JPH0360983A - Torque control device for air motor - Google Patents

Torque control device for air motor

Info

Publication number
JPH0360983A
JPH0360983A JP19241489A JP19241489A JPH0360983A JP H0360983 A JPH0360983 A JP H0360983A JP 19241489 A JP19241489 A JP 19241489A JP 19241489 A JP19241489 A JP 19241489A JP H0360983 A JPH0360983 A JP H0360983A
Authority
JP
Japan
Prior art keywords
air
flow rate
torque
value
air motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19241489A
Other languages
Japanese (ja)
Other versions
JP2784541B2 (en
Inventor
Masaaki Okubo
大久保 雅明
Akira Fukada
深田 亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Kuki KK
Fuji Air Tools Co Ltd
Original Assignee
Fuji Kuki KK
Fuji Air Tools Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Kuki KK, Fuji Air Tools Co Ltd filed Critical Fuji Kuki KK
Priority to JP19241489A priority Critical patent/JP2784541B2/en
Publication of JPH0360983A publication Critical patent/JPH0360983A/en
Application granted granted Critical
Publication of JP2784541B2 publication Critical patent/JP2784541B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)

Abstract

PURPOSE:To control fastening torque to a given set value by providing a controller which decides that fastening torque attains a set torque value based on measurement by a flow rate sensor when an air flow rate is decreased to a value responding to a given set torque value and controls closing of an on-off valve mechanism. CONSTITUTION:An air consumption amount, i.e., an air flow rate of an air passage (air hose) 2, is measured by a flow rate sensor 6. Based on measurement by the flow rate sensor 6, it is decided that fastening torque attains a set torque value when an air flow rate of the air passage 2 attains a value responding to a given set torque value, and closing of an on-off valve mechanism (solenoid valve) 5 is controlled by a controller 11 to block the flow of air. This constitution controls fastening torque to a given set value.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はエアモータでの締付トルクを制御するエアモ
ータのトルク制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an air motor torque control device that controls the tightening torque of an air motor.

(従来の技術) エアモータにツールとしてナツト締付工具を使用した所
謂ナツトランナにおける従来のトルク制御装置では、以
下に説明する二種類の技術が知られている。まず第1の
従来技術は、ツールにトルクトランスデユーサを内蔵し
、ツールで発生する締付トルクを直接に検出して、設定
トルク値でエアモータの作動を停止させる方法である。
(Prior Art) As a conventional torque control device for a so-called nut runner using a nut tightening tool as a tool for an air motor, two types of technologies described below are known. The first prior art is a method in which a torque transducer is built into a tool, the tightening torque generated by the tool is directly detected, and the operation of the air motor is stopped at a set torque value.

また第2の従来技術は、エアモータの回転数と締付トル
クとが1対1で対応するため、ツールに回転数検出用の
エンコーダを内蔵して、設定回転数に達した時にエアモ
ータの作動を停止させる方法である。
In addition, in the second conventional technology, since there is a one-to-one correspondence between the rotation speed of the air motor and the tightening torque, an encoder for detecting the rotation speed is built into the tool, and the air motor is activated when the set rotation speed is reached. This is a method to stop it.

(発明が解決しようとする課題) しかしながら上記従来の技術では、ツールにセンサとし
てトルクトランスデユーサ又はエンコーダを内蔵する必
要があるので、ツールが高価になり、ツールが破損した
場合には上記センサも一緒に交換しなければならない。
(Problem to be Solved by the Invention) However, in the above conventional technology, it is necessary to incorporate a torque transducer or encoder as a sensor in the tool, which makes the tool expensive, and if the tool is damaged, the sensor is also removed. must be exchanged together.

またエアモータにエアホースに加えてセンサケーブルを
接続することが必要になり、作業性が悪化するという問
題もある。更にツールのメンテナンスが困難であるとい
う不具合も生じる。
Furthermore, it is necessary to connect a sensor cable to the air motor in addition to the air hose, which poses a problem of deteriorating workability. Furthermore, there is a problem that maintenance of the tool is difficult.

