JPH0360940A - Load weight corresponding type speed control method - Google Patents

Load weight corresponding type speed control method

Info

Publication number
JPH0360940A
JPH0360940A JP19351189A JP19351189A JPH0360940A JP H0360940 A JPH0360940 A JP H0360940A JP 19351189 A JP19351189 A JP 19351189A JP 19351189 A JP19351189 A JP 19351189A JP H0360940 A JPH0360940 A JP H0360940A
Authority
JP
Japan
Prior art keywords
speed
acceleration
tool
weight
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19351189A
Other languages
Japanese (ja)
Other versions
JPH0661669B2 (en
Inventor
Tetsuji Okada
哲二 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP19351189A priority Critical patent/JPH0661669B2/en
Publication of JPH0360940A publication Critical patent/JPH0360940A/en
Publication of JPH0661669B2 publication Critical patent/JPH0661669B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Automatic Tool Replacement In Machine Tools (AREA)

Abstract

PURPOSE:To realize a speed-up at the weight tool changing time by limiting the output at acceleration time to the value equivalent to a light tool and operating at the optimum speed corresponding to the transfer weight, in the case of controlling the tool changing speed of a machining center. CONSTITUTION:A servomotor is actuated by limiting the output at an acceleration time to the acceleration torque limited value equiv. to the load of a light weight, achievable speeds V1, V2 which become slower as the load weight at a set acceleration completed position (a) is larger are detected and a speed command value is switched to this achieving speed. Now, when a heavy tool is held on a changing arm and the revolving at 180 deg. is performed by the servomotor, the delay against the acceleration command becomes larger. The achieving speed V2 of the commanded acceleration distance completion position (a) is detected now, the speed command value is re-written to V2 from V1, the arm is revolved at the designated speed V2 and deceleration is performed. Since the heavy tool reaches at the speed V2 to this deceleration start position and the light tool at the speed V1, they are smoothly decelerated and stopped at a target position.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、工作機械の自動工具交換装置、又は自動パレ
ット交換装置等工具又は工作物の重量の異なる搬送物を
取扱う装置の速度制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a speed control method for a device that handles tools or workpieces of different weights, such as an automatic tool changer for a machine tool or an automatic pallet changer. be.

従来の技術 従来、例えばマシニングセンタの自動工具交換装置にお
ける工具交換速度は、最大重量工具を基準としてこれが
スムーズに加減速できる一定速度に設定されているもの
が多い。
2. Description of the Related Art Conventionally, for example, the tool changing speed in an automatic tool changing device of a machining center is often set to a constant speed that allows smooth acceleration and deceleration of the heaviest tool.

発明が解決しようとする課題 従来の技術で述べた工具交換速度が一定の場合は、動作
の終端における減速時の慣性モーメントによる減速加重
が大きい最大重量工具が対象の遅い速度に設定されてい
るため、軽量工具では速度アンプが可能であるにもかか
わらず遅い一定速度では非能率であるという問題を有し
ている。
Problems to be Solved by the Invention When the tool change speed described in the conventional technology is constant, the maximum weight tool with a large deceleration load due to the moment of inertia during deceleration at the end of the operation is set to the target slow speed. Although speed amplification is possible for lightweight tools, it is inefficient at slow constant speeds.

本発明は、従来の技術の有するこのような問題点に鑑み
なされたものであり、その目的とするところは、搬送重
量に対応する最適速度で動作させることのできる負荷重
量対応形速度制御方法を提供しようとするものである。
The present invention has been made in view of the above-mentioned problems of the conventional technology, and its purpose is to provide a load weight-adaptive speed control method that can operate at an optimal speed corresponding to the conveyed weight. This is what we are trying to provide.

課題を解決するための手段 上記目的を遠戚するために本発明における負荷重量対応
形速度制御方法は、加速時の出力を軽い重量の負荷に見
合った加速ドルクリミント値に制限してサーボモータを
起動させ、設定された一定の加速終了位置での負荷重量
が大きいほど遅くなるそれぞれの到達速度を検出し、該
到達速度に速度指令値を切り換えるものである。
Means for Solving the Problems In order to achieve the above-mentioned object distantly, the present invention provides a load weight responsive speed control method which limits the output during acceleration to an acceleration torque limit value commensurate with a light weight load, and controls the servo motor. , detects the respective attained speeds that become slower as the load weight increases at a predetermined acceleration end position, and switches the speed command value to the attained speeds.

