JPH0360860A - Heater tube for heating molten non-ferrous metal - Google Patents

Heater tube for heating molten non-ferrous metal

Info

Publication number
JPH0360860A
JPH0360860A JP19639789A JP19639789A JPH0360860A JP H0360860 A JPH0360860 A JP H0360860A JP 19639789 A JP19639789 A JP 19639789A JP 19639789 A JP19639789 A JP 19639789A JP H0360860 A JPH0360860 A JP H0360860A
Authority
JP
Japan
Prior art keywords
heater tube
ceramic particles
composite material
heating
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19639789A
Other languages
Japanese (ja)
Inventor
Nobuo Miyagawa
宮川 信夫
Tomomi Soeda
知美 副田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP19639789A priority Critical patent/JPH0360860A/en
Publication of JPH0360860A publication Critical patent/JPH0360860A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PURPOSE:To obtain a heater tube having excellent erosion resistance and impact resistance and improved in workability by forming a part in contact with molten metal with the specific composite material and specifying content of ceramic particles. CONSTITUTION:The part in contact with molten metal is formed with the composite material containing titanium or titanium alloy and ceramic particles and vol content of the ceramic particles is made 0.1-50%. By this composition, the heater tube having excellent both the erosion resistance and impact resistance, is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はアルミニウム、亜鉛、スズ及び鉛等の非鉄金属
(その合金を含む)の溶湯を加熱又は再加熱するのに好
適の非鉄金属溶湯加熱用ヒータチューブに関する。
Detailed Description of the Invention [Industrial Application Field] The present invention is a non-ferrous metal molten metal heating method suitable for heating or reheating a molten metal of non-ferrous metals (including alloys thereof) such as aluminum, zinc, tin, and lead. related to heater tubes.

[従来の技術] アルミニウム、亜鉛、スズ及び鉛等の非鉄金属の溶湯を
加熱又は再加熱するための非鉄金属溶湯加熱用ヒータチ
ューブ(以下、ヒータチューブという)は、合金製造工
程、低圧鋳造工程及びダイキャスト工程等で使用される
溶解炉又は保持炉に多数設置されている。
[Prior Art] Heater tubes for heating molten nonferrous metals (hereinafter referred to as heater tubes) for heating or reheating molten nonferrous metals such as aluminum, zinc, tin, and lead are used in alloy manufacturing processes, low-pressure casting processes, and Many are installed in melting furnaces or holding furnaces used in die-casting processes, etc.

従来、ヒータチューブの材質としては、一般に窒化珪素
(S ta N4 )又は炭化珪素(S i C)を主
成分とする耐火物が使用されている。これにより、ヒー
タチューブにおける非鉄金属溶湯に接触する部分が非鉄
金属と反応して溶損することが防止されている。
Conventionally, as a material for the heater tube, a refractory whose main component is silicon nitride (S ta N4 ) or silicon carbide (S i C) is generally used. This prevents the portion of the heater tube that comes into contact with the molten nonferrous metal from reacting with the nonferrous metal and being melted away.

[発明が解決しようとする課題] しかしながら、上述した従来の非鉄金属溶湯加熱用ヒー
タチューブは、耐火物により形成されているため、機械
的−衝撃に対して脆いという難点がある。このため、溶
湯中へ地金を投入する場合又は溶湯を撹拌する場合に、
地金又は攪拌羽根がヒータチューブに衝突したときに、
耐火材料製ヒータチューブが容易に破損してしまう。そ
うすると、ヒータチューブの内部の発熱体に溶湯が侵入
してヒータチューブが使用不能となり、溶湯を加熱する
ことができなくなるため、作業を中断する必要が生じ、
作業性が悪いという問題点がある。
[Problems to be Solved by the Invention] However, since the above-described conventional heater tube for heating molten non-ferrous metal is made of a refractory material, it has the disadvantage that it is brittle against mechanical impact. For this reason, when pouring metal into the molten metal or stirring the molten metal,
When the metal or stirring blade collides with the heater tube,
Heater tubes made of refractory materials are easily damaged. If this happens, the molten metal will enter the heating element inside the heater tube, rendering the heater tube unusable and unable to heat the molten metal, making it necessary to stop work.
There is a problem that workability is poor.

本発明はかかる問題点に鑑みてなされたものであって、
非鉄金属溶湯に対する耐溶損性が優れていると共に、耐
衝撃性にも優れており、作業性を向上することができる
長寿命の非鉄金属溶湯加熱用ヒータチューブを提供する
ことを目的とする。
The present invention has been made in view of such problems, and includes:
An object of the present invention is to provide a long-life heater tube for heating molten nonferrous metal that has excellent resistance to melting and damage to molten nonferrous metal, has excellent impact resistance, and can improve workability.

[課題を解決するための手段] 本発明に係る非鉄金属溶湯加熱用ヒータチューブは、少
なくとも溶湯と接触する部分がチタン又はチタン合金と
セラミックス粒子とを含む複合材料により形成されてお
り、前記セラミックス粒子の体積含有率が0.l乃至5
0%であることを特徴とする。
[Means for Solving the Problems] A heater tube for heating molten non-ferrous metal according to the present invention has at least a portion that contacts the molten metal made of a composite material containing titanium or a titanium alloy and ceramic particles, and the ceramic particles The volume content of is 0. l to 5
It is characterized by being 0%.

[作用コ 本発明においては、少なくとも溶湯と接触する部分がチ
タン又はチタン合金と所定のセラミックス粒子との複合
材料により形成されている。この複合材料は、非鉄金属
の溶湯に対して優れた耐溶損性を有すると共に、耐衝撃
性にも優れたチタン又はチタン合金に、高強度且つ高硬
度のセラミックス粒子を添加したものであり、耐溶損性
、耐衝撃性及び耐摩耗性を兼備している。従って、この
複合材料で溶湯接触部を形成することにより、長寿命の
非鉄金属溶湯加熱用ヒータチューブが得られ、作業中断
が抑制されて作業性が向上する。
[Function] In the present invention, at least the portion that comes into contact with the molten metal is formed of a composite material of titanium or a titanium alloy and predetermined ceramic particles. This composite material has high strength and hardness ceramic particles added to titanium or titanium alloy, which has excellent corrosion resistance against molten nonferrous metals and has excellent impact resistance. It has a combination of damage resistance, impact resistance, and abrasion resistance. Therefore, by forming the molten metal contact portion with this composite material, a long-life heater tube for heating molten nonferrous metal can be obtained, work interruptions can be suppressed, and workability can be improved.

次に、この複合材料を構成するセラミックス成分の体積
含有率及び平均粒径の限定理由について説明する。
Next, the reason for limiting the volume content and average particle size of the ceramic components constituting this composite material will be explained.

複合材料中のセラミックス粒子の体積含有率が0.1%
未満の場合は、複合材料の硬度及び耐摩耗性は極めて低
いものとなる。一方、セラミックス粒子の体積含有率が
50%を超えると、複合材料が脆性化するため、耐衝撃
性が劣化し、割れやすくなる。このため、複合材料中の
セラミックス粒子の体積含有率は0.1乃至50%にす
る。
The volume content of ceramic particles in the composite material is 0.1%
If it is less than 1, the hardness and wear resistance of the composite material will be extremely low. On the other hand, if the volume content of the ceramic particles exceeds 50%, the composite material becomes brittle, resulting in poor impact resistance and easy cracking. For this reason, the volume content of ceramic particles in the composite material is set to 0.1 to 50%.

また、複合材料中のセラミックス粒子の平均粒径が0.
01μm未満の場合は、マトリックスであるチタン又は
チタン合金中にセラミックス粒子を均一に分散させるこ
とが困難になり、安定した特性の複合材料を得にくくな
る。一方、セラミックス粒子の平均粒径が500μmを
超えると、セラミックス粒子間の間隔が大きくなるため
、複合材料の硬度が低下しやすい。これにより、複合材
料の耐摩耗性も低下する。このため、複合材料中のセラ
ミックス粒子の平均粒径は0.01乃至500μmにす
ることが好ましい。
Further, the average particle size of the ceramic particles in the composite material is 0.
If it is less than 0.01 μm, it becomes difficult to uniformly disperse the ceramic particles in the titanium or titanium alloy matrix, making it difficult to obtain a composite material with stable characteristics. On the other hand, when the average particle size of the ceramic particles exceeds 500 μm, the distance between the ceramic particles becomes large, so that the hardness of the composite material tends to decrease. This also reduces the wear resistance of the composite material. For this reason, it is preferable that the average particle size of the ceramic particles in the composite material is 0.01 to 500 μm.

なお、本発明においては、その溶解対象となる非鉄金属
は純AI及び純Zn等の純金属以外に、これらの金属の
合金も含むことは勿論である。
In the present invention, the non-ferrous metals to be melted include not only pure metals such as pure AI and pure Zn but also alloys of these metals.

[実施例] 次に、本発明の実施例についてその比較例と比較して説
明する。
[Example] Next, an example of the present invention will be described in comparison with a comparative example.

先ず、平均粒径が38μmであり、6重量%のアルミニ
ウム(AJ)及び4重量%のバナジウム(V)を含有す
るチタン合金粉末と、平均粒径が20μmの炭化珪素(
SiC)粉末とを下記第1表に示す割合で均一に混合し
て原料とした。
First, titanium alloy powder with an average particle size of 38 μm and containing 6% by weight of aluminum (AJ) and 4% by weight of vanadium (V) and silicon carbide (with an average particle size of 20 μm) were prepared.
SiC) powder was uniformly mixed in the ratio shown in Table 1 below to prepare a raw material.

この原料をゴム型に装入し、その中心に芯金を配置して
、加圧力が2トン/ell”の条件で冷間静水圧プレス
(CI P)加工を行なった。これにより、タンマン管
形状の圧粉体を得た。そして、この圧粉体を真空度が1
0”’Torr、温度が1300℃の真空炉中で焼結さ
せることにより、第1表に示す組成の複合材料からなる
ヒータチューブを製作した。
This raw material was charged into a rubber mold, a core metal was placed in the center, and cold isostatic pressing (CIP) was performed at a pressure of 2 tons/ell. A green compact with a shape of
A heater tube made of a composite material having the composition shown in Table 1 was manufactured by sintering it in a vacuum furnace at 0''' Torr and a temperature of 1300°C.

この各ヒータチューブを実施例1乃至4及び比較例1乃
至3とした。
These heater tubes were designated as Examples 1 to 4 and Comparative Examples 1 to 3.

第1表 次に、平均粒径が188mであり、純度が99,7重量
%以上のチタン粉末と、下記第2表に示す平均粒径のA
lzOa粉末とを体積比で80:2G (セラミックス
の体積含有率20%)に混合して原料とした。
Table 1 Next, titanium powder with an average particle size of 188 m and a purity of 99.7% by weight or more and A with an average particle size shown in Table 2 below.
lzOa powder was mixed at a volume ratio of 80:2G (volume content of ceramics: 20%) to prepare a raw material.

第2表 この原料を厚さが1m■のJIS 5S41鋼板で作ら
れたモールドに封入し、加圧力が1トン/CM”、ff
i度が1250℃の条件で、熱間静水圧プレス(HI 
P)加工を行なって焼結させた。次いで、この焼結体及
び鋼製モールドの全体を濃塩酸溶液に浸漬して、鋼製モ
ールドを溶解させ、複合材料からなるヒータチューブを
製作した。この各ヒータチューブを実施例5乃至9及び
比較例4とした。
Table 2 This raw material was sealed in a mold made of JIS 5S41 steel plate with a thickness of 1 m, and the pressing force was 1 ton/CM", ff
Hot isostatic pressing (HI
P) Processed and sintered. Next, the entire sintered body and steel mold were immersed in a concentrated hydrochloric acid solution to dissolve the steel mold, and a heater tube made of a composite material was manufactured. These heater tubes were designated as Examples 5 to 9 and Comparative Example 4.

また、従来使用されている耐火物製のヒータチューブを
従来例とした。
In addition, a conventional example of a heater tube made of refractory material is used.

上述した実施例、比較例及び従来例の各ヒータチューブ
に対し、下記に示す試験を行なってその性能を調べた。
The following tests were conducted to examine the performance of each of the heater tubes of the Examples, Comparative Examples, and Conventional Examples described above.

■硬度試験 実施例、比較例及び従来例の各ヒータチューブのマイク
ロビッカース硬度を測定した。
(2) Hardness Test The micro-Vickers hardness of each heater tube of the Example, Comparative Example, and Conventional Example was measured.

■引張試験 引張試験機により伸びを測定した。■Tensile test Elongation was measured using a tensile tester.

■実用試験 先ず、実施例、比較例及び従来例の各ヒータチューブの
内部に発熱体としてニクロム線を導入する。次に、 J
 00 k、のアルミニウム合金CADC12)の溶湯
中にこのヒータチューブを浸漬させて、ニクロム線を加
熱源として溶湯を加熱する。そして、このヒータチュー
ブによる加熱によって溶湯の温度を700℃に保持して
、1000時間経過後のヒータチューブの溶損状況を調
べた。
(2) Practical Test First, a nichrome wire was introduced as a heating element into each heater tube of the example, comparative example, and conventional example. Next, J
This heater tube is immersed in a molten metal of an aluminum alloy CADC12) of 0.00 k, and the molten metal is heated using a nichrome wire as a heating source. Then, the temperature of the molten metal was maintained at 700° C. by heating with this heater tube, and the state of melting and damage of the heater tube after 1000 hours was examined.

これらの試験結果をまとめて下記第3表に示す。The results of these tests are summarized in Table 3 below.

但し、溶損状況はヒータチューブの表面における最大溶
損量が0.1w以下の場合を◎、0.1mを超え0.3
mm以下の場合を○、0.3mmを超える場合を△で示
した。
However, regarding the melting damage condition, ◎ if the maximum amount of melting loss on the surface of the heater tube is 0.1w or less, and ◎ if the maximum amount of melting damage on the surface of the heater tube is 0.3w or less
The case where it is less than mm is shown as ○, and the case where it exceeds 0.3 mm is shown as △.

この第3表から明らかなように、実施例1乃至9はいず
れも溶損量が0.1+*−以下であり、割れも発生して
いない。一方、比較例2,3及び従来例は伸びが01%
以下と極めて低く、特に比較例3及び従来例においては
、地金投入時の接触により割れが発生した。また、その
他の比較例1.4はいずれも溶損量が0 、1 amを
超えており、耐溶損性が悪いものであった。
As is clear from Table 3, in all of Examples 1 to 9, the amount of melting loss was 0.1+*- or less, and no cracking occurred. On the other hand, comparative examples 2 and 3 and the conventional example had an elongation of 01%.
In particular, in Comparative Example 3 and the conventional example, cracks occurred due to contact when the metal was introduced. Further, in all of the other comparative examples 1.4, the amount of erosion exceeded 0.1 am, and the erosion resistance was poor.

第3表 なお、本発明において使用可能なセラミックスは上述の
SiC及びAf203に限定されるものではなく、Cr
z Oa 、T−i 02 、Z ro2、MgO1Y
20G等の酸化物系セラミックス、5iaN4、TiN
%BN、及びA7N等の窒化物系セラミックス、WCl
TiCz Ba C及びCrCg等の炭化物系セラミッ
クス、ZrB2及びTi82等のホウ化物系セラミック
ス並びにサイアロン等、種々のものを使用することがで
きる。
Table 3 Note that the ceramics that can be used in the present invention are not limited to the above-mentioned SiC and Af203, but
z Oa , T-i 02 , Z ro2, MgO1Y
Oxide ceramics such as 20G, 5iaN4, TiN
%BN, nitride ceramics such as A7N, WCl
Various materials can be used, such as carbide ceramics such as TiCz Ba C and CrCg, boride ceramics such as ZrB2 and Ti82, and sialon.

また、これらのセラミックスを2種類以上混合して使用
することもできる。
Moreover, two or more types of these ceramics can be mixed and used.

[発明の効果] 以上説明したように本発明によれば、非鉄金属溶湯加熱
用ヒータチューブの少なくとも溶湯と接触する部分がチ
タン又はチタン合金とセラミック粒子との複合材料によ
り形成されているため、耐溶損性及び耐衝撃性の双方が
優れたヒータチューブが得られる。従って、このヒータ
チューブを使用すれば、その溶損が抑制されて寿命が延
長され、また地金投入時等の衝撃を受けても割れの発生
が抑制される。このため、加熱源の使用不能という事態
が長時間に亘って防止されるので、作業性を著しく向上
させることができる。
[Effects of the Invention] As explained above, according to the present invention, at least the part of the heater tube for heating molten non-ferrous metal that comes into contact with the molten metal is formed of a composite material of titanium or a titanium alloy and ceramic particles, so that it is resistant to melting. A heater tube excellent in both damage resistance and impact resistance can be obtained. Therefore, if this heater tube is used, its melting loss is suppressed, its lifespan is extended, and the occurrence of cracks is suppressed even if it is subjected to shocks such as when inserting ingots. Therefore, a situation in which the heating source becomes unusable is prevented for a long period of time, so that workability can be significantly improved.

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも溶湯と接触する部分がチタン又はチタ
ン合金とセラミックス粒子とを含む複合材料により形成
されており、前記セラミックス粒子の体積含有率が0.
1乃至50%であることを特徴とする非鉄金属溶湯加熱
用ヒータチューブ。
(1) At least the portion that contacts the molten metal is formed of a composite material containing titanium or a titanium alloy and ceramic particles, and the volume content of the ceramic particles is 0.
A heater tube for heating molten non-ferrous metal, characterized in that the heating temperature is 1 to 50%.
(2)前記セラミックス粒子の平均粒径が0.01乃至
500μmであることを特徴とする請求項1に記載の非
鉄金属溶湯加熱用ヒータチューブ。
(2) The heater tube for heating molten non-ferrous metal according to claim 1, wherein the ceramic particles have an average particle size of 0.01 to 500 μm.
JP19639789A 1989-07-28 1989-07-28 Heater tube for heating molten non-ferrous metal Pending JPH0360860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19639789A JPH0360860A (en) 1989-07-28 1989-07-28 Heater tube for heating molten non-ferrous metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19639789A JPH0360860A (en) 1989-07-28 1989-07-28 Heater tube for heating molten non-ferrous metal

Publications (1)

Publication Number Publication Date
JPH0360860A true JPH0360860A (en) 1991-03-15

Family

ID=16357190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19639789A Pending JPH0360860A (en) 1989-07-28 1989-07-28 Heater tube for heating molten non-ferrous metal

Country Status (1)

Country Link
JP (1) JPH0360860A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04351266A (en) * 1991-05-24 1992-12-07 K M C:Kk Holding furnace for casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04351266A (en) * 1991-05-24 1992-12-07 K M C:Kk Holding furnace for casting

Similar Documents

Publication Publication Date Title
CN108342635A (en) A kind of hexa-atomic high-entropy alloy CoCrFeNiVAl of high intensity infusibilityxAnd preparation method thereof
US3085005A (en) Alloys
JP4193958B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
CN1045281C (en) Silicon nitride combined with silicon carbide refractory material for pouring ladle gate
JPH0360860A (en) Heater tube for heating molten non-ferrous metal
CA2060028C (en) Injection part for die-casting machines
JPH1149568A (en) Graphite-silicon carbide crucible for nonferrous molten metal and its production
US7098159B2 (en) Articles for casting applications comprising ceramic composite and methods for making articles thereof
JP4409067B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
JPH037881A (en) Crucible for melting non-ferrous metal
JP4265853B2 (en) Hard sintered alloy excellent in corrosion resistance and thermal shock resistance against molten metal, and member for molten metal using the alloy
JPH037884A (en) Protective tube for measuring temperature of molten metal of nonferrous metal
JPH04247801A (en) Injecting parts for die casting machine
JPH02280953A (en) Injecting parts for die casting machine
JP2536320B2 (en) Copper alloy casting mold
JPH0784601B2 (en) Injection parts for die casting machine
JPH0377766A (en) Sliding nozzle plate for molten non-ferrous metal
JP2000313670A (en) Silicon nitride sintered compact and sputtering target made of the same
JP2966009B2 (en) High corrosion resistance, high spalling resistance ZrB (2)-Manufacturing method of graphite refractories
JP2772305B2 (en) Mullite / boron nitride composite break ring and method of manufacturing ceramic composite
JPH0313261A (en) Stalk for casting nonferrous metal
JP2859967B2 (en) Sleeve for die casting machine
JPH04247806A (en) Injecting parts for die casting machine
JP3396800B2 (en) Composite sintered alloy for non-ferrous metal melt and method for producing the same
JPH04247805A (en) Injecting parts for die casting machine