この発明は上記従来の欠点を解消するためになされたも
のであって、その目的は、ツールにセンサを内蔵せずに
締付トルクを制御できるエアモータのトルク制御装置を
提供することにある。
The present invention has been made to solve the above-mentioned conventional drawbacks, and its purpose is to provide an air motor torque control device that can control tightening torque without incorporating a sensor into the tool.

(課題を解決するための手段) そこでこの発明によるエアモータのトルク制御装置にお
いては、エア源からエアモータまでのエア通路に開閉弁
機構とエア流量を測定する流量センサとを設け、さらに
この流量センサでの検出値が基準値以下になったときに
上記開閉弁機構を閉制御するコントローラを設けている
(Means for Solving the Problems) Therefore, in the air motor torque control device according to the present invention, an on-off valve mechanism and a flow rate sensor for measuring the air flow rate are provided in the air passage from the air source to the air motor, and the flow rate sensor A controller is provided that controls the opening/closing valve mechanism to close when the detected value of becomes equal to or less than a reference value.

(作用) 上記構成のエアモータのトルク制御装置においては、第
2図に示すように、エアモータのトルクと回転数との間
には、T−N特性に示すようにl対1の対応関係があり
、同時に回転数とエア消費量との間にもQ−N特性に示
すようにl対1の対応関係があることがわかる。したが
ってエア消費量すなわちエア通路のエア流量を流量セン
サで測定し、この流量センサによる測定値に基づいて、
通気通路のエア流量が所定の設定トルク値に対応するエ
ア流量に達した時に締付トルクが設定トルク値に達した
と判断して、コントローラで上記開閉弁機構を閉制御し
てエアの流通を狙止し、これにより締付トルクを所定の
設定値に制御する。
(Function) In the air motor torque control device having the above configuration, as shown in FIG. 2, there is a l:1 correspondence between the torque and the rotational speed of the air motor as shown in the T-N characteristic. At the same time, it can be seen that there is a 1:1 correspondence between the rotational speed and the air consumption as shown in the QN characteristic. Therefore, the air consumption, that is, the air flow rate in the air passage, is measured with a flow rate sensor, and based on the measured value by this flow rate sensor,
When the air flow rate in the ventilation passage reaches an air flow rate corresponding to a predetermined set torque value, it is determined that the tightening torque has reached the set torque value, and the controller closes the above-mentioned on-off valve mechanism to stop the air flow. This controls the tightening torque to a predetermined set value.

(実施例) 次にこの発明によるエアモータのトルク制御装置の具体
的な実施例について、図面を参照しつつ詳細に説明する
(Embodiments) Next, specific embodiments of the air motor torque control device according to the present invention will be described in detail with reference to the drawings.

この発明の一実施例装置を示す第1図において、1はエ
ア源であり、このエア源1には例えばコンプレッサ(図
示せず)で圧縮された高圧エアが供給されている。上記
エア源1にはエアホース2(エア通路)が連通し、エア
ホース2の先端部にはエアモータ3が接続されている。
In FIG. 1 showing an apparatus according to an embodiment of the present invention, 1 is an air source, and this air source 1 is supplied with high-pressure air compressed by, for example, a compressor (not shown). An air hose 2 (air passage) communicates with the air source 1, and an air motor 3 is connected to the tip of the air hose 2.

このエアホース2にはエア源1側から順次に減圧弁4、
電磁開閉弁5(弁機構)及び流量センサ6が介設され、
流量センサ6の流量信号10はコントローラ11に人力
され、コントローラ11からのエア停止信号12で上記
電磁開閉弁5を閉制御、すなわちエアモータ3へのエア
供給を停止するようになされている。上記流量センサ6
としては差圧型圧カドランスデューサ(半導体ゲージや
歪ゲージ等)を採用し得るが、差圧型圧カドランスデュ
ーサは高速応答が可能である点で有利である。
This air hose 2 includes a pressure reducing valve 4,
An electromagnetic on-off valve 5 (valve mechanism) and a flow rate sensor 6 are provided,
A flow rate signal 10 from the flow rate sensor 6 is manually inputted to a controller 11, and an air stop signal 12 from the controller 11 controls the electromagnetic on-off valve 5 to close, that is, the air supply to the air motor 3 is stopped. Above flow rate sensor 6
A differential pressure type pressure quadrangle transducer (semiconductor gauge, strain gauge, etc.) can be used as a pressure regulator, but a differential pressure type pressure quadrangle transducer is advantageous in that it can respond at high speed.

一方第2図に示すように、エアモータ3のトルクTと回
転数Nとの間には、T−N特性に示すように1対1の対
応関係があり、同時に回転数Nとエア消費量Qとの間に
もQ−N特性に示すように1対1の対応関係がある。こ
の特性に基づいて上記第1図の装置では、上記流量セン
サ6でエアモータ3へのエア流量すなわちエア消費量を
測定し、コントローラ11へ流量信号10を人力し、コ
ントローラ11で流量信号10が所定の設定トルクに対
応するレベルに達していると判定した場合には、エア停
止信号12を電磁弁5へ出力して電磁弁5を閉動作させ
てエアモータ3へのエア供給を停止して、それ以上の締
付トルクを発生しないようになされている。なお、上記
し、たエアモータ3の特性では、エアモータ3のストー
ルトルク域から中速度域までの常用運転範囲で上記Q−
N特性の傾斜角度が大きくなるため、この範囲内では特
にトルクTの正確な制御が容易である。
On the other hand, as shown in Fig. 2, there is a one-to-one correspondence between the torque T and the rotational speed N of the air motor 3 as shown in the T-N characteristic, and at the same time, the rotational speed N and the air consumption Q There is also a one-to-one correspondence between the two as shown in the QN characteristic. Based on this characteristic, in the apparatus shown in FIG. 1, the flow rate sensor 6 measures the air flow rate to the air motor 3, that is, the air consumption amount, and the flow rate signal 10 is manually inputted to the controller 11. If it is determined that the level corresponding to the set torque has been reached, the air stop signal 12 is output to the solenoid valve 5 to close the solenoid valve 5 to stop the air supply to the air motor 3. This is done so that no more tightening torque is generated. In addition, with the characteristics of the air motor 3 described above, the above-mentioned Q-
Since the inclination angle of the N characteristic becomes large, it is particularly easy to accurately control the torque T within this range.

上記コントローラ11の回路ブロック図である第3図に
示すように、コントローラ11は増幅回路13、電磁弁
制御回路14、比較回路15、締付不良検出回路16及
び電源回路17等から構成されている。まず増幅回路1
3には上記流量センサ6からの流量信号10が入力され
、増幅回路■3では、コントローラ11の各回路におけ
る信号処理が可能なレベルに流量信号10を増幅する機
能を発揮している。そして増幅回路13からの増幅流量
信号20は上記比較回路15と締付不良検出回路16と
に入力されている。まず比較回路15では締付トルク設
定ボリューム21で設定された設定トルク値に対応する
設定エア流量と増幅流量信号20とを比較して、増幅流
量信号20が上記締付トルク設定ボリューム21での設
定エア流量より少ない場合には電磁弁制御回路14へ電
磁弁遮断信号22を出力して電磁弁制御回路14から電
磁弁5を閉動作させる上記エア停止信号12を出力する
ようになされている。また上記締付不良検出回路16で
は、例えば二度締め検出をした場合や、斜め入れを検出
した場合等に締付が不良であるζ判定して、電磁弁遮断
信号23及びNG出力24を出力する機能を備えている
。上記二度締めとは、既に締付作業を終了したナツトを
再び締め付けることを言い、設定時間内に急激にエア流
量が低下してしまうことを検出して締付不良であると判
定し、また上記斜め入れとはナツトがボルトに斜めに配
置されてツールを回転駆動しても締め付けできない状態
を言い、設定時間内にエア流量の低下がみられないこと
を締付不良であると判定するのである。
As shown in FIG. 3, which is a circuit block diagram of the controller 11, the controller 11 is composed of an amplifier circuit 13, a solenoid valve control circuit 14, a comparison circuit 15, a tightening defect detection circuit 16, a power supply circuit 17, etc. . First, amplifier circuit 1
3 receives the flow rate signal 10 from the flow rate sensor 6, and the amplifier circuit (3) has the function of amplifying the flow rate signal 10 to a level that allows signal processing in each circuit of the controller 11. The amplified flow rate signal 20 from the amplifier circuit 13 is input to the comparison circuit 15 and the poor tightening detection circuit 16. First, the comparison circuit 15 compares the set air flow rate corresponding to the set torque value set by the tightening torque setting volume 21 with the amplified flow rate signal 20, and the amplified flow rate signal 20 is determined to be the set air flow rate corresponding to the set torque value set by the tightening torque setting volume 21. If the flow rate is smaller than the air flow rate, a solenoid valve cutoff signal 22 is output to the solenoid valve control circuit 14, and the solenoid valve control circuit 14 outputs the air stop signal 12 for closing the solenoid valve 5. In addition, the tightening defect detection circuit 16 determines that the tightening is defective when, for example, double tightening is detected or diagonal insertion is detected, and outputs a solenoid valve cutoff signal 23 and an NG output 24. It has the function to The double tightening mentioned above refers to retightening a nut that has already been tightened, and detects that the air flow rate suddenly decreases within a set time and determines that the tightening is insufficient. The above-mentioned diagonal insertion refers to a state where the nut is placed diagonally to the bolt and cannot be tightened even if the tool is rotated.If the air flow rate does not decrease within the set time, it is determined that the tightening is insufficient. be.

一方上記電磁弁制御回路14にはスタートスイッチ25
からのスタート信号26が人力されており、スタート信
号26が入力されたときに上記電磁開閉弁5を開作動す
るようなされている。なお、OK出力30又はNG出力
24に基づいて締付作業が正常であるか否かを表示する
ことができる。ちなみに電源回路17は上記各回路が作
動するために必要な電力を上記各回路へ供給する機能を
備えたものである。
On the other hand, the solenoid valve control circuit 14 has a start switch 25.
A start signal 26 is input manually, and when the start signal 26 is input, the electromagnetic on-off valve 5 is opened. Note that it is possible to display whether or not the tightening work is normal based on the OK output 30 or the NG output 24. Incidentally, the power supply circuit 17 has a function of supplying the power necessary for each of the above circuits to operate.

次に上記一実施例装置の作動状態を説明する。Next, the operating state of the device of the above embodiment will be explained.

第1図に示すエアモータ3でナツトを締付作業すると、
電磁弁5は通常時は開弁しているので、エア源1からエ
アホース2を通ってエアが供給され、エアモータ3を駆
動する。この締付作業を続けると、締付トルクの増大に
伴ってエアホース2のエア流量も減少することになる。
When the nut is tightened using the air motor 3 shown in Fig. 1,
Since the solenoid valve 5 is normally open, air is supplied from the air source 1 through the air hose 2 to drive the air motor 3. If this tightening operation is continued, the air flow rate of the air hose 2 will also decrease as the tightening torque increases.

そこで流量センサ6でエアホース2のエア流量を測定し
、流量センサ6の流量信号10をコントローラ11へ入
力して、第3図に示すようなコントローラ11の各回路
で前述の通りの処理を行い、エア流量が所定の設定トル
ク値に対応する値にまで低下した時は、エア停止信号1
2を出力して電磁弁5を閉動作させ、エアモータ3への
エア供給を停止する。したがって、エアモータ3で発生
する締付トルクは、予め設定された締付トルク値に制御
されることになる。
Therefore, the air flow rate of the air hose 2 is measured with the flow rate sensor 6, the flow rate signal 10 of the flow rate sensor 6 is inputted to the controller 11, and the above-mentioned processing is performed in each circuit of the controller 11 as shown in FIG. When the air flow rate decreases to a value corresponding to the predetermined set torque value, the air stop signal 1 is activated.
2 is output to close the solenoid valve 5 and stop the air supply to the air motor 3. Therefore, the tightening torque generated by the air motor 3 is controlled to a preset tightening torque value.

以上のような一実施例装置では、従来のようにエアモー
タ3のツールに各種のセンサを内蔵する必要がないので
、センサをツールに内蔵したことに起因する従来の問題
点が解消される。
In the device of the embodiment as described above, there is no need to incorporate various sensors into the tool of the air motor 3 as in the past, so the conventional problems caused by incorporating sensors into the tool are solved.

以上にこの発明の具体的な実施例について説明したが、
この発明は上記実施例に限定されるものではなく、この
発明の範囲内で種々変更して実施することが可能である
。例えば上記実施例においては、流量センサ6を電磁弁
5とエアモータ3との間のエアホース2に介設している
が、電磁弁5とエア源1との間のエアホース2に流量セ
ンサ6を介設することもできる。また第3図の締付トル
ク設定ボリューム21の替わりに、各種のツール種別毎
のエア消費量とトルクとの相関関係を予め記憶させてお
く記憶手段を利用することもできる。
Although specific embodiments of this invention have been described above,
This invention is not limited to the above embodiments, and can be implemented with various modifications within the scope of this invention. For example, in the above embodiment, the flow rate sensor 6 is interposed in the air hose 2 between the solenoid valve 5 and the air motor 3, but the flow rate sensor 6 is interposed in the air hose 2 between the solenoid valve 5 and the air source 1. It is also possible to set Moreover, instead of the tightening torque setting volume 21 shown in FIG. 3, it is also possible to use a storage means in which the correlation between air consumption and torque for each type of tool is stored in advance.

更に開閉弁機構としては電磁弁5に限らず、エアシリン
ダ等で開閉制御される開閉弁を使用することもできる。
Further, the opening/closing valve mechanism is not limited to the electromagnetic valve 5, but an opening/closing valve whose opening/closing is controlled by an air cylinder or the like may also be used.

(発明の効果) 上記したように、この発明によるエアモータのトルク制
御装置においては、流量センサによる測定値に基づいて
、エア流量が所定の設定トルク値に対応するエア流量に
まで減少した時に、締付トルクが設定トルク値に達した
と判断し、開閉弁機構を閉制御してエアの流通を阻止す
ることができ、締付トルクを所定の設定値に制御できる
。したがって、従来のようにエアモータのツールに各種
のセンサを内蔵する必要がないので、センサをツールに
内蔵したことに起因する従来の各問題点を解消すること
ができる。
(Effects of the Invention) As described above, in the air motor torque control device according to the present invention, the air motor is tightened when the air flow rate decreases to the air flow rate corresponding to a predetermined set torque value based on the measured value by the flow sensor. It is determined that the tightening torque has reached the set torque value, and the opening/closing valve mechanism is controlled to close to prevent air flow, and the tightening torque can be controlled to the predetermined set value. Therefore, there is no need to incorporate various sensors into the air motor tool as in the past, and it is possible to solve the various conventional problems caused by incorporating sensors into the tool.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例装置の配管系統図、第2図は
回転数に対するトルク及びエア消費量の関係を示すグラ
フ、第3図はコントローラの構造を示すブロック図であ
る。 1・・・エア源、2・・・エアホース(エア通路)、3
・・・エアモータ、5・・・電磁開閉弁(開閉弁機構)
、6・・・流量センサ、11・・・コントローラ。
FIG. 1 is a piping system diagram of an apparatus according to an embodiment of the present invention, FIG. 2 is a graph showing the relationship between torque and air consumption with respect to rotational speed, and FIG. 3 is a block diagram showing the structure of the controller. 1... Air source, 2... Air hose (air passage), 3
...Air motor, 5...Solenoid on-off valve (on-off valve mechanism)
, 6...Flow rate sensor, 11...Controller.

Claims (1)

【特許請求の範囲】[Claims] 1、エア源からエアモータまでのエア通路に開閉弁機構
とエア流量を測定する流量センサとを設け、さらにこの
流量センサでの検出値が基準値以下になったときに上記
開閉弁機構を閉制御するコントローラを設けたことを特
徴とするエアモータのトルク制御装置。
1. An on-off valve mechanism and a flow rate sensor that measures the air flow rate are provided in the air passage from the air source to the air motor, and the on-off valve mechanism is closed when the detected value of this flow rate sensor becomes less than a reference value. 1. A torque control device for an air motor, comprising a controller for controlling the torque of an air motor.
JP19241489A 1989-07-25 1989-07-25 Air motor torque control device Expired - Fee Related JP2784541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19241489A JP2784541B2 (en) 1989-07-25 1989-07-25 Air motor torque control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19241489A JP2784541B2 (en) 1989-07-25 1989-07-25 Air motor torque control device

Publications (2)

Publication Number Publication Date
JPH0360983A true JPH0360983A (en) 1991-03-15
JP2784541B2 JP2784541B2 (en) 1998-08-06

Family

ID=16290925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19241489A Expired - Fee Related JP2784541B2 (en) 1989-07-25 1989-07-25 Air motor torque control device

Country Status (1)

Country Link
JP (1) JP2784541B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0586811A1 (en) * 1992-08-10 1994-03-16 Ingersoll-Rand Company Monitoring and control of fluid driven tools

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0586811A1 (en) * 1992-08-10 1994-03-16 Ingersoll-Rand Company Monitoring and control of fluid driven tools
JPH06179177A (en) * 1992-08-10 1994-06-28 Sps Technol Inc Monitoring and controlling device and method for fluid drive tool
US5592396A (en) * 1992-08-10 1997-01-07 Ingersoll-Rand Company Monitoring and control of fluid driven tools
US5689434A (en) * 1992-08-10 1997-11-18 Ingersoll-Rand Company Monitoring and control of fluid driven tools

Also Published As

Publication number Publication date
JP2784541B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
JP2754079B2 (en) Control method and control device for compressor system
WO1997048026A3 (en) A method for surveying the condition of a control valve, and a valve apparatus
US20020178825A1 (en) Apparatus and method for verifying the dynamic stiffness capability of hydraulic servo actuators
CA2447001A1 (en) Method for detecting broken valve stem
JPH05150839A (en) Valve controller and method of valve control
US5916138A (en) Hydrostatic transmission
JP2002347593A (en) Inspection method for pressure related unit and inspection system for pressure related unit
JPH0360983A (en) Torque control device for air motor
JPH0611376A (en) Detecting device for quantity of metal powder in hydraulic circuit
JPH06281542A (en) Device and method for testing opening/closing durability of door
JPH0123756Y2 (en)
JPH02168004A (en) Device for method for detecting hydraulic circuit failure
JPH049334B2 (en)
JP3340634B2 (en) Portable control device for current control type pressure reducing valve
JPH02179434A (en) Checking method of leak in double cutoff gas valve
JPH09144705A (en) Negative pneumatic pressure servo unit
JPH0225017A (en) Resist coating device
JPH09195982A (en) Protecting method for centrifugal compressor
JPH0866875A (en) Method and device for tightening screw
JP2511913B2 (en) Hydraulic pump controller
JPH0250422A (en) Semiconductor manufacturing apparatus
JPS6161036A (en) Load speed controller of impact testing machine
JPH0514121B2 (en)
JPH05102088A (en) Production device for semiconductor
JPH05267221A (en) Interlocking of etching pressure in reactive ion etching system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080529

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees