linearizing humidity sensor circuit output characteristics.

[発明の技術的背景とその問題点] 一般に湿度測定には第11図に示すように酸化
亜鉛、酸化クロムなどを主成分とし、感湿成分と
して例えばリチウム−バナジウム系ガラスなどの
物質を添加した粉体を加圧成形、高温焼結して得
られる多孔質セラミツク焼結体11の両面に形成
した多孔質電極12にリード線13を取着したセ
ラミツク湿度センサを用いることが多い。しかし
て、該湿度センサは、前記焼結体の微結晶表面に
おける水分子の吸脱着現象によつて第12図に示
すように電極間の電気抵抗が相対湿度に対し指数
的に変化するので、電気抵抗によつて相対湿度の
値を知ることができ、しかも構造が簡単で安定性
が高く、またクリーニングが不要であるなど優れ
た特徴をもつているが、湿度の変化を電気信号の
変化に変換するには第13図に示すように湿度セ
ンサに交流の一定電圧を印加して、湿度センサの
抵抗変化を電圧の変化として検知したり、又は第
14図に示すように湿度センサに交流の一定電圧
を加えて、湿度センサの抵抗変化を電流の変化と
して検知したり、あるいは湿度センサの電気抵抗
が湿度の変化に対し指数的に変化することから、
第15図に示すように対数増幅器を通すことによ
つて湿度とできる限り比例関係にある電気信号を
取り出す方法がとられていた。
[Technical background of the invention and its problems] Generally, as shown in Figure 11, for humidity measurement, zinc oxide, chromium oxide, etc. are used as main components, and a substance such as lithium-vanadium glass is added as a moisture-sensitive component. A ceramic humidity sensor is often used in which lead wires 13 are attached to porous electrodes 12 formed on both sides of a porous ceramic sintered body 11 obtained by pressure molding and high temperature sintering of powder. In this humidity sensor, the electrical resistance between the electrodes changes exponentially with the relative humidity as shown in FIG. 12 due to adsorption and desorption of water molecules on the microcrystalline surface of the sintered body. The value of relative humidity can be determined by electrical resistance, and it has excellent features such as a simple structure, high stability, and no need for cleaning. To convert, as shown in Figure 13, apply a constant AC voltage to the humidity sensor and detect the change in resistance of the humidity sensor as a change in voltage, or as shown in Figure 14, apply an AC constant voltage to the humidity sensor. By applying a constant voltage, changes in the resistance of the humidity sensor can be detected as changes in current, or because the electrical resistance of the humidity sensor changes exponentially with changes in humidity,
As shown in FIG. 15, a method has been used to extract an electrical signal that is as proportional to humidity as possible by passing it through a logarithmic amplifier.

しかしながら、セラミツク湿度センサは第12
図に示すように相対湿度とセンサの電気抵抗の対
数がおおよそ比例する特性を示しているので、第
13図や第14図に示す測定回路でセンサの電気
抵抗を単に電圧や電流の変化に変換する方法では
相対湿度とそれら出力電気量は比例関係になく、
広い範囲の湿度領域にわたつて湿度を測定する場
合には誤差も大きく、非常に使いにくくなる問題
があつた。また第15図に示す測定回路による方
法では、湿度センサの電気抵抗の変化を対数増幅
器を通すことによつて、出力信号は相対湿度に対
し、比例関係に近くはなるが、センサの湿度に対
する電気抵抗の変化は第12図に示すように相対
湿度に対して抵抗の対数が完全な比例関係にある
わけではなく湾曲しているため、湿度の測定範囲
が広くなると測定誤差は急激に大きくなるのは避
けられない問題を抱えている。第16図にこの場
合の湿度−電圧特性を示した。
However, the ceramic humidity sensor
As shown in the figure, the logarithm of the relative humidity and the sensor's electrical resistance exhibits a property that is roughly proportional, so the measurement circuit shown in Figures 13 and 14 simply converts the sensor's electrical resistance into a change in voltage or current. In this method, there is no proportional relationship between the relative humidity and the amount of electricity output,
When measuring humidity over a wide range of humidity, the error is large, making it extremely difficult to use. In addition, in the method using the measurement circuit shown in Fig. 15, by passing the change in the electrical resistance of the humidity sensor through a logarithmic amplifier, the output signal becomes close to proportional to the relative humidity. As shown in Figure 12, the change in resistance is not completely proportional to the relative humidity; the logarithm of resistance is curved, so as the humidity measurement range widens, the measurement error increases rapidly. has unavoidable problems. FIG. 16 shows the humidity-voltage characteristics in this case.