作用 加速時の出力を加速トルクリミット値に制限されている
サーボモータにより、負荷重量の異なる複数の移動体の
起動を行うと、重量の小さい方は速度指令値に達するま
での加速距離が短く、重量の大きい方は加速距離が長い
、この短い方の加速距離の終点を加速終了位置と設定し
て、この位置での到達速度を検出し、この速度に指令値
を切り換えることにより加速を打切り、負荷重量が大き
くなるほど遅い速度で移動体の駆動を行う。
When starting multiple moving objects with different load weights using a servo motor whose output during acceleration is limited to the acceleration torque limit value, the one with the smaller weight will have a shorter acceleration distance to reach the speed command value. The heavier one has a longer acceleration distance.The end point of this shorter acceleration distance is set as the acceleration end position, the speed reached at this position is detected, and the command value is switched to this speed to terminate the acceleration. The larger the load weight, the slower the moving body is driven.

実施例 実施例について第1図、第2図を参照して説明する。公
知のマシニングセンタにおいて、自動工具交換装置の枠
体1に軸方向移動及び90”と180  @に旋回可能
に交換アーム軸2が支持されており、交換アーム軸2の
先端に交換アーム3が固着されている。枠体1には交換
アーム軸2と同心にサーボモータ4が固着され、サーボ
モータ4に位置検出器5が同心に固着されており、この
NC駆動のサーボモータ4により交換アーム3の旋回割
出しが行われるようになっている。
Embodiment An embodiment will be explained with reference to FIGS. 1 and 2. In a known machining center, an exchange arm shaft 2 is supported by a frame 1 of an automatic tool changer so as to be able to move in the axial direction and rotate between 90'' and 180@, and an exchange arm 3 is fixed to the tip of the exchange arm shaft 2. A servo motor 4 is fixed to the frame 1 concentrically with the exchange arm shaft 2, and a position detector 5 is fixed concentrically to the servo motor 4.The NC-driven servo motor 4 moves the exchange arm 3. Rotation indexing is now performed.

次に交換アーム3旋回用送り軸サーボシステムを第1図
のブロックwArgJ部により説明する。プログラムメ
モリ6は加ニブログラムを記憶しておく部分、プログラ
ム解釈部7はプログラムメモリ6から呼び出した情報を
仕分けして出力する部分である0位置指令演算部8はプ
ログラム解釈部7からの位置指令値と位置検出器5から
の現在位置との差を求めて信号を出力する部分、速度指
令演算部9は速度指令値に基づき加減速時の刻々の指令
(目標)速度を求め、それぞれの速度を電流値に換算す
る部分、電流(トルク)す≧ツタ10は電流を制限する
部分、パワー増幅部11はサーボモータ4を駆動する部
分で、以上は一般的なサーボシステムである。加速トル
クリミット−電流変換部12はプログラム解釈部から送
られてくる加速トルクリミ7)値を電流値に換算する部
分、加速終了位置の速度検出部13はプログラム解釈部
からの指定加速距離が終了する位置aの速度を検出する
部分である。
Next, the feed shaft servo system for rotating the exchange arm 3 will be explained using block wArgJ in FIG. The program memory 6 is a part that stores the Canadian program, and the program interpreter 7 is a part that sorts and outputs the information called from the program memory 6.The 0 position command calculation part 8 receives the position command value from the program interpreter 7. The speed command calculation unit 9, which calculates the difference between the current position and the current position from the position detector 5 and outputs a signal, calculates the command (target) speed at each moment of acceleration/deceleration based on the speed command value, and calculates each speed. The portion that converts into a current value, current (torque)≧The ivy 10 is a portion that limits the current, and the power amplification portion 11 is a portion that drives the servo motor 4. The above is a general servo system. The acceleration torque limit-current conversion section 12 converts the acceleration torque limit 7) value sent from the program interpretation section into a current value, and the speed detection section 13 at the acceleration end position detects the end of the specified acceleration distance from the program interpretation section. This is the part that detects the speed at position a.

続いて本実施例の作用について説明する。今交換アーム
3に重量工具が把持され、サーボモータ4により180
  °の旋回が行われようとしている。
Next, the operation of this embodiment will be explained. A heavy tool is now gripped by the exchange arm 3, and the servo motor 4
A rotation of ° is about to take place.

プログラム解釈部7から起動指令と同時に位置指令値及
び速度指令値が位置指令演算部8及び速度指令演算部9
に出力され、併せて加速トルクリミット値と加速距離指
令値が出力される。指令を受けた位置指令演算部8では
、位置検出器5からの現在位置(角度)と指令位置(角
度)との差を求めて、信号を速度指令演算部9に送り、
ここで起動(加速)時の刻々と変わる指令(目標)速度
が求められ、更にこれを電流値に換算して電流(トルク
)すξツタ10に出力する。一方加速トルクリξット値
は加速トルクリミット−電流変換部12によりIIJ御
電流電流値換されて電流(トルク)リミッタlOに入力
されており、パワー増幅部11は軽量工具に見合った小
さな値の制限加速トルク値でサーボモータ4を起動させ
る。このときの起動の状態は、第2図の速度と移動位置
との関係を表すグラフ図に示すように、加速指令に対し
て追従が僅かに遅れて加速されて指令速度V、に達する
のが普通であり、軽量工具の場合にはほぼこの線に沿っ
て加速するように、加速トルクリミット値が設定されて
いる。しかしit工具を把持しているこの場合には、加
速指令に対する遅れが更に大きくなる。そして一方では
加速終了位置の速度検出部13に加速距離指定値と、位
置検出器5からの位置信号が入力されており、速度検出
部内で加速時の刻々に変化する速度(単位時間当たりの
移動量)が算出されている。そしてここで指令加速距離
終了位置aの到達速度■2が検出されて速度変換指令が
プログラム解釈部7に送られ、速度指令値が■1から■
2に書き換えられて、交換アーム3が軽量工具のときよ
りも遅い指定速度■で旋回され、そして目標の1806
旋回位置に達す僅か手前に設定されている所定の減速開
始位置に達すると速度指令演算部9より刻々に変わる減
速指令が出て減速が行われる。この減速開始位置には重
量工具は遅い速度vtで、また軽量工具は速い速度v1
で到達するので、慣性モーメントによる減速加重の差が
僅小でいずれも円滑に減速が行われて目標位置にて停止
する。
The position command value and the speed command value are sent from the program interpretation section 7 to the position command calculation section 8 and the speed command calculation section 9 at the same time as the start command.
The acceleration torque limit value and acceleration distance command value are also output. The position command calculation unit 8 that receives the command calculates the difference between the current position (angle) from the position detector 5 and the command position (angle), and sends a signal to the speed command calculation unit 9.
Here, the ever-changing command (target) speed at the time of startup (acceleration) is determined, which is further converted into a current value and output to the current (torque) ξ ivy 10. On the other hand, the acceleration torque limit ξ limit value is converted into an IIJ control current value by the acceleration torque limit-current converter 12 and inputted to the current (torque) limiter lO, and the power amplifier 11 converts the value to a small value suitable for a lightweight tool. The servo motor 4 is started with the limited acceleration torque value. As shown in the graph showing the relationship between speed and movement position in Figure 2, the startup state at this time is that the acceleration command is accelerated with a slight delay in following the acceleration command and reaches the command speed V. This is normal, and in the case of a lightweight tool, the acceleration torque limit value is set so that the tool accelerates approximately along this line. However, in this case where an IT tool is being gripped, the delay with respect to the acceleration command becomes even greater. On the other hand, the acceleration distance specified value and the position signal from the position detector 5 are input to the speed detection section 13 at the acceleration end position. amount) has been calculated. Then, the reached speed ■2 at the commanded acceleration distance end position a is detected and a speed conversion command is sent to the program interpreter 7, and the speed command value changes from ■1 to ■
2, the exchange arm 3 is rotated at a specified speed ■ that is slower than when using a lightweight tool, and the target 1806
When a predetermined deceleration start position, which is set slightly before reaching the turning position, is reached, the speed command calculation unit 9 issues a deceleration command that changes every moment, and deceleration is performed. At this deceleration start position, the heavy tool is at a slow speed vt, and the light tool is at a fast speed v1.
Since the difference in deceleration load due to the moment of inertia is very small, deceleration is performed smoothly and the target position is stopped.

尚本実施例はマシニングセンタの自動工具交換装置の速
度制御について説明したが、自動パレット交換装置又は
テーブルの旋回装置、或いは搬送用ロボット等の速度制
御にも対応可能なことは勿論である。
Although this embodiment has been described with respect to speed control of an automatic tool changer of a machining center, it is of course applicable to speed control of an automatic pallet changer, a table rotation device, a transport robot, etc.

