JPH036160Y2 - - Google Patents

Info

Publication number
JPH036160Y2
JPH036160Y2 JP19279781U JP19279781U JPH036160Y2 JP H036160 Y2 JPH036160 Y2 JP H036160Y2 JP 19279781 U JP19279781 U JP 19279781U JP 19279781 U JP19279781 U JP 19279781U JP H036160 Y2 JPH036160 Y2 JP H036160Y2
Authority
JP
Japan
Prior art keywords
voltage
thyristor
diode
capacitor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19279781U
Other languages
Japanese (ja)
Other versions
JPS5898000U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19279781U priority Critical patent/JPS5898000U/en
Publication of JPS5898000U publication Critical patent/JPS5898000U/en
Application granted granted Critical
Publication of JPH036160Y2 publication Critical patent/JPH036160Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Eletrric Generators (AREA)

Description

【考案の詳細な説明】 本考案は自励式交流発電機の電圧調整器に関す
るもので、その目的とするところは構成が極めて
簡単、安価にして安定した定電圧出力を供給でき
る装置を提供することである。他の目的は負荷変
動或は温度変化に対して高精度の制御が可能な装
置を提供するものである。以下図面を用いて本考
案を詳細に説明する。第1図及び第2図は本考案
の一実施例回路図及びその各部動作波形図で図に
おいてMCは自励式交流発電機の電機子巻線、
FCは界磁巻線、Lは負荷、SWは電源スイツチ、
SCRは前記界磁巻線FCの界磁電流を制御するサ
イリスタ、D2はフライホイルダイオード、SCは
本考案の要部を形成する位相制御回路でDZは交
流出力電圧の一方の半サイクル時(端子)に
抵抗R3を介して基準電圧を生じせしめる定電圧
ダイオード、D1及びR1R2は該交流出力の他方の
半サイクル時(端子′)の出力電圧検出用ダ
イオード及び分圧抵抗、Cは前記交流出力の他方
の半サイクル時該定電圧ダイオードDZを介して
出力検出電圧迄充電されるコンデンサで、前記交
流出力の一方の半サイクル時に分圧抵抗R2を介
して放電される。分圧抵抗R1R2の分割点bはサ
イリスタSCRのゲート極Gに接続されて、基準
電圧とコンデンサCの放電電圧の差電圧が与えら
れて該サイリスタSCRのゲートGをオンするゲ
ート回路を形成している。以上で本考案回路を構
成する。次に動作について第2図を参照して説明
する。先ずエンジン等により発電機が駆動される
と電機子巻線MCに鉄心の残留磁気により起電力
(数ボルト)が発生する。この起電力が正の半サ
イクルの時(端子)電機子巻線MC−抵抗
R3−抵抗R2−サイリスタSCRのゲートG、カソ
ードK−電機子巻線MC′の経路にゲート・ト
リガ電流が流れてサイリスタSCRは導通ONす
る。次いで電機子巻線MC−界磁巻線FC−サイ
リスタSCR−電機子巻線MCの経路で界磁電流が
流れ、電機子巻線電圧が上昇し、該電機子巻線電
圧と界磁電流の相剰効果により発電機は所定の交
流出力電圧を発生して通常運転を行う。以下通常
運転時の動作について説明する。第2図は第1図
においてGNDを基準とした各部動作波形図でイ
は発電機の出力電圧(端子−′)波形、ロは
出力検出電圧波形(端子)、ハは基準電圧波形
(端子)ニはサイリスタSCRの電圧波形(端子
−K)を示す。先ず出力電圧(第2図イ)の負
の半サイクル(端子′)時電機子巻線MC
′一定電圧ダイオードDZ<抵抗R2コンデンサ
>C1−抵抗R1−ダイオードD1−電機子巻線の
経路に電流が流れ、端子点に第2図ロに示す出
力検出電圧を発生せしめると同時にこの検出電圧
によりコンデンサCを図示の極性に充電し、該コ
ンデンサCはこの充電電荷を維持する。なお、該
コンデンサCの充電電圧は分圧抵抗R1R2の分圧
比及び電源電圧の変化に比例する。次いで出力電
圧の正の半サイクル(端子)時は電機子巻線
MC−抵抗R3−定電圧ダイオードDZ−電機子
巻線′の経路に電流が流れ端子には第2図ハ
に示す基準電圧を発生する。このため該正の半サ
イクル時において端子の電位はGNDに対し該
基準電圧と前記負の半サイクル時に充電されたコ
ンデンサCの充電電圧の差の電圧になる。一方該
コンデンサCの充電電荷は抵抗R2との時定数に
より徐々に放電するために動作波形は第2図ロに
示す如く右上りの波形となり、サイリスタSCR
のゲート電圧が徐々に上昇する。そしてこの電圧
がサイリスタSCRの点弧電圧に達すると(時間
t1)サイリスタSCRは端子−抵抗R3−抵抗R2
−サイリスタゲートG、カソードK−端子′の
経路にゲート電流が流れ該サイリスタSCRをON
せしめる。この結果前述の如く界磁巻線FCに界
磁電流が流れ出力電圧を上昇せしめる。本考案に
よれば交流出力電圧の負の半サイクル時において
該コンデンサCをその電圧値に応じて充電せしめ
て出力検出電圧に対応した電荷を維持(記憶)せ
しめ、他方正の半サイクル時にその充電電荷を一
定の時定数で抵抗R2を介して放電すると同時に
定電圧ダイオードの基準電圧と直接比較されその
差電圧がサイリスタのゲート電圧VGtに達するこ
とによりゲート信号が与えられるように構成した
ものである。従つて出力電圧が低下した場合(第
2図イ点線)コンデンサCの充電電圧もこれに比
例して低下するのでその動作波形は第2図の点線
に示すように交流出力の正の半サイクル時の電圧
が上昇し、即ち基準電圧と放電電圧の差電圧がサ
イリスタSCRのゲート電圧に達する時期が早く
(時間t2)なり点弧位相が進む結果サイリスタ
SCRの導通角が広くなり励磁電流が増加して出
力電圧を上昇させる。反対に出力電圧が上昇する
とコンデンサCの充電電圧も上昇するも次のサイ
クル時の放電時定数は一定のため抵抗R2の両端
電圧即ち基準電圧との差電圧がサイリスタSCR
のゲート電圧に達する時期が遅れ、その点弧位相
が遅れ該サイリスタSCRの導通角が狭くなりこ
れらの位相制御により出力交流電圧はほぼ一定値
に制御される。第3図は本考案の他の実施例回路
図で第1図と相違するところは位相制御回路のダ
イオードD1とと分圧抵抗R1,R2の直列回路の一
端に抵抗R4サーミスタS等より成る温度補償回
路TCを設けるようにしたものである。このよう
に構成すればコンデンサ充電回路に温度補償回路
が挿入されるため温度変動に係わらず、出力電圧
検出精度が高く高精度な位相制御が可能である。
なお第3図において、R5はゲート抵抗D、は廻
り込み防止用ダイオードである。
[Detailed description of the invention] The present invention relates to a voltage regulator for a self-excited alternating current generator, and its purpose is to provide a device that is extremely simple in construction, inexpensive, and capable of supplying a stable constant voltage output. It is. Another object is to provide an apparatus capable of highly accurate control over load fluctuations or temperature changes. The present invention will be explained in detail below using the drawings. Figures 1 and 2 are circuit diagrams of one embodiment of the present invention and operation waveform diagrams of each part thereof. In the figures, MC is the armature winding of a self-excited alternator;
FC is the field winding, L is the load, SW is the power switch,
SCR is a thyristor that controls the field current of the field winding FC, D2 is a flywheel diode, SC is a phase control circuit that forms the main part of the present invention, and DZ is a thyristor that controls the field current of the field winding FC. D1 and R1 R2 are diodes and voltage dividing resistors for detecting the output voltage during the other half cycle of the AC output (terminal'); C is a capacitor that is charged to the output detection voltage through the constant voltage diode DZ during the other half cycle of the AC output, and is discharged through the voltage dividing resistor R2 during the other half cycle of the AC output. The dividing point b of the voltage dividing resistor R 1 R 2 is connected to the gate pole G of the thyristor SCR, and a gate circuit is formed which turns on the gate G of the thyristor SCR when the voltage difference between the reference voltage and the discharge voltage of the capacitor C is applied. is forming. The circuit of the present invention is configured as described above. Next, the operation will be explained with reference to FIG. First, when a generator is driven by an engine or the like, an electromotive force (several volts) is generated in the armature winding MC due to the residual magnetism of the iron core. When this electromotive force is a positive half cycle (terminal) armature winding MC - resistance
A gate trigger current flows through the path R 3 - resistor R 2 - gate G of thyristor SCR, cathode K - armature winding MC', and thyristor SCR becomes conductive. Next, a field current flows through the path of armature winding MC - field winding FC - thyristor SCR - armature winding MC, the armature winding voltage increases, and the difference between the armature winding voltage and field current increases. Due to the mutual effect, the generator generates a predetermined AC output voltage and performs normal operation. The operation during normal operation will be explained below. Figure 2 is a diagram of the operation waveforms of each part based on GND in Figure 1. A is the output voltage (terminal -') waveform of the generator, B is the output detection voltage waveform (terminal), and C is the reference voltage waveform (terminal). D shows the voltage waveform of the thyristor SCR (terminal -K). First, during the negative half cycle (terminal ') of the output voltage (Fig. 2 A), the armature winding MC
'Constant voltage diode DZ <Resistance R 2 Capacitor> C 1 - Resistor R 1 - Diode D 1 - A current flows through the armature winding path, and at the same time generates the output detection voltage shown in Figure 2 B at the terminal point. This detected voltage charges the capacitor C to the polarity shown, and the capacitor C maintains this charged charge. Note that the charging voltage of the capacitor C is proportional to the voltage dividing ratio of the voltage dividing resistor R 1 R 2 and a change in the power supply voltage. Then, during the positive half cycle (terminal) of the output voltage, the armature winding
A current flows through the path of MC - resistor R 3 - constant voltage diode DZ - armature winding', and a reference voltage shown in FIG. 2C is generated at the terminal. Therefore, during the positive half cycle, the potential of the terminal becomes the difference between the reference voltage and the charging voltage of the capacitor C charged during the negative half cycle with respect to GND. On the other hand, since the charge in the capacitor C gradually discharges due to the time constant with the resistor R2 , the operating waveform becomes an upward-sloping waveform as shown in Figure 2B, and the thyristor SCR
The gate voltage of is gradually increased. And when this voltage reaches the firing voltage of the thyristor SCR (time
t 1 ) Thyristor SCR is terminal - resistor R 3 - resistor R 2
-Gate current flows through the path of thyristor gate G and cathode K-terminal', turning on the thyristor SCR.
urge As a result, as described above, a field current flows through the field winding FC, increasing the output voltage. According to the present invention, the capacitor C is charged in accordance with the voltage value during the negative half cycle of the AC output voltage to maintain (memorize) the charge corresponding to the output detection voltage, and the capacitor C is charged during the positive half cycle. It is configured so that the charge is discharged via resistor R2 with a constant time constant, and at the same time it is directly compared with the reference voltage of the voltage regulator diode, and a gate signal is given when the difference voltage reaches the gate voltage VGt of the thyristor. be. Therefore, when the output voltage decreases (dotted line in Figure 2), the charging voltage of capacitor C also decreases in proportion to this, so the operating waveform changes during the positive half cycle of AC output as shown by the dotted line in Figure 2. As a result, the voltage difference between the reference voltage and the discharge voltage reaches the gate voltage of the thyristor SCR earlier (time t 2 ), and the firing phase advances.
The conduction angle of the SCR becomes wider, the excitation current increases, and the output voltage increases. On the other hand, when the output voltage increases, the charging voltage of capacitor C also increases, but the discharge time constant during the next cycle is constant, so the voltage across resistor R2 , that is, the difference voltage from the reference voltage, is the voltage difference between the thyristor SCR
The time when the gate voltage is reached is delayed, the ignition phase is delayed, and the conduction angle of the thyristor SCR is narrowed. Through these phase controls, the output AC voltage is controlled to a substantially constant value. Fig. 3 is a circuit diagram of another embodiment of the present invention, and the difference from Fig. 1 is that a diode D1 of the phase control circuit and a resistor R4 and a thermistor S are installed at one end of the series circuit of voltage dividing resistors R1 and R2 . A temperature compensation circuit TC consisting of the following components is provided. With this configuration, since the temperature compensation circuit is inserted into the capacitor charging circuit, it is possible to achieve high output voltage detection accuracy and highly accurate phase control regardless of temperature fluctuations.
In FIG. 3, R5 is a gate resistance D, and R5 is a diode for preventing wraparound.

以上の説明から明らかなように本考案によれば
構成簡単にして安定した定電圧出力を供給できる
装置を提供できるので実用上の効果は大きい。
As is clear from the above description, according to the present invention, it is possible to provide a device that can provide a stable constant voltage output with a simple configuration, and therefore has great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本考案の一実施例回路図及び
その各部動作波形図、第3図は本考案の他の実施
例回路図である。図において、Lは負荷、SWは
電源スイツチ、MCは電機子巻線、FCは界磁巻
線、SCRはサイリスタ、SCは位相制御回路、DZ
は定電圧ダイオード、Cはコンデンサ、R1,R2
は分圧抵抗、LCはランプコイル、RECは整流器、
TCは温度補償回路、Sはサーミスタである。
1 and 2 are circuit diagrams of one embodiment of the present invention and operation waveform diagrams of each part thereof, and FIG. 3 is a circuit diagram of another embodiment of the present invention. In the figure, L is the load, SW is the power switch, MC is the armature winding, FC is the field winding, SCR is the thyristor, SC is the phase control circuit, DZ
is a constant voltage diode, C is a capacitor, R 1 , R 2
is a voltage dividing resistor, LC is a lamp coil, REC is a rectifier,
TC is a temperature compensation circuit, and S is a thermistor.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 1 電機子巻線MC及び界磁巻線FCを有する自
励式交流発電機と前記界磁巻線電流を制御するサ
イリスタSCRと前記発電機の出力電圧に応じて
前記サイリスタの点弧位相を制御する位相制御回
路SCを備えた自励式交流発電機の電圧調整器に
おいて、前記位相制御回路SCはダイオードD1
と電圧検出用分圧抵抗R4,R2の直列体に並列に
抵抗R3を接続した回路と、前記ダイオードD1
同一極性に前記回路に直列接続した定電圧ダイオ
ードDZと、前記分圧抵抗R4,R2の両端に接続さ
れた感温素子SとコンデンサCの直列体と、前記
分圧抵抗の分割点及び前記感温素子Sとコンデン
サCの接続点を夫々前記サイリスタのゲートに接
続するゲート回路を備え、前記出力電圧の一方の
半サイクル時に前記定電圧ダイオードにより発生
せしめた基準電圧と前記他方の半サイクル時充電
され、前記一方の半サイクル時放電する前記コン
デンサの電圧の差電圧を前記電圧検出用分圧抵抗
の分圧点に発生せしめ、これにより前記ゲート回
路を介して前記サイリスタを制御するようにした
ことを特徴とする自励式交流発電機の電圧調整
器。
1. A self-excited alternator having an armature winding MC and a field winding FC, a thyristor SCR that controls the field winding current, and a firing phase of the thyristor that is controlled according to the output voltage of the generator. In a voltage regulator for a self-excited alternator equipped with a phase control circuit SC, the phase control circuit SC includes a diode D1.
a circuit in which a resistor R 3 is connected in parallel to a series body of voltage dividing resistors R 4 and R 2 for voltage detection; a constant voltage diode DZ connected in series to the circuit with the same polarity as the diode D 1 ; A series body of a temperature sensing element S and a capacitor C connected to both ends of the resistors R 4 and R 2 , a dividing point of the voltage dividing resistor and a connection point of the temperature sensing element S and the capacitor C are respectively connected to the gate of the thyristor. a voltage difference between a reference voltage generated by the constant voltage diode during one half cycle of the output voltage and a voltage of the capacitor that is charged during the other half cycle and discharged during the one half cycle; A voltage regulator for a self-excited alternating current generator, characterized in that a voltage is generated at a voltage dividing point of the voltage detecting voltage dividing resistor, and thereby the thyristor is controlled via the gate circuit.
JP19279781U 1981-12-25 1981-12-25 Self-excited alternator voltage regulator Granted JPS5898000U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19279781U JPS5898000U (en) 1981-12-25 1981-12-25 Self-excited alternator voltage regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19279781U JPS5898000U (en) 1981-12-25 1981-12-25 Self-excited alternator voltage regulator

Publications (2)

Publication Number Publication Date
JPS5898000U JPS5898000U (en) 1983-07-04
JPH036160Y2 true JPH036160Y2 (en) 1991-02-15

Family

ID=30106182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19279781U Granted JPS5898000U (en) 1981-12-25 1981-12-25 Self-excited alternator voltage regulator

Country Status (1)

Country Link
JP (1) JPS5898000U (en)

Also Published As

Publication number Publication date
JPS5898000U (en) 1983-07-04

Similar Documents

Publication Publication Date Title
EP0933526A3 (en) Ion current detection apparatus
US6555993B2 (en) Voltage regulating system of a vehicle AC generator for charging a battery
KR950003338B1 (en) Ignition apparatus for internal combustion engine
US4222005A (en) Testing device for generator output voltage regulators
JPH036160Y2 (en)
JPS63277861A (en) Non-contact ignition device for battery feed type internal combustion engine having engine reversing preventing constitution
JPS5910179A (en) Starting circuit for single phase induction motor
JPH0323838Y2 (en)
JP4337410B2 (en) Ignition system for capacitor discharge internal combustion engine
JP2841947B2 (en) Capacitor discharge type ignition device for internal combustion engine
JPS6056269B2 (en) magneto igniter
JPH034160Y2 (en)
JPH047676Y2 (en)
JPH066681Y2 (en) Battery charger
JPH0526311Y2 (en)
JPS5817353B2 (en) igniter
JPS5941339Y2 (en) door device
JPH0510557Y2 (en)
JPS61255272A (en) Ignition device for internal-combustion engine
JPS6031439Y2 (en) Automatic voltage regulator for excited alternator
JPH06624Y2 (en) Ignition device for internal combustion engine
JPH0128303Y2 (en)
JPS596160Y2 (en) Induction motor control device
JPH0616993Y2 (en) Capacitor discharge type internal combustion engine ignition device
JPH0318698Y2 (en)