更に、セラミツク湿度センサの示す抵抗値は数
KΩからMΩ領域と広い範囲にわたるので、特に
低湿度側の高抵抗の領域においては温度−電圧又
は電流変換回路に対する信号源インピーダンスが
非常に高くなるので、外部からの耐雑音特性が劣
化し、測定誤差や誤動作の原因となり、はなはだ
しいときは回路素子の破壊などの問題があり、湿
度センサ回路部分と湿度−電圧変換回路部分を離
して使用することが多い湿度測定回路としては重
大な問題であつた。
Furthermore, since the resistance value exhibited by a ceramic humidity sensor ranges over a wide range from a few kilohms to a megohm region, the signal source impedance for the temperature-voltage or current conversion circuit becomes extremely high, especially in the high resistance region on the low humidity side. The resistance to external noise deteriorates, causing measurement errors and malfunctions, and in severe cases can cause damage to circuit elements, so the humidity sensor circuit and humidity-voltage conversion circuit are often used separately. This was a serious problem for humidity measurement circuits.

[発明の目的] 本発明は上記の点に鑑みてなされたもので、高
精度でかつ安定な湿度測定を可能とする工業的価
値の高い湿度センサ回路出力特性の直線化法を提
供することを目的とするものである。
[Objective of the Invention] The present invention has been made in view of the above points, and an object of the present invention is to provide a method for linearizing the output characteristics of a humidity sensor circuit, which has high industrial value and enables highly accurate and stable humidity measurement. This is the purpose.

[発明の概要] 本発明になる湿度センサ回路出力特性の直線化
法は、セラミツク湿度センサ単独又はセラミツク
湿度センサと直列及び/又は並列接続した抵抗か
らなる回路網に並列抵抗を接続した湿度センサ回
路出力特性の直線化法において、前記並列抵抗を
湿度に対する電気抵抗の変化を3〜4点の各湿度
について直線近似したとき、近似直線に対する相
関係数の二乗値が0.980〜1.000の範囲になるよう
に設定することを特徴とするものである。
[Summary of the Invention] The method of linearizing the output characteristics of a humidity sensor circuit according to the present invention uses a ceramic humidity sensor alone or a humidity sensor circuit in which a parallel resistor is connected to a circuit network consisting of a resistor connected in series and/or in parallel with a ceramic humidity sensor. In the linearization method of output characteristics, when the change in electrical resistance of the parallel resistance with respect to humidity is linearly approximated for each humidity at 3 to 4 points, the square value of the correlation coefficient for the approximate straight line is in the range of 0.980 to 1.000. This feature is set to .

[発明の実施例] 以下本発明の詳細を実施例に基づき図面を参照
して説明する。
[Embodiments of the Invention] Details of the present invention will be described below based on embodiments with reference to the drawings.

実施例 1 二つの変量、すなわち湿度とそれぞれの湿度に
対する抵抗値の変化特性において、湿度の3〜4
点について直線近似を行い、そのとき得られる相
関係数の二乗値、すなわち下式によつて求められ
る値を求める。
Example 1 Two variables, that is, humidity and resistance value change characteristics with respect to each humidity, humidity 3 to 4
Linear approximation is performed for the points, and the square value of the correlation coefficient obtained at that time, that is, the value determined by the following formula, is determined.

r2=〔Σxi・yi−〓xi・〓yi 2/n〕2/〔Σ2i−(〓
xi2/n〕〔Σy2i−(〓xi2/n〕 ここでrは相関係数、xiは各近似点における湿
度の値、yiは各近似点における電気抵抗の値、n
は近似点の数を表わす。
r 2 = [Σx i・y i −〓x i・〓y i 2 /n] 2 / [Σ 2 / i −(〓
x i ) 2 / n] [Σy 2 / i − (〓x i ) 2 / n] Here, r is the correlation coefficient, x i is the humidity value at each approximate point, and y i is the electrical resistance at each approximate point. the value of n
represents the number of approximate points.

この相関係数の二乗値は無相関で0、近似直線
に完全に一致したとき1となり常に0と1の間の
値をとることが統計学上知られている。
It is statistically known that the square value of this correlation coefficient is 0 when there is no correlation, and 1 when it completely matches the approximate straight line, and always takes a value between 0 and 1.

したがつて、相関係数の二乗値によつて、直線
化の度合を知ることができる。第12図は実施例
に用いたセラミツク湿度センサの湿度に対する電
気抵抗の値を示したものである。第1図は本発明
の一実施例を説明するための湿度センサ回路を示
すもので、1はセラミツク湿度センサで、2はセ
ラミツク湿度センサ1に並列接続した並列抵抗2
である。
Therefore, the degree of linearization can be determined by the square value of the correlation coefficient. FIG. 12 shows the electrical resistance value with respect to humidity of the ceramic humidity sensor used in the example. FIG. 1 shows a humidity sensor circuit for explaining one embodiment of the present invention, in which 1 is a ceramic humidity sensor, and 2 is a parallel resistor 2 connected in parallel to the ceramic humidity sensor 1.
It is.

しかして、該湿度センサ回路を用い50%RH,
80%RH,90%RHの各湿度について直線近似を
行い、そのとき得られる相関係数の二乗値を並列
抵抗の値に対して表わしたのが第2図である。こ
のようにセラミツク湿度センサ1に並列抵抗2を
接続するとき、湿度の変化に対する電気抵抗の変
化が最も直線に近くなる並列抵抗が存在するわけ
であるが、その並列抵抗値は第2図から明らかな
ように110KΩであり、そのときの相関係数の二
乗値は0.999であり、相関係数の二乗値が0.980未
満では直線関係が乏しく、高精度の測定は困難で
実用的でない。参考までに相関係数の二乗値が
0.975になる30KΩの並列抵抗を湿度センサに接
続したときの湿度−出力電圧の関係を調べた結
果、第3図に示すようになつた。
Therefore, using the humidity sensor circuit, 50%RH,
Figure 2 shows the square value of the correlation coefficient obtained by performing linear approximation for each humidity of 80%RH and 90%RH with respect to the value of the parallel resistance. When parallel resistor 2 is connected to ceramic humidity sensor 1 in this way, there is a parallel resistor whose electrical resistance changes in response to changes in humidity are closest to a straight line, and the parallel resistance value is clear from Figure 2. As shown in the figure, the square value of the correlation coefficient is 0.999.If the square value of the correlation coefficient is less than 0.980, the linear relationship is poor, and high-precision measurement is difficult and impractical. For reference, the square value of the correlation coefficient is
As a result of investigating the relationship between humidity and output voltage when a 30KΩ parallel resistance with a resistance of 0.975 is connected to the humidity sensor, the results are shown in Figure 3.

上記実施例から、湿度センサ回路出力特性の直
線化を得るには、並列抵抗2の近似直線に対する
相関係数の二乗値を湿度に対する電気抵抗の変化
を3〜4点の各湿度に近似したとき、0.980〜
1.000の範囲に設定するとよいことがわかる。し
かして第4図に示すように、湿度センサ回路出力
特性の直線化法の一実施例を説明するために用い
た第1図に示す湿度センサ回路を湿度−電圧変換
回路3に接続し、湿度−電圧特性を測定した結果
第5図に示すようになり、第15図に示す従来の
湿度測定に用いた測定回路による測定値と比較し
著しい測定精度の向上がみられ、またこの場合の
湿度−電気抵抗の関係は第6図に示すようになり
湾曲が修正された形となつた。
From the above example, in order to linearize the output characteristics of the humidity sensor circuit, when the square value of the correlation coefficient with respect to the approximate straight line of parallel resistance 2 is approximated to each humidity at 3 to 4 points, the change in electrical resistance with respect to humidity is , 0.980~
It turns out that it is best to set it in the range of 1.000. As shown in FIG. 4, the humidity sensor circuit shown in FIG. - The results of measuring the voltage characteristics are shown in Figure 5, and the measurement accuracy is significantly improved compared to the measurement value by the measurement circuit used for conventional humidity measurement shown in Figure 15. -The relationship of electrical resistance was as shown in Figure 6, with the curvature corrected.