発明の効果 本発明は、上述のとおり構成されているので、次に記載
する効果を奏する。加速時の出力を小さな値に制限した
状態でサーボモータを起動させ、指令加速距離終了位置
での到達速度を検出して、速度指令値を切り換えるよう
になし、重量工具は遅く軽量工具は速い速度で移動でき
るようになしたので9機械構造上に無理な負荷がかかる
ことなく軽量工具が速くなっただけ動作時間が短縮し非
切削時間が減少する。
Effects of the Invention Since the present invention is configured as described above, it produces the following effects. The servo motor is started with the output during acceleration limited to a small value, the speed reached at the end position of the command acceleration distance is detected, and the speed command value is switched, so that the speed is slower for heavy tools and faster for lightweight tools. Since the tool can be moved with ease, there is no unreasonable load placed on the machine structure, and as the lightweight tool becomes faster, operating time is shortened and non-cutting time is reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一部工具交換装置の斜視説明図を含むサーボモ
ータシステムのブロック線図、第2図は加速時の移動位
置と速度との関係を表すグラフ図である。 4・・サーボモータ
FIG. 1 is a block diagram of a servo motor system including a perspective view of a part of the tool changer, and FIG. 2 is a graph diagram showing the relationship between movement position and speed during acceleration. 4. Servo motor

Claims (1)

【特許請求の範囲】[Claims] (1)加速時の出力を軽量負荷に見合った加速トルクリ
ミット値に制限してサーボモータ(4)を起動させ、設
定された一定の加速終了位置(a)での負荷重量が大き
いほど遅くなるそれぞれの到達速度(V_1又はV_2
)を検出し、該到達速度に速度指令値を切り換えること
を特徴とする負荷重量対応形速度制御方法。
(1) Start the servo motor (4) by limiting the output during acceleration to an acceleration torque limit value commensurate with the light load, and the larger the load weight at the set constant acceleration end position (a), the slower the speed will be. Each attained speed (V_1 or V_2
) and switching the speed command value to the reached speed.
JP19351189A 1989-07-26 1989-07-26 Load weight type speed control method Expired - Lifetime JPH0661669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19351189A JPH0661669B2 (en) 1989-07-26 1989-07-26 Load weight type speed control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19351189A JPH0661669B2 (en) 1989-07-26 1989-07-26 Load weight type speed control method

Publications (2)

Publication Number Publication Date
JPH0360940A true JPH0360940A (en) 1991-03-15
JPH0661669B2 JPH0661669B2 (en) 1994-08-17

Family

ID=16309276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19351189A Expired - Lifetime JPH0661669B2 (en) 1989-07-26 1989-07-26 Load weight type speed control method

Country Status (1)

Country Link
JP (1) JPH0661669B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018079556A (en) * 2016-11-15 2018-05-24 北鉅精機股▲ふん▼有限公司 Atc tool replacement speed intelligent system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200856A (en) * 2011-03-28 2012-10-22 Brother Industries Ltd Machine tool and tool change method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018079556A (en) * 2016-11-15 2018-05-24 北鉅精機股▲ふん▼有限公司 Atc tool replacement speed intelligent system

Also Published As

Publication number Publication date
JPH0661669B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
JP2604698B2 (en) Angular acceleration control method
JPH01252340A (en) Machining control device employing force sensor
JPH06245561A (en) Abnormal load detection control method for servo motor
JPH07295650A (en) Method for controlling articulated robot
EP0357778B1 (en) Method of speed control for servomotor
EP0240570A1 (en) Acceleration and deceleration control system for horizontal-joint robots
JP3529010B2 (en) Mobile unit collision detection device
JPH0527845A (en) Numerical controller having control parameter changing function
JP4240517B2 (en) Servo motor and abnormal load detection control method for articulated robot
JPH0360940A (en) Load weight corresponding type speed control method
JP5151994B2 (en) Moment of inertia identification device, identification method thereof, and motor control device including the identification device
JPH05228794A (en) Positioning method for main spindle
JPH03130808A (en) Method and device for control of robot
CN109693013B (en) Control device and method for controlling coordinated action of workpiece moving device and robot
WO1994019731A1 (en) Numeric controller
JPH0469132A (en) Stop controller of electric motor
JP2008253132A (en) Method of detecting and controlling abnormal load in servo motor and articulated robot
JPH10277887A (en) Motor controlling method applicable at failure in position sensor
JPH11156671A (en) Method for controlling vertical spindle gravity compensation and machine tool
JP3301190B2 (en) Spindle operation switching method
JP2654228B2 (en) Numerical control unit
JP3403628B2 (en) Method and apparatus for controlling acceleration / deceleration of feed axis in numerical control
JPH1063339A (en) Controller of numerical value control machine tool
JPH0283102A (en) Free-running method at synchronized rotation of opposed type two-spindle lathe
JPH044405A (en) Numerical controller