JPH0361171B2 - - Google Patents

Info

Publication number
JPH0361171B2
JPH0361171B2 JP59118466A JP11846684A JPH0361171B2 JP H0361171 B2 JPH0361171 B2 JP H0361171B2 JP 59118466 A JP59118466 A JP 59118466A JP 11846684 A JP11846684 A JP 11846684A JP H0361171 B2 JPH0361171 B2 JP H0361171B2
Authority
JP
Japan
Prior art keywords
conductive film
counter electrode
display
electrode
display element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59118466A
Other languages
Japanese (ja)
Other versions
JPS60262139A (en
Inventor
Soji Tsucha
Sadashi Higuchi
Teruo Yamashita
Toshikuni Kojima
Wataru Fujikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59118466A priority Critical patent/JPS60262139A/en
Priority to US06/647,490 priority patent/US4660939A/en
Publication of JPS60262139A publication Critical patent/JPS60262139A/en
Publication of JPH0361171B2 publication Critical patent/JPH0361171B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は時計、計測器、家電機器などの各種表
示用として利用されるエレクトロクロミツク表示
素子に関するものである。 従来例の構成とその問題点 受光型デイスプレイの1つである液晶と比較し
て、エレクトロクロミツクデイスプレイは視角依
存性がなく、色が明かるく鮮明であるという特徴
がある。エレクトロクロミツク材料は、無機物系
と有機物系の2つに分類される。無機物系として
は遷移金属酸化物、特にWO3がよく知られてい
る。有機物系としてはビオローゲン、アントラキ
ノン、ピラゾリンやスチリル系類似化合物の色素
が知られている。その他に近頃は、フタロシアン
やプルシアンブルーのような錯体あるいは導電性
高分子の薄膜の利用が発表されている。 WO3の透明電極上に蒸着法などにより薄膜が
形成されて、対極間に電解液や誘電体膜などが設
けられることによつて素子が形成される。WO3
の実用上の問題としては、表示寿命のほかに、表
示セグメント間の色ムラと着色の色がブルー系の
一色のみであるということである。また、表示寿
命の改善と関連して、一般に対極反応の安定化の
ために対極材料に工夫がいり、かつ反射板等も素
子の中に組み込まなければならないという問題が
ある。 一方、有機物系の色素は無機物系の材料と比較
して、着色種の多様化の可能性を有するが、一般
に表示寿命に問題をもつている。 ビオローゲン系の色素は、発消色に応じて、色
素の溶媒に対する不溶と可溶の現象が伴うが、こ
の可逆性の問題が表示寿命に大きく影響してい
る。また、色素の酸化還元反応により消発色現象
が生じるわけであるが、これらの反応にはイオン
が関与しているため、イオンが透明電極等に悪影
響を及ぼす場合があり、かつ消費電力が大きいと
いう問題がある。その他の有機系の色素や錯体に
ついても同様な問題をかかえている。 現状のエレクトロクロミツクデイスプレイが液
晶デイスプレイと比較して劣る特性は表示寿命と
応答速度の特性である。本出願人は前にエレクト
ロクロミツク材料としてスチリル類似化合物の一
種である色素を用いたエレクトロクロミツク表示
素子を提案した。そのエレクトロクロミツク表示
素子の基本構造を第1図にしめす。1はガラス基
板、2は表示極、3は対極、4は封着材、5は表
示可能物質をしめす。ガラス基板1は少くとも一
方が透明である材料であればよい。表示極2、及
び対極3の電極材料としては、In2O3やSnO2のよ
うな透明電極が用いられる。面積としては表示極
2の方が対極3より小さい。封着材4としてはエ
ポキシ樹脂や低融点ガラスや半田などが使われ
る。表示可能物質5としては色素は非水系有機溶
媒に支持電解質とともに溶解した溶液である。か
かる素子構造において、表示寿命を決める要因
は、表示可能物質5などに含まれる不純物などに
よるものなどいくつかの要因があるが、対極3材
料の電気化学反応による変質も1つの要因になつ
ている。すなわち表示極2及び対極3を形成する
透明電極はIn2O3等のような金属酸化物であるた
め、還元反応をうけやすく、還元反応によつて、
O原子の離脱があつて、溶液内の成分を酸化した
りして表示寿命に悪影響を及ぼす。電流値が大き
いほど電極は還元をうけやすい。特に対極3の変
質が問題となる。そこで対極3の電流密度の分布
を調べたところ、第1図にしめした、A、B、C
の領域に分けた場合、全電流のうちAの領域がし
める割り合いが70%、Bの領域が20%、Cの領域
が10%程度となり、A領域が著しく還元され表示
寿命の劣化がみられた。 この欠点を解消するために第2図に示す構造の
エレクトロクロミツク表示素子が提案された。本
構成は基本的には第1図と同様の構造をしてお
り、電導膜6の、表示極2に対向する部分に絶縁
膜7を設け、電導膜6と絶縁膜7とで対極3を構
成した点が異なる。本例においては電流の低減下
と発色濃度の向上がはかられ、表示寿命の改善が
できた。しかしながら、まだ絶縁膜7の付近は局
所的に電流密度が大きい部分があるらしく電導膜
6自身が反応により侵されることがあり、表示寿
命の点で未だ充分とはいえない。 またこれらエレクトロクロミツク表示素子にお
いて、表示極2と対極3間に直流電圧を表示極2
が+側になるように、印加すると発色濃度と電流
の時間に対する変化は第3図のようになる。aは
印加電圧、bは発色濃度、cは電流値の時間的変
化を示す。第3図bに示した、発色濃度が飽和に
達するまでの時間t1を短くして応答速度を速くす
ることも必要である。 発明の目的 本発明は上記従来の問題点を解決するもので、
エレクトロクロミツク表示素子の応答速度と表示
寿命を改善することを目的とする。 発明の構成 本発明は上記目的を達成するもので、少なくと
も一方が透明で、互いに対向して設けられた2枚
の基板の一方に表示電極、他方に対向電極を設
け、前記対向電極が、絶縁膜を第1及び第2の電
導膜で挾持した構造を有するエレクトロクロミツ
ク表示素子を提供するものである。 実施例の説明 以下に本発明の実施例を図面を用いて説明す
る。第4図に本発明の一実施例におけるエレクト
ロクロミツク表示素子の断面図を示す。 図において1はガラス板、2はIn2O3やSnO2
ような透明電極からなる表示極、3は本実施例の
特徴部分である対極、4はエポキシ樹脂や低融点
ガラスや半田などからなる封着材、5はエレクト
ロクロミツク物質を含む溶液又は表示極2の表面
に設けられたエレクトロクロミツク膜と電解質と
の組合わせよりなる表示可能物質、6はガラス板
1上に形成された第1の電導膜、7は第1の電導
膜6上の、表示極2に対向する領域を覆つて形成
された絶縁膜で、8は前記絶縁膜7及び第1の電
導膜8の表面を覆つて形成された第2の電導膜で
あり、本実施例では、第1の電導膜6、絶縁膜7
及び第2の電導膜8で対極3を構成している。か
かる構成のエレクトロクロミツク表示素子の特性
の特徴は第3図bの発色濃度の立ち上がり時間t1
が短くなる、すなわち、応答特性がよくなること
と、対極材料の電気化学反応による侵食が減少で
き、表示寿命が改善できることである。第3図c
における電流値i1は第2の電導膜8をもうけるこ
とにより若干増大するが、電流密度の分布が均一
化する効果が大きいため、表示寿命が改善でき
る。 本実施例の第1の電動膜6としてはIn2O3
In2O3−SnO2あるいはSnO2を主成分とする透明
電導膜が製膜の容易さやコストの面から言つても
使いやすい。絶縁膜7としては金属酸化物(例え
ばSiO2、Al2O3、BaTiO3等)、金属弗化物(例え
ばCaF2、MgF2等)、金属窒化物(Si3N4等)など
が好適であり、絶縁膜7は表示極2と同形状であ
ることが望ましい。 第2の電導膜8としては第1の電導膜6と同じ
透明電導膜が使用できる。またコストの面と膜厚
による金属色の制御に若干のむずかしさはある
が、溶液等との接触による電気化学反応の安定性
の面から、貴金属であるAu、Pt、Ag等を用いた
方が有利である。さらに具体的に述べる。 第4図に示した構造を有し、対極3を構成する
第1の電導膜6がIn2O3−SnO2で500Å、絶縁膜
7がSiO2で500Å、さらに第2の電導膜8を
In2O3−SnO2で500Åの厚みで設けた。 表示可能物質5のエレクトロクロミツク材料は
スチリル類似化合物の色素の1つである3,3−
ジメチル−2−(P−ジメチルスチリル)インド
リノ〔2.1−b〕オキサゾリンであり、支持電解
質はテトラブチルアンモニウムパークロレイト、
溶媒はアセトニトリルを用いた。色素と支持電解
質の濃度はそれぞれ0.02M/、0.1M/であ
る。 かかる構成の素子と第1図及び第2図で示した
素子の表示特性の比較を下表に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to an electrochromic display element used for various displays such as watches, measuring instruments, and home appliances. Conventional configurations and their problems Compared to liquid crystal displays, which are one type of light-receiving display, electrochromic displays have no viewing angle dependence and are characterized by bright and clear colors. Electrochromic materials are classified into two types: inorganic and organic. Transition metal oxides, especially WO 3 , are well known as inorganic materials. As organic substances, dyes such as viologen, anthraquinone, pyrazoline, and styryl-based compounds are known. In addition, the use of thin films of complexes or conductive polymers such as phthalocyanine and Prussian blue has recently been announced. A thin film is formed on a transparent electrode of WO 3 by vapor deposition or the like, and an electrolytic solution, a dielectric film, etc. are provided between the counter electrodes to form an element. WO 3
In addition to the display lifespan, practical problems include color unevenness between display segments and the fact that the coloring is only one blue color. In addition, in connection with improving display life, there is a problem in that, in general, counter electrode materials must be devised in order to stabilize the counter electrode reaction, and a reflector or the like must also be incorporated into the element. On the other hand, compared to inorganic materials, organic dyes have the possibility of diversifying coloring types, but generally have a problem with display life. Viologen dyes are subject to the phenomenon of insolubility and solubility in solvents depending on whether the color develops or disappears, and this reversibility problem greatly affects display life. In addition, color fading and coloring phenomena occur due to redox reactions of dyes, but since ions are involved in these reactions, ions can have a negative effect on transparent electrodes, etc., and they also consume a lot of power. There's a problem. Similar problems exist with other organic dyes and complexes. The characteristics that current electrochromic displays are inferior to liquid crystal displays are display life and response speed. The present applicant has previously proposed an electrochromic display element using a dye, which is a type of styryl-like compound, as an electrochromic material. The basic structure of the electrochromic display element is shown in Figure 1. 1 is a glass substrate, 2 is a display electrode, 3 is a counter electrode, 4 is a sealing material, and 5 is a displayable substance. The glass substrate 1 may be made of a material in which at least one side is transparent. As electrode materials for the display electrode 2 and the counter electrode 3, transparent electrodes such as In 2 O 3 and SnO 2 are used. In terms of area, the display electrode 2 is smaller than the counter electrode 3. As the sealing material 4, epoxy resin, low melting point glass, solder, etc. are used. The displayable substance 5 is a solution in which a dye is dissolved in a non-aqueous organic solvent together with a supporting electrolyte. In such an element structure, there are several factors that determine the display life, such as impurities contained in the displayable substance 5, etc., but alteration of the counter electrode 3 material due to electrochemical reaction is also one of the factors. . That is, since the transparent electrodes forming the display electrode 2 and the counter electrode 3 are metal oxides such as In 2 O 3 , they are easily susceptible to reduction reactions, and due to the reduction reactions,
O atoms are removed and components in the solution are oxidized, which adversely affects the display life. The larger the current value, the more easily the electrode is subject to reduction. In particular, the alteration of the counter electrode 3 becomes a problem. Therefore, when we investigated the current density distribution of counter electrode 3, we found that A, B, and C shown in Figure 1.
When divided into regions, the ratio of the total current to region A is 70%, region B is 20%, and region C is about 10%, so that region A is significantly reduced and the display life is deteriorated. It was done. In order to overcome this drawback, an electrochromic display element having the structure shown in FIG. 2 was proposed. This configuration basically has the same structure as that shown in FIG. The structure is different. In this example, the display life was improved by reducing the current and improving the color density. However, it seems that there are still areas near the insulating film 7 where the current density is locally high, and the conductive film 6 itself may be attacked by the reaction, so the display life is still not sufficient. In addition, in these electrochromic display elements, a DC voltage is applied between the display electrode 2 and the counter electrode 3.
When the voltage is applied so that the voltage is on the + side, the color density and the current change over time are as shown in FIG. a represents the applied voltage, b represents the color density, and c represents the temporal change in current value. It is also necessary to shorten the time t1 until the color density reaches saturation, as shown in FIG. 3b, to increase the response speed. Purpose of the invention The present invention solves the above-mentioned conventional problems.
The purpose is to improve the response speed and display life of electrochromic display elements. Structure of the Invention The present invention achieves the above object, and includes two substrates, at least one of which is transparent and provided facing each other, a display electrode is provided on one side, and a counter electrode is provided on the other, and the counter electrode is insulated. The present invention provides an electrochromic display element having a structure in which a film is sandwiched between first and second conductive films. DESCRIPTION OF EMBODIMENTS Examples of the present invention will be described below with reference to the drawings. FIG. 4 shows a sectional view of an electrochromic display element according to an embodiment of the present invention. In the figure, 1 is a glass plate, 2 is a display electrode made of a transparent electrode such as In 2 O 3 or SnO 2 , 3 is a counter electrode which is a characteristic part of this embodiment, and 4 is made of epoxy resin, low melting point glass, solder, etc. a sealing material 5 formed on a solution containing an electrochromic substance or a displayable material formed of a combination of an electrochromic film and an electrolyte provided on the surface of the display electrode 2; and 6 formed on a glass plate 1; A first conductive film 7 is an insulating film formed to cover a region facing the display electrode 2 on the first conductive film 6, and 8 is an insulating film formed on the surface of the insulating film 7 and the first conductive film 8 This is a second conductive film formed to cover the first conductive film 6 and the insulating film 7 in this embodiment.
The counter electrode 3 is composed of the second conductive film 8 and the second conductive film 8 . The characteristics of the electrochromic display element having such a configuration are as follows: the rise time t 1 of the color density shown in FIG.
In other words, the response characteristics are improved, erosion of the counter electrode material due to electrochemical reactions can be reduced, and the display life can be improved. Figure 3c
Although the current value i 1 in is slightly increased by providing the second conductive film 8, the effect of making the current density distribution uniform is large, so that the display life can be improved. The first electric membrane 6 of this embodiment is In 2 O 3 ,
A transparent conductive film containing In 2 O 3 −SnO 2 or SnO 2 as a main component is easy to use in terms of ease of film formation and cost. Suitable materials for the insulating film 7 include metal oxides (e.g., SiO 2 , Al 2 O 3 , BaTiO 3 , etc.), metal fluorides (e.g., CaF 2 , MgF 2 , etc.), metal nitrides (e.g., Si 3 N 4 ), and the like. It is desirable that the insulating film 7 has the same shape as the display electrode 2. As the second conductive film 8, the same transparent conductive film as the first conductive film 6 can be used. Although it is somewhat difficult to control the metal color due to cost and film thickness, it is preferable to use noble metals such as Au, Pt, and Ag from the standpoint of stability of electrochemical reactions upon contact with solutions. is advantageous. Let me be more specific. It has the structure shown in FIG. 4, in which the first conductive film 6 constituting the counter electrode 3 is made of In 2 O 3 -SnO 2 with a thickness of 500 Å, the insulating film 7 is made of SiO 2 with a thickness of 500 Å, and the second conductive film 8 is made of SiO 2 with a thickness of 500 Å.
It was made of In 2 O 3 -SnO 2 with a thickness of 500 Å. The electrochromic material of displayable substance 5 is 3,3-, which is one of the dyes of styryl-like compounds.
dimethyl-2-(P-dimethylstyryl)indolino[2.1-b]oxazoline, and the supporting electrolyte is tetrabutylammonium perchlorate,
Acetonitrile was used as the solvent. The concentrations of the dye and supporting electrolyte are 0.02M/ and 0.1M/, respectively. The table below shows a comparison of the display characteristics of the device having such a configuration and the device shown in FIGS. 1 and 2.

【表】 表からわかるように本実施例は応答性の改善が
顕著であることがわかる。応答性は第3図bに示
した飽和濃度に達するまでの時間t1で比較した。
濃度は発色光吸収ピークである550nmで測定し
たが、飽和濃度は絶縁膜をつけた方が高く、発色
濃度は吸収率にして約2倍高かつた。 また本実施例は消費電力が第2図の素子よりも
若干高めではあるが問題となるようなものではな
く、くり返し寿命は1ケタ以上の改善が図れた。 本発明の他の実施例として、第2の電導膜8と
してAu膜を300Åとした他は前記実施例と同様の
素子を作成し、表示特性を調べたところ、In2O3
−SnO2間の場合と比較して応答性が20〜30%ほ
どすぐれていた。その他の特性については同様の
結果が得られた。 発明の効果 以上要するに本発明は少なくとも一方が透明
で、互いに対向して設けられた二枚の基板の一方
に表示電極、他方に対向電極を設け、前記対向電
極を、絶縁膜を第1及び第2の電導膜で挾持した
構造としたエレクトロクロミツク表示素子を提供
するもので、応答速度と表示寿命の大幅な改善が
図れる。
[Table] As can be seen from the table, this example shows a remarkable improvement in responsiveness. The response was compared at the time t 1 required to reach the saturation concentration shown in Figure 3b.
The concentration was measured at 550 nm, which is the absorption peak of colored light, and the saturation concentration was higher with the insulating film, and the color density was about twice as high as the absorption rate. Further, although the power consumption of this example was slightly higher than that of the device shown in FIG. 2, it did not pose a problem, and the repeated lifespan was improved by more than one order of magnitude. As another example of the present invention, a device similar to the above example was fabricated except that an Au film of 300 Å was used as the second conductive film 8, and the display characteristics were investigated .
The response was about 20 to 30% better than that between -SnO2 . Similar results were obtained for other properties. Effects of the Invention In summary, the present invention provides two substrates, at least one of which is transparent, provided facing each other, a display electrode is provided on one side, and a counter electrode is provided on the other. The present invention provides an electrochromic display element having a structure sandwiched between two conductive films, which can significantly improve response speed and display life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来のエレクトロクロミツ
ク表示素子を示す断面図、第3図a,b,cはそ
れぞれ印加電圧、発色濃度、電流の時間に対する
変化を示す図、第4図は本発明の一実施例におけ
るエレクトロクロミツク表示素子を示す断面図で
ある。 1……ガラス基板、2……表示極、3……対
極、4……封着材、5……表示可能物質、6……
第1の電導膜、7……絶縁膜、8……第2の電導
膜。
Figures 1 and 2 are cross-sectional views showing conventional electrochromic display elements, Figures 3a, b, and c are diagrams showing changes in applied voltage, color density, and current over time, respectively, and Figure 4 is a diagram showing the main FIG. 1 is a cross-sectional view showing an electrochromic display element in one embodiment of the invention. DESCRIPTION OF SYMBOLS 1...Glass substrate, 2...Display electrode, 3...Counter electrode, 4...Sealing material, 5...Displayable substance, 6...
1st conductive film, 7...insulating film, 8...2nd conductive film.

Claims (1)

【特許請求の範囲】 1 少なくとも一方が透明で、互いに対向して設
けられた二枚の基板の一方に表示電極、他方に対
向電極を設け、前記対向電極が、基板上に設けら
れた第1の電導膜と、前記第1の電導膜上の、表
示電極に対向する領域に設けられた絶縁膜と、前
記第1の電導膜及び絶縁膜を覆つて形成された第
2の電導膜とからなることを特徴とするエレクト
ロクロミツク表示素子。 2 対向電極の第1及び第2の電導膜がIn2O3
In2O3−SnO2、あるいはSnO2を主成分とするも
のからなることを特徴とする特許請求の範囲第1
項記載のエレクトロクロミツク表示素子。 3 対向電極の第1の電導膜がIn2O3、In2O3
SnO2、あるいはSnO2を主成分とするものからな
り、第2の電導膜がAu、Ag、Ptのいずれかから
なることを特徴とする特許請求の範囲第1項記載
のエレクトロクロミツク表示素子。 4 対向電極を構成する絶縁膜が金属酸化物、金
属弗化物、金属窒化物のいずれかであることを特
徴とする特許請求の範囲第1項記載のエレクトロ
クロミツク表示素子。
[Scope of Claims] 1. Two substrates, at least one of which is transparent, are provided facing each other, one of which is provided with a display electrode, and the other of which is provided with a counter electrode, and the counter electrode is a first substrate provided on the substrate. an electrically conductive film, an insulating film provided on the first electrically conductive film in a region facing the display electrode, and a second electrically conductive film formed to cover the first electrically conductive film and the insulating film. An electrochromic display element characterized by: 2 The first and second conductive films of the counter electrode are In 2 O 3 ,
Claim 1 characterized in that it is made of In 2 O 3 −SnO 2 or a substance whose main component is SnO 2
The electrochromic display element described in . 3 The first conductive film of the counter electrode is In 2 O 3 , In 2 O 3
The electrochromic display element according to claim 1, wherein the electrochromic display element is made of SnO 2 or a material containing SnO 2 as a main component, and the second conductive film is made of Au, Ag, or Pt. . 4. The electrochromic display element according to claim 1, wherein the insulating film constituting the counter electrode is made of metal oxide, metal fluoride, or metal nitride.
JP59118466A 1983-09-08 1984-06-08 Electrochromic display element Granted JPS60262139A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59118466A JPS60262139A (en) 1984-06-08 1984-06-08 Electrochromic display element
US06/647,490 US4660939A (en) 1983-09-08 1984-09-05 Electrochromic display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59118466A JPS60262139A (en) 1984-06-08 1984-06-08 Electrochromic display element

Publications (2)

Publication Number Publication Date
JPS60262139A JPS60262139A (en) 1985-12-25
JPH0361171B2 true JPH0361171B2 (en) 1991-09-19

Family

ID=14737359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59118466A Granted JPS60262139A (en) 1983-09-08 1984-06-08 Electrochromic display element

Country Status (1)

Country Link
JP (1) JPS60262139A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7586664B2 (en) 2005-07-01 2009-09-08 Ppg Industries Ohio, Inc. Transparent electrode for an electrochromic switchable cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58139129A (en) * 1982-02-12 1983-08-18 Matsushita Electric Ind Co Ltd Electrochromic display element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58139129A (en) * 1982-02-12 1983-08-18 Matsushita Electric Ind Co Ltd Electrochromic display element

Also Published As

Publication number Publication date
JPS60262139A (en) 1985-12-25

Similar Documents

Publication Publication Date Title
JPH0523408B2 (en)
US4660939A (en) Electrochromic display device
JPH0361171B2 (en)
JPS6057320A (en) Electrochromic display element
JPH0145895B2 (en)
JPH0462051B2 (en)
JPS5827484B2 (en) display cell
JPH0549969B2 (en)
JPH0454209B2 (en)
JPS63286826A (en) Electrochromic display element
JPH0458228A (en) Electrochromic display device
JPH0361169B2 (en)
JPS6147934A (en) Electrochromic display device
JPS60140216A (en) Electrochromic display element
JPS6360366B2 (en)
JPH0339724A (en) Electrochromic element
JPH0371112A (en) Electrochromic element
JPH0774332B2 (en) Electrochromic display element
JPS6037528A (en) Electrochromic display device
JPS5944708A (en) Method of forming transparent electrode
JPS63153524A (en) Electrochromic display element
JPS61147236A (en) Electrochromic display element
JPS60262883A (en) Electrochromic display element
JPS60262141A (en) Electrochromic display element
JPH0145071B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees