JPH0361581B2 - - Google Patents

Info

Publication number
JPH0361581B2
JPH0361581B2 JP18079083A JP18079083A JPH0361581B2 JP H0361581 B2 JPH0361581 B2 JP H0361581B2 JP 18079083 A JP18079083 A JP 18079083A JP 18079083 A JP18079083 A JP 18079083A JP H0361581 B2 JPH0361581 B2 JP H0361581B2
Authority
JP
Japan
Prior art keywords
foam
resin
foaming
weight
honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18079083A
Other languages
Japanese (ja)
Other versions
JPS6072723A (en
Inventor
Mamoru Kameda
Nobuhiko Yamauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP18079083A priority Critical patent/JPS6072723A/en
Publication of JPS6072723A publication Critical patent/JPS6072723A/en
Publication of JPH0361581B2 publication Critical patent/JPH0361581B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 本発明は、ハニカム状内部構造中に特定の樹脂
混合物を注入発泡させ、両面に金属板、難燃性
FRP板又は無機板を貼り合せてなる難燃性軽量
パネルに関する。
Detailed Description of the Invention The present invention involves injecting and foaming a specific resin mixture into the honeycomb-like internal structure, with metal plates on both sides, and flame-retardant
Regarding flame-retardant lightweight panels made by laminating FRP boards or inorganic boards.

近年、エネルギー価格の上昇に伴い輸送機器の
軽量化が進んできた。特に航空機については軽量
化により大巾に燃料費の低減を計ることが絶対必
要事項となつており、航空輸送会社の収益にも大
きな影響を与える要素となつている。その為、最
近米国ボーイング社で開発された767型航空機に
は複合材料を大巾に取り入れ軽量化を行うことに
より、従来機に比べ航続距離の延長と収容人数の
増大を計つている。
In recent years, as energy prices have increased, transportation equipment has become lighter. For aircraft in particular, it is absolutely necessary to significantly reduce fuel costs by reducing weight, and this is a factor that has a major impact on the profits of air transport companies. For this reason, the 767 aircraft recently developed by the Boeing Company in the United States incorporates extensive use of composite materials to reduce weight, thereby extending its range and increasing the number of passengers it can accommodate compared to conventional aircraft.

本発明者らはこの様な状況に鑑み、航空機を主
体とした輸送用機器及び高層建築物用の壁等の用
に軽量でしうかも難燃性、断熱性を有する材料を
必要とする分野へ提供できるパネルの開発を目的
に研究を進めた。
In view of this situation, the present inventors have developed a field that requires lightweight, flame-retardant, and heat-insulating materials for use in transportation equipment, mainly aircraft, and walls of high-rise buildings. The research was carried out with the aim of developing a panel that could be provided to

すなわち、従来から内部コアに発泡体を用いた
サンドイツチパネルは各種のものが知られ、その
一部は市販されている。その内部コアの発泡体と
しては、ポリウレタンフオーム、フエノールフオ
ーム、各種ビニルフオーム等が使用され、色々な
用途に使われていた。しかしながら、フエノール
フオームにはその難燃性、断熱性の反面、その
“もろさ”、強度に問題があつた。又ポリウレタン
フオームには、難燃性に問題があり、ビニルフオ
ームも燃焼時のガス発生に問題があつた。
That is, various types of sanderch panels using foam for the inner core have been known, and some of them are commercially available. Polyurethane foam, phenol foam, various vinyl foams, etc. have been used as the foam for the inner core, and have been used for a variety of purposes. However, while phenol foam has flame retardancy and heat insulation properties, it has problems with its "brittleness" and strength. Polyurethane foam also has a problem with flame retardancy, and vinyl foam also has a problem with gas generation during combustion.

本発明者らは、その内のフエーノールフオーム
の難燃性、断熱性に注目しその特性を生かし、し
かもフエノールフオームの欠点である。“もろ
さ”、強度を十分補充し得る方法を見出し、本発
明を完成するに至つた。
The present inventors focused on the flame retardancy and heat insulating properties of phenol foam, and took advantage of the properties thereof, while also addressing the drawbacks of phenol foam. We have discovered a method that can sufficiently compensate for "brittleness" and strength, and have completed the present invention.

即ち、本発明は、ハニカムを用いたパネルにお
いて内部コアとしてハニカム内の空隙に、フエノ
ール樹脂90〜30重量部と、エポキシ樹脂又はポリ
ウレタン樹脂10〜70重量部とからなる密度0.03〜
0.7の発泡体が充満し、ハニカムの両面に金属板、
難燃性FRP板、もしくは無機板を有してなる難
燃性軽量パネルを提供するものである。
That is, in the present invention, in a panel using a honeycomb, a material having a density of 0.03 to 30 parts by weight consisting of 90 to 30 parts by weight of a phenol resin and 10 to 70 parts by weight of an epoxy resin or polyurethane resin is used as an inner core in the voids within the honeycomb.
Filled with 0.7 foam, metal plates on both sides of the honeycomb,
The present invention provides a flame-retardant lightweight panel comprising a flame-retardant FRP board or an inorganic board.

本発明ではパネルの内部のコア材としてフエノ
ール樹脂発泡体の“もろさ”解消のために、他の
柔軟性を有する特定の強化用樹脂を混入するが、
このことは本発明の特徴の一つを成すものであ
る。この強化用樹脂としては、エポキシ樹脂、ポ
リウレタン樹脂であり、150℃以下で溶融するも
のが好ましい。これらのほかに150℃以下で溶融
する熱可塑性樹脂が強化用樹脂として使用可能で
ある。これらは液状でも固体状でも用いられる。
In the present invention, in order to eliminate the "brittleness" of the phenolic resin foam as the core material inside the panel, a specific reinforcing resin having other flexibility is mixed.
This constitutes one of the features of the present invention. The reinforcing resin is preferably an epoxy resin or a polyurethane resin, and one that melts at 150° C. or lower is preferable. In addition to these, thermoplastic resins that melt at temperatures below 150°C can be used as reinforcing resins. These can be used in either liquid or solid form.

フエノール樹脂発泡体は、その発泡方法により
2種類に大別される。一つは、二成分以上の液を
混合して室温で発泡させるレゾール型発泡体を主
体とする液状発泡であり、他の一つは粉末状のフ
エノール樹脂と発泡剤を100〜200℃、好ましくは
120〜150℃に加熱して溶融させ、その際揮発性ガ
スを発生させて発泡させる主としてノボラツク型
発泡体である。
Phenol resin foams are roughly classified into two types depending on the foaming method. One is liquid foaming, which is mainly based on resol foam, in which two or more liquids are mixed and foamed at room temperature. teeth
It is mainly a novolak type foam that is heated to 120 to 150°C to melt and generate volatile gas to foam.

粉末状ノボラツク型フエノール樹脂発泡体は、
作業の必要性からメタノール等のアルコール類、
アセトン、メチルエチルケトン等のケトン類、メ
チレンクロライド、クロロホルム等のハロゲン含
有溶剤等の低沸点溶剤中に20〜90%の濃度で粉末
状ノボラツク型フエノール樹脂を溶解又は分散さ
せ、更に必要面に塗布し、常温〜60℃位で乾燥さ
せた後に100〜200℃に加熱して発泡させることに
より得られる。もちろん本発明の強化用樹脂の混
入に際しこれらを利用することができる。
Powdered novolak type phenolic resin foam is
Alcohols such as methanol, due to the necessity of work,
Powdered novolac type phenolic resin is dissolved or dispersed at a concentration of 20 to 90% in a low boiling point solvent such as ketones such as acetone and methyl ethyl ketone, and halogen-containing solvents such as methylene chloride and chloroform, and further applied to the required surface, It is obtained by drying at room temperature to about 60°C and then heating to 100 to 200°C to foam. Of course, these can be used when mixing the reinforcing resin of the present invention.

液状発泡の場合、レゾール型フエノール樹脂
液、発泡剤液、触媒の三成分の混合系か、又は発
泡剤液を他のどちらかに混合して二成分系での発
泡が最も一般的であるが、特にその成分数につい
ては制限されない。
In the case of liquid foaming, the most common foaming is a three-component mixed system of resol type phenolic resin liquid, blowing agent liquid, and catalyst, or a two-component system in which the blowing agent liquid is mixed with one of the other components. There is no particular restriction on the number of components.

強化用樹脂を混合する方法としては、フエノー
ル樹脂液又はフエノール樹脂液と発泡剤液に強化
用樹脂を入れて混合すれば良く、均一液にならな
い場合は強制撹拌により均一分散状態で使用でき
る。
The reinforcing resin may be mixed by adding the reinforcing resin to a phenolic resin liquid or a phenolic resin liquid and a blowing agent liquid, and mixing the reinforcing resin. If a homogeneous liquid is not obtained, forced stirring can be used in a uniformly dispersed state.

又、固体の樹脂を強化用樹脂として用いる場合
は、微粉末化して同じくフエノール樹脂液、又は
フエノール樹脂と発泡剤液に混合し撹拌により均
一分散液として用いれば良い。固体の樹脂で微粉
末化が難しい場合、溶解できる溶剤があればそれ
に溶解させて用いることもでき、その際沸点60℃
以下、望ましくは40℃以下の溶剤が望ましく、発
泡の際の反応熱で気化して発泡剤の一部として働
くことが必要である。溶剤の使用は、発泡時に気
化せず発泡体中に未反応溶剤として残ることがあ
り発泡体の強度低下を生じたり、又その量が多い
とフエノール樹脂の高分子量化を妨げることもあ
り、一般には好ましくない。
When a solid resin is used as a reinforcing resin, it may be pulverized and mixed with a phenol resin liquid, or a phenol resin and a blowing agent liquid, and stirred to form a uniform dispersion. If it is difficult to finely powder a solid resin, it can be used by dissolving it in a solvent if there is a solvent that can dissolve it.
Hereinafter, it is preferable to use a solvent having a temperature of 40° C. or lower, and it is necessary that the solvent is vaporized by the reaction heat during foaming and acts as a part of the foaming agent. The use of a solvent does not vaporize during foaming and may remain as an unreacted solvent in the foam, resulting in a decrease in the strength of the foam, and if the amount is too large, it may hinder the increase in the molecular weight of the phenolic resin. is not desirable.

固体状発泡原料、即ちノボラツク型フエノール
樹脂を用いて発泡する場合、強化用樹脂を上記と
同じ様に使用することができる。更にこの場合に
は発泡時に100〜200℃に加熱して発泡させるた
め、沸点100℃位迄の溶剤が使用可能である。
When foaming is performed using a solid foaming material, ie, a novolak type phenolic resin, a reinforcing resin can be used in the same manner as described above. Furthermore, in this case, since foaming is carried out by heating to 100 to 200°C, a solvent with a boiling point of up to about 100°C can be used.

強化用樹脂としては液状エポキシ樹脂、液状ポ
リウレタン樹脂、下記固体状強化用樹脂の溶液が
あり、又半硬化エポキシ樹脂、固体状ポリウレタ
ン樹脂、及び各種の固体状熱可塑性樹脂が挙げら
れる。
Examples of reinforcing resins include liquid epoxy resins, liquid polyurethane resins, and solutions of the following solid reinforcing resins, as well as semi-cured epoxy resins, solid polyurethane resins, and various solid thermoplastic resins.

液状強化用樹脂の場合、液状発泡の触媒液によ
り急速に高分子化するもの、又は液状発泡時の熱
により溶剤が蒸発して樹脂が残るもの、および粉
末発泡法の場合には発泡時の100〜200℃の加熱で
高分子化するものか、又は溶剤が蒸発して樹脂が
残るものが良い。
In the case of liquid reinforcing resins, those that are rapidly polymerized by the catalyst liquid in liquid foaming, or those that leave resin after the solvent evaporates due to the heat during liquid foaming, and those that are It is best to use a material that becomes polymeric when heated to ~200°C, or a material that leaves a resin after the solvent evaporates.

発泡剤としては、配合物の硬化の際の加熱によ
り気体を発生するものであればいずれも使用でき
る。例えば硬化の際の温度で揮発するアルコール
類、ケトン類、ハロゲン化炭化水素類、炭化水素
類、及びその温度に於て分解してガスを発生する
炭酸アンモン、重炭酸ソーダ等の無機塩類、ジニ
トロソペンタメチレンテトラミン等のニトロソ化
合物、アゾカーボンアミド、アゾビスイソブチロ
ニトリル等のアゾ化合物、ベンセンスルホニルヒ
ドラジツド等のヒドラジツド類、パラターシヤリ
ーブチルベンゾニルアジド等のアジド類等が挙げ
られ、これらを配合物100重量部中に1〜50重量
部添加する。
As the blowing agent, any foaming agent can be used as long as it generates gas when heated during curing of the compound. For example, alcohols, ketones, halogenated hydrocarbons, and hydrocarbons that volatilize at the temperature during curing, and inorganic salts such as ammonium carbonate and sodium bicarbonate that decompose at that temperature to generate gas, and dinitrosopenta. Examples include nitroso compounds such as methylenetetramine, azo compounds such as azocarbonamide and azobisisobutyronitrile, hydrazides such as benzenesulfonylhydrazide, and azides such as paratertiary butylbenzonyl azide. It is added in an amount of 1 to 50 parts by weight per 100 parts by weight of the formulation.

液状エポキシ樹脂としては、市販の各種エポキ
シ樹脂が使用可能であり、例えば大日本インキ化
学工業(株)製品の「エピクロン850」と硬化剤、例
えばジシアンジアミドから得られるエポキシ樹脂
が挙げられる。
As the liquid epoxy resin, various commercially available epoxy resins can be used, including, for example, an epoxy resin obtained from "Epiclon 850" manufactured by Dainippon Ink and Chemicals Co., Ltd. and a curing agent such as dicyandiamide.

液状ポリウレタン樹脂としては、イソシアネー
ト基の5〜25重量%残存したいわゆるプレポリマ
ーを用いるのが良い。
As the liquid polyurethane resin, it is preferable to use a so-called prepolymer in which 5 to 25% by weight of isocyanate groups remain.

固体状エポキシ樹脂としては、半硬化状態のも
のが良く、例えば大日本インキ化学工業(株)製品
「エピクロン850」と硬化剤としてジシアンジアミ
ドおよび硬化促進剤としてジメチルベンジルアミ
ンを加え、130℃、10分間反応させた半硬化樹脂
がその代表例である。又、固体状ポリウレタン樹
脂としては、重合度の低い、いわゆるオリゴマー
で、しかも未反応イソシアネート基の5〜25重量
%残存したものが適する。
The solid epoxy resin is preferably one in a semi-cured state; for example, "Epicron 850" manufactured by Dainippon Ink and Chemicals Co., Ltd. is mixed with dicyandiamide as a curing agent and dimethylbenzylamine as a curing accelerator, and the mixture is heated at 130°C for 10 minutes. A typical example is a reacted semi-cured resin. Suitable solid polyurethane resins include so-called oligomers with a low degree of polymerization, and in which 5 to 25% by weight of unreacted isocyanate groups remain.

熱可塑性樹脂の場合、既に高分子化した化合物
でフエノール発泡体に加えた後、その発泡時の熱
で溶融することが必要である。しかし、粉末状発
泡の場合には、100〜200℃に加熱するのでその熱
を利用するのが良い。
In the case of thermoplastic resins, it is necessary to add the already polymerized compound to the phenol foam and then melt it with the heat generated during foaming. However, in the case of powder foaming, it is heated to 100 to 200°C, so it is better to utilize that heat.

発泡に関する前記2方法で、液状配合物を発泡
体とするには強酸性触媒を使うため、発泡後にも
金属腐蝕の問題がある。又発泡も必要成分を混合
後、数分内に完結されるのでその条件に応じて使
う必要がある。
In the above two foaming methods, since a strong acidic catalyst is used to turn the liquid mixture into a foam, there is a problem of metal corrosion even after foaming. Also, since foaming is completed within a few minutes after mixing the necessary ingredients, it is necessary to use it according to the conditions.

粉末状配合物を発泡体とする場合には、この様
な問題がない代り100〜200℃に加熱して発泡させ
る必要があるので、これらの点を考慮して用途に
より使い分ければ良い。発泡体中に入れる強化用
樹脂の量はその“もろさ”克服の必要程度、必要
物性値、又は必要難燃性の度合により決るが10〜
70重量部混入することが必要であり、好ましくは
30〜50重量部の混入が最適である。この使用量が
10重量部より少ないと殆どその効果がなく、70重
量部を越えて使用すると難燃性が著しく低下する
ので好ましくない。
When a powdered compound is made into a foam, this problem does not occur, but it requires heating to 100 to 200° C. to foam, so these points can be taken into account and the foam can be used depending on the purpose. The amount of reinforcing resin added to the foam is determined by the degree to which it is necessary to overcome its "brittleness," the required physical property values, or the degree of flame retardancy required, but it can range from 10 to 10%.
It is necessary to mix 70 parts by weight, preferably
The optimum amount is 30 to 50 parts by weight. This usage is
If it is used in an amount less than 10 parts by weight, there is almost no effect, and if it is used in an amount exceeding 70 parts by weight, the flame retardance will be significantly reduced, which is not preferable.

又、上記により生じた発泡体の難燃性は強化用
樹脂の配合割合の増加に伴い落ちてくる。そのた
め難燃性能向上を目指して各種難燃剤を0〜10重
量部混入することが望ましい。難燃剤としては市
販のリン原子やハロゲン原子を含有する難燃剤を
混入しても良いが、三酸化アンチモン、ホウ酸化
合物等の無機塩がより効果が大きく、更にハロゲ
ン原子含有難燃剤と無機塩の伴用により更に難燃
効果を増すことができる。
Moreover, the flame retardancy of the foam produced as described above decreases as the blending ratio of the reinforcing resin increases. Therefore, it is desirable to mix 0 to 10 parts by weight of various flame retardants with the aim of improving flame retardant performance. Commercially available flame retardants containing phosphorus atoms or halogen atoms may be mixed as flame retardants, but inorganic salts such as antimony trioxide and boric acid compounds are more effective, and flame retardants containing halogen atoms and inorganic salts are more effective. The flame retardant effect can be further increased by using in combination.

得られた発泡体の密度は0.03〜0.7であり、0.03
より小さいと非常にもろい発泡体となり、0.7よ
り大きいと軽量化効果が十分でなく実用的でな
い。
The density of the obtained foam is 0.03-0.7;
If it is smaller than 0.7, the foam becomes very brittle, and if it is larger than 0.7, the weight reduction effect is not sufficient and it is not practical.

発泡体の強度を上げるために用いるハニカムの
材質としては、アルミニウム質の金属、紙、ノー
メツクス等の有機物等各種のハニカムが使用可能
であるが、経済性の点ではペーパーハニカムが最
も優れており、更にペーパーハニカムにフエノー
ル樹脂を含浸、硬化させた難燃性ペーパーハニカ
ムが最適である。
Various honeycomb materials can be used to increase the strength of the foam, including aluminum metal, paper, and organic materials such as Nomex, but paper honeycomb is the most economical. Furthermore, a flame-retardant paper honeycomb obtained by impregnating and curing a paper honeycomb with a phenol resin is most suitable.

しかしその強度、軽量化、用途の必要程度に応
じて、金属ハニカムや各種有機ハニカムも使用可
能である。
However, metal honeycombs and various organic honeycombs can also be used depending on the strength, weight reduction, and required degree of use.

又、ハニカム構造の大きさについては発泡を容
易に行うために大きい方が望ましく、特にその大
きさは限定しないが、通常2〜50mm程度である。
ハニカムを含んだ発泡体のコアの両面につける表
面板の材質としては、アルミニウム、鉄、ステン
レス、マグネシウム、チタン等の金属板やその合
金等の各種金属板、石膏やケイ酸カルシウム、セ
ラミツク板、岩綿板、ガラス繊維板、ガラス板等
の各種無機板、その他の木質系合金板やプラスチ
ツク板、FRP板等が使用可能であるが、その難
燃性、軽量性、経済性を考えた際、金属板、難燃
性FRP板が適しており、特にフエノール樹脂を
マトリツクス樹脂としたFRP板が最適である。
Further, the size of the honeycomb structure is preferably large in order to facilitate foaming, and although the size is not particularly limited, it is usually about 2 to 50 mm.
Materials for the surface plates attached to both sides of the honeycomb-containing foam core include metal plates such as aluminum, iron, stainless steel, magnesium, and titanium, and various metal plates such as alloys thereof, gypsum, calcium silicate, ceramic plates, Various inorganic boards such as rock wool boards, glass fiber boards, glass boards, other wood-based alloy boards, plastic boards, FRP boards, etc. can be used, but when considering their flame retardancy, light weight, and economic efficiency, , metal plates, and flame-retardant FRP plates are suitable, and FRP plates with phenolic resin as the matrix resin are particularly suitable.

又、FRP板としての強化繊維としてはガラス
繊維、炭素繊維、アラミド繊維等の各種無機繊
維、有機繊維が使用可能であるが、経済性からは
ガラス繊維が最も有利である。強化繊維の使用形
態についても、繊維を一方向に並べた使用法や3
〜60mm位に短く切つてマトリツクス樹脂中に分散
させて使う場合もあるが、取り扱い上織布状にし
たものが最も好ましい。
Furthermore, various inorganic fibers and organic fibers such as glass fiber, carbon fiber, and aramid fiber can be used as reinforcing fibers for the FRP board, but glass fiber is the most advantageous from an economic point of view. Regarding the usage form of reinforcing fibers, there are also ways to use fibers arranged in one direction, and
Although it may be used by cutting it into short pieces of about 60 mm and dispersing it in a matrix resin, it is most preferable to use it in the form of a woven fabric for handling purposes.

又、この表面板として半硬化状態の所謂プリプ
レグを使用することも可能であり、その場合には
パネル作成時のプレスにより加圧、加熱硬化させ
て表面板とする。この板の厚さは、0.1〜2mm程
度である。
It is also possible to use a so-called prepreg in a semi-cured state as the surface plate, and in that case, the surface plate is formed by being pressurized and cured by heating in a press during panel production. The thickness of this plate is approximately 0.1 to 2 mm.

本発明のパネルを作るには次の方法による。 The panel of the present invention is made by the following method.

発泡体充填ブロツクよりコアを切り出す方
法。
How to cut out the core from a foam-filled block.

予め離型性を有する表面をもつ箱の底に均一
に発泡材料(フエノール樹脂発泡材料+強化用
樹脂+難燃剤)を分散させ、ハニカムをその上
に乗せ発泡させる。発泡開始によりハニカムの
下から順次発泡体の充填が行われる。発泡完了
後約60分を経た後、できたブロツクより必要厚
さのコア板を切り出す。
Foaming material (phenol resin foaming material + reinforcing resin + flame retardant) is uniformly dispersed in the bottom of a box that has a surface with mold releasability in advance, and the honeycomb is placed on top of it and foamed. When foaming starts, the honeycomb is sequentially filled with foam from the bottom. Approximately 60 minutes after foaming is complete, a core board of the required thickness is cut from the resulting block.

切り出したコア板の上下に表面板を乗せる。
表面板が半硬化状態のプリプレグである場合を
除き、表面板とコア板との間に接着剤、又は予
め紙、寒冷紗やガラスクロスにフエノール樹脂
やエポキシ樹脂を含浸させ半硬化状態にした接
着のためのシートを狭み100〜200℃で加圧硬化
して作る。
Place the top plate on top and bottom of the cut out core plate.
Unless the top plate is a semi-hardened prepreg, use an adhesive between the top plate and the core board, or an adhesive made by pre-impregnating paper, cheesecloth, or glass cloth with a phenol resin or epoxy resin to a semi-hardened state. It is made by narrowing the sheet and hardening it under pressure at 100 to 200℃.

一体成型する方法 表面板の上に発泡させる樹脂配合物を乗せて
おき、その上にハニカム、更に表面板を乗せプ
レスにて加熱、加圧成形させる。この場合発泡
硬化時に上下表面板の接着が同時に行われる。
Integral molding method Place the resin compound to be foamed on top of the surface plate, place the honeycomb and then the top plate on top, and heat and pressurize the honeycomb in a press. In this case, the upper and lower surface plates are bonded simultaneously during foam curing.

更に大きな接着力を必要とする場合には、表
面材とハニカムの間に前記接着シートを入れ、
接着強度を高めることもできる。
If even greater adhesive strength is required, insert the adhesive sheet between the surface material and the honeycomb,
It is also possible to increase adhesive strength.

以下、実施例により説明するが、文中「部」及
び「%」は重量基準であるものとする。
Examples will be described below, where "parts" and "%" are based on weight.

実施例 1 200g/m2の密度を有するガラスクロスK−285
(旭フアイバーガラス社製)にプライオーフエン
5010(大日本インキ化学社、フエノール系樹脂製
品)を220g/m2の量で含浸させたB−ステージ
化させたプリプレグを作つた。このプリプレグ2
枚を合せてホツトプレスにて厚さ0.3m/mの表
面材を作つた。
Example 1 Glass cloth K-285 with a density of 200 g/m 2
(manufactured by Asahi Fiber Glass Co., Ltd.) with ply oven
A B-staged prepreg impregnated with 5010 (Dainippon Ink Chemical Co., Ltd., a phenolic resin product) in an amount of 220 g/m 2 was prepared. This prepreg 2
The sheets were put together and a surface material with a thickness of 0.3 m/m was made using a hot press.

この表面材を切つて10cm×10cmとしホツトプレ
スの下面に乗せ上に接着シートとして上記プリプ
レグを乗せ、その上にプライオーフエンTD−
2030H(大日本インキ化学社、フエノール樹脂製
品)9gと強化用樹脂としてエピクロン850(大日
本インキ化学社、エポキシ樹脂製品)5gとジシ
アンジアミド0.5g及び難燃剤として三酸化アン
チモン1gを混合した配合物を均一に分散させ
た。その上に8mmのセルサイズを有する厚さ10mm
のペーパーハニカム5gを乗せ、更にプリプレグ
及び上記表面板を乗せて、150℃、圧力1Kg/cm2
で加圧成形した。
Cut this surface material to a size of 10 cm x 10 cm, place it on the bottom of the hot press, place the above prepreg on top as an adhesive sheet, and place the ply oven TD-
A mixture of 9 g of 2030H (Dainippon Ink Chemical Co., Ltd., phenolic resin product), 5 g of Epiclon 850 (Dainippon Ink Chemical Co., Ltd., epoxy resin product) as a reinforcing resin, 0.5 g of dicyandiamide, and 1 g of antimony trioxide as a flame retardant was used. Evenly dispersed. 10mm thickness with 8mm cell size on it
Place 5g of paper honeycomb, then prepreg and the above surface plate, and heat at 150℃ and pressure 1Kg/cm 2
Pressure molded.

できあがつたパネルは全体密度0.2g/cm3であ
り、又その曲げ強度は、39Kg/cm2であり最高荷重
時の歪時は0.99m/mであつた。
The resulting panel had an overall density of 0.2 g/cm 3 , a bending strength of 39 Kg/cm 2 and a strain of 0.99 m/m under maximum load.

この値は、内部に発泡物のないパネルの場合の
曲げ強度23Kg/cm2、歪量0.83m/m、及び内部に
フエノール発泡体のみを充填したパネルの場合の
曲げ強度33Kg/cm2、0.80m/mに比し優れた強度
とねばりを示すことが確認された。
This value is a bending strength of 23Kg/cm 2 and strain of 0.83m/m for a panel without foam inside, and a bending strength of 33Kg/cm 2 and 0.80 for a panel filled with only phenol foam inside. It was confirmed that it exhibited superior strength and toughness compared to m/m.

Claims (1)

【特許請求の範囲】[Claims] 1 ハニカムを用いたパネルにおいて、内部コア
としてハニカム内の空隙に、フエノール樹脂90〜
30重量部、及びエポキシ樹脂又はポリウレタン樹
脂10〜70重量部とからなる密度0.03〜0.7の発泡
体が充満し、ハニカムの両面に金属板、難燃性
FRP板、もしくは無機板を有してなる難燃性軽
量パネル。
1 In a panel using honeycomb, phenolic resin 90~
Filled with foam with a density of 0.03 to 0.7 consisting of 30 parts by weight and 10 to 70 parts by weight of epoxy resin or polyurethane resin, metal plates on both sides of the honeycomb, flame retardant
A flame-retardant lightweight panel made of FRP board or inorganic board.
JP18079083A 1983-09-30 1983-09-30 Flame-retarded light-weight panel Granted JPS6072723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18079083A JPS6072723A (en) 1983-09-30 1983-09-30 Flame-retarded light-weight panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18079083A JPS6072723A (en) 1983-09-30 1983-09-30 Flame-retarded light-weight panel

Publications (2)

Publication Number Publication Date
JPS6072723A JPS6072723A (en) 1985-04-24
JPH0361581B2 true JPH0361581B2 (en) 1991-09-20

Family

ID=16089369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18079083A Granted JPS6072723A (en) 1983-09-30 1983-09-30 Flame-retarded light-weight panel

Country Status (1)

Country Link
JP (1) JPS6072723A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256433A (en) * 1987-04-14 1988-10-24 株式会社 ニシヤマ Panel and manufacture thereof
JPH01209129A (en) * 1988-02-17 1989-08-22 Nippon Steel Chem Co Ltd Lightweight panel and preparation thereof
US4964936A (en) * 1988-10-11 1990-10-23 Imi-Tech Corporation Method of making foam-filled cellular structures

Also Published As

Publication number Publication date
JPS6072723A (en) 1985-04-24

Similar Documents

Publication Publication Date Title
US9776341B2 (en) Low density composite materials, their production and use
JP2006517238A (en) Phenolic syntactic foam composition
US5665461A (en) Low moisture absorption syntactic foam
CN104629238A (en) Halogen-free flame retardant basalt fiber reinforced unsaturated polyester resin composite material and preparation method thereof
CN113544197A (en) Flame-retardant composite material
JPS60260621A (en) Resin composition for molding material
JPH04266940A (en) Epoxy resin composition for composite material, intermediate material and composite material
JPH0361581B2 (en)
JPH0867771A (en) Flame-retardant molding material
JP3023502B2 (en) Manufacturing method of organic foam with epoxy resin skeleton
US4865907A (en) Rigid fire block sheet and method
EP3165569B1 (en) Prepreg and fibre-reinforced composite foam material
JPH04178440A (en) Epoxy resin composition for flame-retardant light-weight composite material, intermediate and composite material
JP3180212B2 (en) Fireproof insulation panel
JP3147182B2 (en) Curable prepreg and molded product obtained by curing the same
JPH05222784A (en) Heat-sound-fire preventing panel
KR20150056918A (en) Mehod for manufacturing heat insulating material using waste heat insulating material, and heat insulating material using the smae
JPH06322169A (en) Foamable synthetic resin composition and foamed molding
JPH0820654A (en) Epoxy resin composition and prepreg using the same
JPH07113066B2 (en) Phenolic resin prepreg
JPH09302805A (en) Fire resisting panel reinforced with glass net
JP3062731B2 (en) Method for producing epoxy resin foam
JPH10139862A (en) Production of epoxy resin foam
JP3196019B2 (en) Epoxy resin foam and method for producing the same
JPH04266939A (en) Epoxy resin composition for composite material, intermediate material and composite material