実施例 2 次に本発明の他の実施例について述べる。すな
わち第7図は、本発明の他の実施例を説明するた
めの湿度センサ回路を示すもので、セラミツク湿
度センサ4に特性補正抵抗5を直列接続し、更に
並列抵抗6を並列接続したものである。しかし
て、該湿度センサ回路において特性補正抵抗5と
して28KΩの固定抵抗を用い、前記実施例と同様
50%RH,70%RH,90%RHの各湿度について直
線近似を行つて、そのとき得られる相関係数の二
乗値を並列抵抗の値に対して表わした結果、第8
図に示すようになつた。以上からセラミツク湿度
センサ4と直列に特性補正抵抗5が接続された場
合でも同様、湿度に対する抵抗値の変化が最も直
線に近くなる並列抵抗の値が存在し、その並列抵
抗値は第8図から明らかなように80KΩであり、
そのときの相関係数の二乗値が1.000であつた。
なお相関係数の二乗値が0.980未満では直線関係
が乏しく高精度の測定は困難で実用的でないこと
は実施例1と同様であり、実施例2からも湿度セ
ンサ回路出力特性の直線化を得るには並列抵抗6
の近似直線に対する相関係数の二乗値を0.980〜
1.000の範囲に設定するとよいことがわかつた。
しかして第9図に示すように、湿度センサ回路出
力特性の直線化法の他の実施例を説明するために
用いた第7図に示す湿度センサ回路を湿度−電圧
変換回路7に接続し、湿度−電圧特性を測定した
結果第10図に示すようになり、実施例1と同様
に著しい測定精度の向上がみられた。
Example 2 Next, another example of the present invention will be described. That is, FIG. 7 shows a humidity sensor circuit for explaining another embodiment of the present invention, in which a characteristic correction resistor 5 is connected in series to a ceramic humidity sensor 4, and a parallel resistor 6 is further connected in parallel. be. Therefore, in the humidity sensor circuit, a fixed resistor of 28KΩ is used as the characteristic correction resistor 5, and the same as in the above embodiment is used.
As a result of performing linear approximation for each humidity of 50%RH, 70%RH, and 90%RH and expressing the square value of the correlation coefficient obtained at that time with respect to the value of parallel resistance, the 8th
It became as shown in the figure. From the above, even when the characteristic correction resistor 5 is connected in series with the ceramic humidity sensor 4, there is a value of the parallel resistance at which the change in resistance value with respect to humidity is closest to a straight line, and the parallel resistance value can be determined from Fig. 8. Obviously it is 80KΩ,
The square value of the correlation coefficient at that time was 1.000.
It should be noted that if the square value of the correlation coefficient is less than 0.980, the linear relationship is poor and high precision measurement is difficult and impractical, as in Example 1, and from Example 2 as well, linearization of the humidity sensor circuit output characteristics is obtained. is parallel resistance 6
The square value of the correlation coefficient for the approximate straight line is 0.980 ~
I found that it is best to set it in the range of 1.000.
As shown in FIG. 9, the humidity sensor circuit shown in FIG. 7 used to explain another embodiment of the method for linearizing the output characteristics of the humidity sensor circuit is connected to the humidity-voltage conversion circuit 7, The results of measuring the humidity-voltage characteristics are shown in FIG. 10, and as in Example 1, a remarkable improvement in measurement accuracy was observed.

なお上記実施例では特性補正抵抗を湿度センサ
に対し直列に接続したものを例示した説明したが
並列又は直列及び並列を併用して組合せたもので
も出力特性の直線化法上何ら構わないことが確認
された。また実施例1,2とも湿度−電圧変換回
路からセンサ側をみた信号源インピーダンスは、
本発明によつて定められた並列抵抗値が最大イン
ピーダンスになるため、高々100KΩ余りであり、
信号源インピーダンスが高いことに基因する不安
定動作、誤動作そして誤差の増加などは全く認め
られなかつた。
In addition, in the above example, the case where the characteristic correction resistor was connected in series with the humidity sensor was explained, but it has been confirmed that there is no problem in terms of the linearization method of the output characteristic even if the characteristic correction resistor is connected in parallel or in series and parallel. It was done. In addition, in both Examples 1 and 2, the signal source impedance seen from the humidity-voltage conversion circuit to the sensor side is:
Since the parallel resistance value determined by the present invention becomes the maximum impedance, it is more than 100KΩ at most,
No unstable operation, malfunction, or increase in error due to high signal source impedance was observed.

[発明の効果] 本発明によれば、セラミツク湿度センサ単独又
はセラミツク湿度センサと直列及び/又は並列接
続した補正抵抗からなる回路網に並列接続する並
列抵抗を湿度に対する電気抵抗の変化特性を3〜
4点の各湿度について直線近似したとき、近似直
線に対する相関係数の二乗値が0.980〜1.000の範
囲になるように設定するだけで湿度に対する抵抗
値の変化を比例関係に直すことができ、簡単で低
価格でしかも高精度な湿度の測定を可能とし、加
えて信号源インピーダンスの低い、安定で工業的
価値の高い湿度センサ回路出力特性の直線化法を
得ることができる。
[Effects of the Invention] According to the present invention, a parallel resistor connected in parallel to a circuit network consisting of a ceramic humidity sensor alone or a correction resistor connected in series and/or in parallel with a ceramic humidity sensor has a change characteristic of electrical resistance with respect to humidity of 3 to 3.
When a straight line is approximated for each humidity at the four points, the change in resistance value with respect to humidity can be easily converted into a proportional relationship by simply setting the square value of the correlation coefficient for the approximate straight line to be in the range of 0.980 to 1.000. This makes it possible to measure humidity at low cost and with high precision, and in addition, it is possible to obtain a method for linearizing the output characteristics of a humidity sensor circuit that has low signal source impedance, is stable, and has high industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る湿度センサ回
路図、第2図は第1図に示す一実施例における並
列抵抗−相関係数の二乗値の関係を示す特性図、
第3図は湿度−電圧特性曲線図、第4図は第1図
に示す湿度センサ回路を用いた湿度測定回路の一
例を示す回路図、第5図は第4図に示す湿度測定
回路によつて測定した湿度−電圧特性図、第6図
は第4図によつて測定した湿度−電気抵抗特性
図、第7図は本発明の他の実施例に係る湿度セン
サ回路、第8図は第7図に示す他の実施例におけ
る並列抵抗−相関係数の二乗値の関係を示す特性
図、第9図は第7図に示す湿度センサ回路を用い
た湿度測定回路の一例を示す回路図、第10図は
第9図に示す湿度回路によつて測定した湿度−電
圧特性図、第11図はセラミツク湿度センサの一
般的構造を示す断面図、第12図は第1図に示す
セラミツク湿度センサの湿度−電気抵抗特性図、
第13図〜第15図は従来例に係るそれぞれの湿
度測定回路を示す回路図、第16図は湿度−電圧
特性曲線図である。 1,4……セラミツク湿度センサ、2,6……
並列抵抗、5……特性補正抵抗。
FIG. 1 is a humidity sensor circuit diagram according to an embodiment of the present invention, and FIG. 2 is a characteristic diagram showing the relationship between parallel resistance and the square value of the correlation coefficient in the embodiment shown in FIG.
Fig. 3 is a humidity-voltage characteristic curve diagram, Fig. 4 is a circuit diagram showing an example of a humidity measurement circuit using the humidity sensor circuit shown in Fig. 1, and Fig. 5 is a circuit diagram showing an example of a humidity measurement circuit using the humidity sensor circuit shown in Fig. 4. FIG. 6 is a humidity-electrical resistance characteristic diagram measured according to FIG. 4, FIG. 7 is a humidity sensor circuit according to another embodiment of the present invention, and FIG. FIG. 7 is a characteristic diagram showing the relationship between parallel resistance and the square value of the correlation coefficient in another embodiment shown in FIG. 7; FIG. 9 is a circuit diagram showing an example of a humidity measuring circuit using the humidity sensor circuit shown in FIG. 7; Fig. 10 is a humidity-voltage characteristic diagram measured by the humidity circuit shown in Fig. 9, Fig. 11 is a sectional view showing the general structure of a ceramic humidity sensor, and Fig. 12 is a diagram of the ceramic humidity sensor shown in Fig. 1. Humidity-electrical resistance characteristic diagram of
13 to 15 are circuit diagrams showing respective humidity measuring circuits according to conventional examples, and FIG. 16 is a humidity-voltage characteristic curve diagram. 1, 4... Ceramic humidity sensor, 2, 6...
Parallel resistance, 5...characteristic correction resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 セラミツク湿度センサ単独又はセラミツク湿
度センサと直列及び/又は並列接続した特性補正
抵抗からなる回路網と、該回路網に並列抵抗を接
続した湿度センサ回路の出力特性の直線化法にお
いて、前記並列抵抗を湿度に対する電気抵抗の変
化特性を3〜4点の各湿度について直線近似した
とき、近似直線に対する相関係数の二乗値が
0.980〜1.000の範囲になるように設定することを
特徴とする湿度センサ回路出力特性の直線化法。
1. In a method for linearizing the output characteristics of a humidity sensor circuit consisting of a ceramic humidity sensor alone or a circuit network consisting of a characteristic correction resistor connected in series and/or in parallel with the ceramic humidity sensor, and a parallel resistor connected to the circuit network, the parallel resistor When the change characteristic of electrical resistance with respect to humidity is linearly approximated for each humidity at 3 to 4 points, the square value of the correlation coefficient for the approximated straight line is
A method for linearizing humidity sensor circuit output characteristics, characterized in that the output characteristics are set to be in the range of 0.980 to 1.000.
JP18350784A 1984-08-31 1984-08-31 Humidity sensor circuit Granted JPS61159145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18350784A JPS61159145A (en) 1984-08-31 1984-08-31 Humidity sensor circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18350784A JPS61159145A (en) 1984-08-31 1984-08-31 Humidity sensor circuit

Publications (2)

Publication Number Publication Date
JPS61159145A JPS61159145A (en) 1986-07-18
JPH0362224B2 true JPH0362224B2 (en) 1991-09-25

Family

ID=16137042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18350784A Granted JPS61159145A (en) 1984-08-31 1984-08-31 Humidity sensor circuit

Country Status (1)

Country Link
JP (1) JPS61159145A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110898A (en) * 1978-02-17 1979-08-30 Matsushita Electric Ind Co Ltd Humidity detecting circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110898A (en) * 1978-02-17 1979-08-30 Matsushita Electric Ind Co Ltd Humidity detecting circuit

Also Published As

Publication number Publication date
JPS61159145A (en) 1986-07-18

Similar Documents

Publication Publication Date Title
US7552635B2 (en) Humidity sensor capable of self-regulating temperature compensation and manufacturing method thereof
US6229318B1 (en) Electrical resistance type humidity sensor
WO2022040928A1 (en) Temperature measurement circuit, temperature measurement and light measurement circuit, temperature measurement method, and temperature measurement and light measurement method
CN103913249A (en) Temperature monitoring circuit device and method
JPH0362224B2 (en)
CN116067422A (en) Temperature and humidity composite sensor
JPS63103957A (en) Humidity detector
EP0730149A2 (en) Linearized potentiometric electrode
CN111801572B (en) Monolithic sensor device, method for manufacturing the same, and measuring method
GB2144857A (en) Piezo resistive transducer
JPS6197543A (en) Compensation circuit for semiconductor pressure sensor
RU2395060C1 (en) Frequency converter for disbalance signal of strain gauge bridge with low temperature error
JP2517537B2 (en) Humidity measurement circuit
JPH0690168B2 (en) Humidity sensor device
CN213336542U (en) Temperature sensing device
JP2823936B2 (en) Dew point detector
KR20040063996A (en) Pressure transducer with dual slope output
RU2247325C2 (en) Method of temperature correction of transfer function of physical quantity detector
JP2973048B2 (en) Temperature sensor linearization processing method
JPH0517649Y2 (en)
JP3106660B2 (en) Humidity detector
JPS6152945B2 (en)
JPH0387641A (en) Signal processing circuit for humidity sensor
SU1264104A1 (en) Resistance relative deviation from rating-to-voltage converter
JPH0524452B2 (en)