JPH0361875A - Surge voltage/current generator - Google Patents

Surge voltage/current generator

Info

Publication number
JPH0361875A
JPH0361875A JP1196533A JP19653389A JPH0361875A JP H0361875 A JPH0361875 A JP H0361875A JP 1196533 A JP1196533 A JP 1196533A JP 19653389 A JP19653389 A JP 19653389A JP H0361875 A JPH0361875 A JP H0361875A
Authority
JP
Japan
Prior art keywords
surge
discharge
high voltage
electrode
discharge electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1196533A
Other languages
Japanese (ja)
Other versions
JP2807268B2 (en
Inventor
Susao Yoshino
吉野 周佐雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOIZU KENKYUSHO KK
Original Assignee
NOIZU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOIZU KENKYUSHO KK filed Critical NOIZU KENKYUSHO KK
Priority to JP1196533A priority Critical patent/JP2807268B2/en
Publication of JPH0361875A publication Critical patent/JPH0361875A/en
Application granted granted Critical
Publication of JP2807268B2 publication Critical patent/JP2807268B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to change the rise-up time of a high-speed artificial surge current waveform and to make it possible to conduct a surge test at high simulation accuracy by providing a specified conductor plate between a discharging gun part and a discharge electrode. CONSTITUTION:The high voltage HV from a high voltage power source part 1 is charged into a capacitor 4 by closing a relay switch 5 by way of a charging resistor 3 in a discharging gun part 2. Then, the switch 5 is opened, and a relay switch 9 is closed. A discharge electrode 7 is conducted through a discharge resistor 6 and a delay plate 10 as a conductor plate. The plate 10 has an area wider than the surface area of the electrode 7. The gun part 2 is brought into contact with a body under test 8, and discharging is performed between the electrode 7 and the body under test 8. Thus, surge is generated artificially, and the tolerance of the body under test 8 against the surge is examined.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、ノイズに対する電子機器の許容度を試験す
るために使用するサージ電圧・電流発生器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a surge voltage/current generator used to test the tolerance of electronic equipment to noise.

[従来の技術] 電子技術の進歩により通信機器、制御機器の部品は小型
化と実装密度の向上が図られているが、ノイズ特に、そ
のうちの突発的なサージによる機器の誤動作、故障、破
壊といった被害が増大している。サージ(SURGE)
とは、雷等のように短時間に激しく変動する電圧/電流
のことを意味し、一過性で再現性のないものをさしてい
る。
[Conventional technology] Advances in electronic technology have led to miniaturization and improved packaging density of components for communication equipment and control equipment, but noise, especially equipment malfunctions, failures, and destruction due to sudden surges, The damage is increasing. SURGE
refers to voltage/current that fluctuates violently in a short period of time, such as in lightning, and is transient and non-reproducible.

サージによる電子機器の誤動作、故障、破壊を防止する
ために、回路的な対策を立てることが重要であり、その
ためには人工的に発生したサージを繰り返し電子機器に
与えてその影響を詳しく調べる必要がある。
In order to prevent malfunctions, breakdowns, and destruction of electronic equipment due to surges, it is important to take circuit-based countermeasures, and to do so, it is necessary to repeatedly apply artificially generated surges to electronic equipment and investigate the effects in detail. There is.

従来では、衝撃ノイズに対する電子機器の許容度を試験
するために第5図に示すサージ電圧・電流発生器を使用
していた。
Conventionally, a surge voltage/current generator shown in FIG. 5 has been used to test the tolerance of electronic equipment to impact noise.

高圧電源部1で発生した高電圧HVを放電ガン部2の充
電抵抗3を介し、リレースイッチ5を閉にして主コンデ
ンサ4に充電する。その後、リレースイッチ5を開に、
リレースイッチ9を閉にして放電抵抗6を介して放電電
極7に通電する。
The high voltage HV generated in the high voltage power supply section 1 is charged to the main capacitor 4 via the charging resistor 3 of the discharge gun section 2 by closing the relay switch 5. After that, open the relay switch 5,
The relay switch 9 is closed to apply electricity to the discharge electrode 7 via the discharge resistor 6.

高電圧HVと放電ガン部2とは長い耐圧ケーブルにより
接続され、放電電極7は放電ガン部2にネジ等により固
定されている。放電ガン部2は高圧電淵部1に対してケ
ーブルの長さ以内で移動自在であり、試験者により放電
のために、電子機器の被試験体8に接触される。
The high voltage HV and the discharge gun section 2 are connected by a long voltage-resistant cable, and the discharge electrode 7 is fixed to the discharge gun section 2 with screws or the like. The discharge gun section 2 is movable within the length of the cable with respect to the high-voltage electric well section 1, and is brought into contact with the test object 8 of the electronic device for discharge by the tester.

放電電極7は先端が鋭角に尖った円柱金属からなる。The discharge electrode 7 is made of cylindrical metal with an acutely pointed tip.

今、放電ガン部2を被試験体8に接触させて放電電極7
と被試験体8との間で放電を行い人工的にサージ発生さ
せ、この人工サージをを被試験体8に印加して、被試験
体8のサージに対する許容度を調べる。その時のサージ
波形をモニター装置で観測したものが第6図に示すもの
である。
Now, bring the discharge gun part 2 into contact with the test object 8 and
An electric discharge is generated between the test object 8 and the test object 8 to artificially generate a surge, and this artificial surge is applied to the test object 8 to check the surge tolerance of the test object 8. The surge waveform observed at that time using a monitor device is shown in FIG.

第6図のAで示す人工サージの第1ピーク値は時間T1
の0.3nsの位置にあり、第2ピーク値はTnの約3
0nsの位置にある。
The first peak value of the artificial surge indicated by A in Fig. 6 is at time T1.
The second peak value is at about 3 ns of Tn.
It is located at the 0ns position.

電子機器がパソコン等の場合は人体に纏った衣類による
静電気が原因の自然サージが発生し、パソコンに悪影響
を及ぼすものである。自然発生的な静電気サージの第1
ピーク値は時間T1の0.9nsの位置にあるような、
第6図のBに示す特性であることが経験的に知られてい
る。
When the electronic device is a personal computer or the like, natural surges occur due to static electricity from clothing worn on the human body, which has an adverse effect on the personal computer. The first naturally occurring static electricity surge
The peak value is at the position of 0.9 ns of time T1,
It has been empirically known that the characteristic shown in B in FIG. 6 is the characteristic shown in FIG.

[発明が解決しようとする課題] しかしながら、従来のサージ発生装置にあっては、自然
発生的な静電気サージの第1ピーク値は時間T1が0.
9nsの位置にあるのに対して、人工サージの第1ピー
ク値は時間T1が0.3nsの位置にあるため、シュミ
レーション精度性の高いサージ試験が期待できないとい
う欠点があった。
[Problems to be Solved by the Invention] However, in the conventional surge generator, the first peak value of the spontaneous electrostatic surge occurs at time T1 of 0.
9 ns, whereas the first peak value of the artificial surge is at a time T1 of 0.3 ns, there was a drawback that a surge test with high simulation accuracy could not be expected.

この人工サージが示す第1ピーク時間T1の0.3ns
を遅延させるために、放電電極7と放電抵抗6との接続
点Pにコイルやコアを介装しても、電流の変化速度があ
まりにも高速(10の−9乗秒)のため、遅延制御が困
難であり、人工的に発生したサージを、自然発生的な静
電気サージと一致させることができなかった。
0.3 ns of the first peak time T1 indicated by this artificial surge
Even if a coil or core is interposed at the connection point P between the discharge electrode 7 and the discharge resistor 6 in order to delay the current, the rate of change of the current is too fast (10 to the -9th power seconds), so delay control is required. It has been difficult to match artificially generated surges with naturally occurring electrostatic surges.

このため、人工サージを繰り返し電子機器に与えてその
影響を詳しく調べても正確なノイズ対策にはならないと
いう問題があった。
For this reason, there has been a problem in that even if artificial surges are repeatedly applied to electronic equipment and the effects thereof are studied in detail, accurate countermeasures against noise cannot be obtained.

この発明は上記問題点を解決するためになされたもので
、人工サージの第1ピーク時間を自然発生的な静電気サ
ージの第1ピーク時間に制御して一致させることができ
るサージ電圧・電流発生器を提供することを目的にして
いる。
This invention was made to solve the above problems, and is a surge voltage/current generator that can control and match the first peak time of an artificial surge with the first peak time of a naturally occurring electrostatic surge. It aims to provide.

[課題を解決するための手段] 高電圧を発生する高圧電源部と、この高電圧が充電され
る放電ガン部と、放電ガン部に結合され前記充電された
高電圧を被試験体に対して放電する放電電極と、前記放
電ガン部と放電電極との間に該放電電極の表面積より広
い面積の導体板とを備える構成にした。
[Means for solving the problem] A high-voltage power supply section that generates a high voltage, a discharge gun section that is charged with this high voltage, and a discharge gun section that is coupled to the discharge gun section and applies the charged high voltage to the test object. The present invention is configured to include a discharge electrode for discharging, and a conductive plate having an area larger than the surface area of the discharge electrode between the discharge gun section and the discharge electrode.

[作用] 高電圧の電荷が広い面積の導体板に拡散し、その後に放
電するので、放電時間が遅延され、人工的に発生したサ
ージを、自然発生的な静電気サージと一致させることが
できる。
[Function] Since the high voltage charge is diffused over a large area of the conductor plate and then discharged, the discharge time is delayed and the artificially generated surge can be matched with the naturally occurring electrostatic surge.

[実施例] 以下、この考案を第1図に基づいて説明する。[Example] This idea will be explained below based on FIG.

高圧電源部1で発生した高電圧HVを放電ガン部2の充
電抵抗3を介し、リレースイッチ5を閉にして主コンデ
ンサ4に充電する。その後、リレースイッチ5を開に、
リレースイッチ9を閉にして放電抵抗6及び導体板とし
ての遅延板10を介して放電電極7に通電する。
The high voltage HV generated in the high voltage power supply section 1 is charged to the main capacitor 4 via the charging resistor 3 of the discharge gun section 2 by closing the relay switch 5. After that, open the relay switch 5,
The relay switch 9 is closed and current is applied to the discharge electrode 7 via the discharge resistor 6 and the delay plate 10 as a conductive plate.

放電電極7は先端が鋭角に尖った円柱金属からなり、放
電電極7の後端部にはネジ山13が形成されている。高
電圧HVと放電ガン部2とは長い耐圧ケーブル11によ
り接続され、放電ガン部2は所定位置に固定された高圧
電源部1に対してケーブル11の長さ以内で移動自在で
ある。
The discharge electrode 7 is made of cylindrical metal with an acutely pointed tip, and a screw thread 13 is formed at the rear end of the discharge electrode 7. The high voltage HV and the discharge gun part 2 are connected by a long voltage-resistant cable 11, and the discharge gun part 2 is movable within the length of the cable 11 with respect to the high voltage power supply part 1 fixed at a predetermined position.

遅延板10は導体の金属、例えば銅板等からなり、後述
するように各種サイズの遅延板10が装着可能である。
The delay plate 10 is made of a conductive metal such as a copper plate, and various sizes of delay plates 10 can be attached as described later.

一般に、電荷は第4図に示すように導体の表面に分布す
るので、遅延板10の広い面積に散在した電荷が放電電
極7方に集合するのに時間を要し、散在面積が大きいほ
ど集合時間も長くなるので、遅延板10を介装させて通
電に遅延を生じさせる。
In general, charges are distributed on the surface of a conductor as shown in FIG. Since the time also becomes long, a delay plate 10 is interposed to cause a delay in energization.

遅延板10の中央部にはネジ穴12を形成して、放電電
極7のネジ山13をネジ穴12に通して放電ガン部2の
先端にネジ込むことにより、これらは互いに固定されて
いる。
A screw hole 12 is formed in the center of the delay plate 10, and the screw threads 13 of the discharge electrode 7 are passed through the screw hole 12 and screwed into the tip of the discharge gun section 2, thereby fixing them to each other.

第3図に放電電極7、遅延板10、放電ガン部2の具体
的な一例を示し、ガンタイプのケーシング15は絶縁体
により構成され、前述した充電抵抗3、主コンデンサ4
、リレースイッチ5.9、放電抵抗6を内蔵し、リレー
スイッチ9はトリガスイッチ16により開閉が切り替え
られる。ケーシング15から延びるケーブル11は高圧
電源部1に接続される。遅延板10は部分球殻の椀形状
であり、各種火きさのものが装着可能である。
FIG. 3 shows a specific example of the discharge electrode 7, the delay plate 10, and the discharge gun section 2. The gun type casing 15 is made of an insulator, and the above-mentioned charging resistor 3 and main capacitor 4 are shown in FIG.
, a relay switch 5.9, and a discharge resistor 6 are built in, and the relay switch 9 is opened and closed by a trigger switch 16. A cable 11 extending from the casing 15 is connected to the high voltage power supply section 1. The delay plate 10 is in the shape of a bowl with a partially spherical shell, and plates of various ignition strengths can be attached thereto.

全放電ガン部2を被試験体8に接触させて放電電極7と
被試験体8との間で放電を行い人工的にサージ発生させ
、この人工サージを被試験体8に印加して、被試験体8
のサージに対する許容度を調べる。その時のサージ波形
をモニター装置で観測したものを第2図に示す、面積S
の遅延板10を使用した時、人工サージの第1ピーク値
は時間T2がCのグラフが示すように、0.6nsの位
置になり、面積2Sの遅延板10を使用した時、人工サ
ージの第1ピーク値は時間T3がDのグラフが示すよう
に%0.9nsの位置になった。
The entire discharge gun section 2 is brought into contact with the test object 8 to generate a discharge between the discharge electrode 7 and the test object 8 to generate an artificial surge, and this artificial surge is applied to the test object 8. Test specimen 8
Check its tolerance to surges. The surge waveform observed at that time using a monitor device is shown in Figure 2, which shows the area S
When using a delay plate 10 of The first peak value was at a position where time T3 was 0.9 ns as shown in the graph of D.

したがって、遅延板10のサイズを適宜選択することに
よって、自然発生的な静電気サージの第1ピーク値の時
間に合わせて、人工サージの第1ピーク値の時間を0.
3nsから0.9nsの間で自由に設定することができ
る。
Therefore, by appropriately selecting the size of the delay plate 10, the time of the first peak value of the artificial surge can be adjusted to 0.
It can be freely set between 3 ns and 0.9 ns.

[発明の効果] 以上説明してきたように、この発明によれば、ins以
下で立ち上がる高速の人工サージ電流波形を、その立ち
上がり時間を変更可能にし、自然発生的な静電気サージ
波形に近づけることができるので、シュミレーション精
度性の高いサージ試験が実現できるようになった。
[Effects of the Invention] As explained above, according to the present invention, it is possible to change the rise time of a high-speed artificial surge current waveform that rises at less than ins, and it is possible to bring it closer to a naturally occurring electrostatic surge waveform. This makes it possible to perform surge tests with high simulation accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の構成を示す図、第2図は本発
明の特性を示す図、第3図は本発明のサージ電圧・電流
発生器の具体例の斜視図、第4図本発明の原理図、第5
図は従来の構成図、第6図は従来の特性図である。 1・・・高圧電源部、  2・・・放電ガン部、3・・
・充電抵抗、  4・・・主コンデンサ、5.9・・・
リレースイッチ、 6・・・放電抵抗、  7・・・放電電極、8・・・被
試験体、  10・・・遅延板、11・・・ケーブル、
  12・・・ネジ穴、13・・・ネジ山、   15
・・・ケーシング、16・・・トリガスイッチ。 第 図 0.3ns 0.6ns 0.9ns 第4図 第5図 第6図 0.3ns 0.9ns
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention, FIG. 2 is a diagram showing the characteristics of the present invention, FIG. 3 is a perspective view of a specific example of the surge voltage/current generator of the present invention, and FIG. Principle diagram of the present invention, 5th
The figure is a conventional configuration diagram, and FIG. 6 is a conventional characteristic diagram. 1...High voltage power supply part, 2...Discharge gun part, 3...
・Charging resistor, 4... Main capacitor, 5.9...
Relay switch, 6... Discharge resistor, 7... Discharge electrode, 8... Test object, 10... Delay plate, 11... Cable,
12...Screw hole, 13...Screw thread, 15
...Casing, 16...Trigger switch. Figure 0.3ns 0.6ns 0.9ns Figure 4 Figure 5 Figure 6 0.3ns 0.9ns

Claims (1)

【特許請求の範囲】[Claims] 高電圧を発生する高圧電源部と、この高電圧が充電され
る放電ガン部と、この放電ガン部に結合され前記充電さ
れた高電圧を被試験体に対して放電する放電電極とを備
えたサージ電圧・電流発生器において、前記放電ガン部
と放電電極との間に該放電電極の表面積より広い面積の
導体板を配設したことを特徴とするサージ電圧・電流発
生器。
A high-voltage power supply unit that generates a high voltage, a discharge gun unit that is charged with this high voltage, and a discharge electrode that is coupled to the discharge gun unit and discharges the charged high voltage to a test object. A surge voltage/current generator, characterized in that a conductor plate having an area larger than the surface area of the discharge electrode is disposed between the discharge gun section and the discharge electrode.
JP1196533A 1989-07-31 1989-07-31 Surge voltage / current generator Expired - Fee Related JP2807268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1196533A JP2807268B2 (en) 1989-07-31 1989-07-31 Surge voltage / current generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1196533A JP2807268B2 (en) 1989-07-31 1989-07-31 Surge voltage / current generator

Publications (2)

Publication Number Publication Date
JPH0361875A true JPH0361875A (en) 1991-03-18
JP2807268B2 JP2807268B2 (en) 1998-10-08

Family

ID=16359323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1196533A Expired - Fee Related JP2807268B2 (en) 1989-07-31 1989-07-31 Surge voltage / current generator

Country Status (1)

Country Link
JP (1) JP2807268B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016001113A (en) * 2014-06-11 2016-01-07 株式会社ノイズ研究所 Static electricity generation gun
JP2016075634A (en) * 2014-10-08 2016-05-12 株式会社ノイズ研究所 Electrostatic discharge testing device
CN111337814A (en) * 2020-04-21 2020-06-26 吉林华微电子股份有限公司 Tolerance test device and method for semiconductor device
CN113125889A (en) * 2021-04-21 2021-07-16 阳光电源股份有限公司 Charging pile and testing device, system and method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016001113A (en) * 2014-06-11 2016-01-07 株式会社ノイズ研究所 Static electricity generation gun
JP2016075634A (en) * 2014-10-08 2016-05-12 株式会社ノイズ研究所 Electrostatic discharge testing device
CN111337814A (en) * 2020-04-21 2020-06-26 吉林华微电子股份有限公司 Tolerance test device and method for semiconductor device
CN113125889A (en) * 2021-04-21 2021-07-16 阳光电源股份有限公司 Charging pile and testing device, system and method thereof

Also Published As

Publication number Publication date
JP2807268B2 (en) 1998-10-08

Similar Documents

Publication Publication Date Title
US4845378A (en) Emp generator
Leckbee et al. Design, simulation, and fault analysis of a 6.5-MV LTD for flash X-ray radiography
JPH0651018A (en) Method and device for testing semiconductor device
EP0147921B1 (en) Method and apparatus for determining the electrostatic breakdown voltage of semiconductor devices
WO1995008124A1 (en) Electrostatic discharge generator
US4742427A (en) Electrostatic discharge simulation
JPH0361875A (en) Surge voltage/current generator
Nguyen et al. Modelling partial discharges in an insulation material at very low frequency
US4549132A (en) Method of testing and verifying a performance for insulation to ground of a disconnecting switch when breaking a charging current
JPH10332758A (en) Impulse tester
JP2002048829A (en) Impulse voltage measuring device
Corley et al. Tests of 6-MV triggered switches on APPRM at SNL
US5923130A (en) Repetitive and constant energy impulse current generator
US5166624A (en) Method for testing assembly susceptibility to electrostatic discharge events
JP2593951Y2 (en) Static electricity generator
JPH10260218A (en) Impulse tester
Stadler et al. Characterization and simulation of real-world cable discharge events
Molchanov et al. A new gas switch for low-inductance capacitor-switch assemblies
Arndt et al. Comparing cable discharge events to IEC 61000-4-2 or ISO 10605 discharges
Bonisch et al. Measurement and simulation of the behavior of a short spark gap used as ESD protection device
Greason Idealized model for charged device electrostatic discharge
Kraemer The Prospects of Replacing Chattering Relay Susceptibility Test with MIL-STD-461G CS115
Lux et al. The effect of steep-front short-duration pulses on polyethylene cable insulation
Lee et al. Electrostatic discharge effects on EBW detonators
JPH0798355A (en) Electrostatic breakdown test method and implementing device thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees