JPH0360580A - Automatic focus camera - Google Patents

Automatic focus camera

Info

Publication number
JPH0360580A
JPH0360580A JP1197249A JP19724989A JPH0360580A JP H0360580 A JPH0360580 A JP H0360580A JP 1197249 A JP1197249 A JP 1197249A JP 19724989 A JP19724989 A JP 19724989A JP H0360580 A JPH0360580 A JP H0360580A
Authority
JP
Japan
Prior art keywords
evaluation value
focus
focus evaluation
circuit
brightness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1197249A
Other languages
Japanese (ja)
Inventor
Haruhiko Murata
治彦 村田
Hiroshi Murashima
弘嗣 村島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1197249A priority Critical patent/JPH0360580A/en
Publication of JPH0360580A publication Critical patent/JPH0360580A/en
Pending legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To suppress fluctuation caused in a focus evaluation value being a basis of focusing due to the flicker effect of a discharge light whose frequency is 50Hz by integrating a low frequency signal component of a video signal of the same field as a video signal acquiring the focus evaluation value and applying the automatic focusing depending on the increase/decrease in a normalized focus evaluation value resulting from the division of the focus evaluation value by the integrated component. CONSTITUTION:A gate circuit 30c extracts only a luminance signal corresponding to a range of a focus area in time division similarly to the case with a gate circuit 5c, the result is inputted to an LPF 30d, only the low frequency component is separated and inputted to a poststage A/D conversion circuit 30f, integrated digitally over one field period at an integration device 30g and the result is outputted for each field as a brightness evaluation value K representing an average brightness level at a relevant field. The obtained focus evaluation S and brightness evaluation value K are inputted to an arithmetic circuit 31, the focus evaluation value S is divided by the brightness evaluation value K at the current field to calculate J=S/K thereby obtaining the normalized focus evaluation value.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、撮像素子から得られる撮像映像信号中の4度
信号を基に、焦点の自動整合を行うカメラのオート7オ
ーカス装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to an auto-7 focus device for a camera that automatically aligns the focus based on a 4 degree signal in a captured video signal obtained from an image sensor.

(ロ)従来の技術 カメラのオートフォーカス装置において撮像索子からの
映像信号自体の高域成分を焦点制御の評価に用いる方法
は、本質的にバララックスが存在せず、また被写界深度
が浅い場合や遠方の被写体に対しても、精度良く焦点を
合わせられる等の優れた点が多い。しかも、オートフォ
ーカス用の特別なセンサも不要で、機構的にも極めて簡
単である。
(b) Conventional technology In the autofocus device of a camera, the method of using the high-frequency component of the video signal itself from the imaging probe to evaluate focus control is essentially free of variation and has a limited depth of field. It has many advantages, such as being able to focus accurately even when photographing shallow or distant objects. Furthermore, there is no need for a special sensor for autofocus, and the mechanism is extremely simple.

特開昭63−125910号公報(GO2B77・′1
1)には、前述の所謂山登りオート7オーカ乙方式の一
例が開示されている。ここで、この従来技術について、
第2図及び第3図を用いてその骨子を説明する。第2図
は従来技術の全体の回路ブロック図であり、この図にお
いて、レンズ(1)によって結像した画像は、撮像素子
を含む撮像回路(4)によって映像信号となり、焦点評
価値発生回路(5)に入力される。焦点評価値発生回路
(5)は第3図に示すようにII戊される。映像信号よ
り同期分離回路(5a)によって分離された垂直同期信
号(VO)、水平同期信号(HD)は7オーカスエリア
としてのサンプリングエリアを設定するためにゲート制
御回路(5b)に入力される。ゲート制御回路(5b)
では垂直同期信号(VD)、水平同期信号(HD )及
び撮像素子を駆動する固定の発振器出力に基づいて、画
面中央部分に長方形のサンプリングエリアを設定し、こ
のサンプリングエリアの範囲のみの輝度信号の通過を許
容するゲート開閉信号をゲート回路(5c)に供給する
Japanese Unexamined Patent Publication No. 1983-125910 (GO2B77・'1
1) discloses an example of the above-mentioned so-called mountain-climbing auto 7-o-ka-otsu system. Here, regarding this conventional technology,
The outline will be explained using FIGS. 2 and 3. FIG. 2 is an overall circuit block diagram of the conventional technology. In this figure, an image formed by a lens (1) is turned into a video signal by an image pickup circuit (4) including an image pickup element, and a focus evaluation value generation circuit ( 5). The focus evaluation value generation circuit (5) is configured as shown in FIG. A vertical synchronization signal (VO) and a horizontal synchronization signal (HD) separated from the video signal by a synchronization separation circuit (5a) are input to a gate control circuit (5b) in order to set sampling areas as seven orcus areas. Gate control circuit (5b)
Now, we set a rectangular sampling area in the center of the screen based on the vertical synchronizing signal (VD), the horizontal synchronizing signal (HD), and the fixed oscillator output that drives the image sensor, and calculate the luminance signal only within this sampling area. A gate opening/closing signal allowing passage is supplied to the gate circuit (5c).

ゲート回路(5c)によって7オーカスエリアの範囲内
に対応する輝度信号のみが、高域通過フィルター(H,
P、 F)(5d)を通過して高域成分のみが分離され
、次段の検波回路(5e)で振幅検波される。この検波
出力はA/D変換回路(5f)に所定のサンプリング周
期でディジタル値に変換されて、順次積算器(5g)に
入力される。
Only the luminance signals corresponding to the seven orcus areas are filtered by the gate circuit (5c) and passed through the high-pass filter (H,
P, F) (5d), only high-frequency components are separated, and the amplitude is detected in the next stage detection circuit (5e). This detection output is converted into a digital value by an A/D conversion circuit (5f) at a predetermined sampling period, and is sequentially input to an integrator (5g).

この積算器(5g)は、具体的にはA/D変換データと
後段のランチ回路のラッチデータとを加算する加算器と
、この加算値をラッチし、1フイールド毎にリセットさ
れるラッチ回路から戊る所謂ディジタル積分器であり、
1フイ一ルド期間についての全A7/D変換データの和
が焦点評価値として出力される。従って、焦点評価値発
生回路は7オーカスエリア内での輝度信号を時分割的に
抜き取り、更にこの高域成分を1フイ一ルド期間にわた
ってディジタル積分し、この積分値を現フィールドの焦
点評価値として出力することになる。オート7オーカス
動作開始直後に、最初の焦点評価値は最大値メモリ(6
)と初期値メモリ(7)に保持される。その後、フォー
カスモーク制御回路(10)はレンズ(T)を光軸方向
に進退させるフォーカスモータ(フォーカス制御手段)
(3)を予め決められた方向に回転させ第2比較器(9
)出力を監視する。第2比較番(9)は、7オーカスモ
ータ駆動後の焦点評価値と初期値メモリ(7)に保持さ
れている切間評価値を比較しその大小を出力する。
Specifically, this integrator (5g) consists of an adder that adds A/D conversion data and latch data of a subsequent launch circuit, and a latch circuit that latches this added value and is reset every field. It is a so-called digital integrator,
The sum of all A7/D conversion data for one field period is output as a focus evaluation value. Therefore, the focus evaluation value generation circuit extracts the luminance signals within the seven orcus areas in a time-division manner, digitally integrates this high frequency component over one field period, and uses this integrated value as the focus evaluation value for the current field. It will be output. Immediately after the auto 7 orcus operation starts, the initial focus evaluation value is stored in the maximum value memory (6
) and are held in the initial value memory (7). After that, the focus mode control circuit (10) is a focus motor (focus control means) that moves the lens (T) back and forth in the optical axis direction.
(3) in a predetermined direction and the second comparator (9
) monitor the output. A second comparison number (9) compares the focus evaluation value after driving the seven orcus motors with the distance evaluation value held in the initial value memory (7), and outputs the magnitude thereof.

フォーカスモータ制御回路(10)は、第2比較器(9
)が大または小という出力を発するまで最初の方向にフ
ォーカスモータ(3)を回転せしめ、現在の焦点評価値
が初期の評価値よりら、予め設定された変動幅よりも大
であるという出力がなされた場合には、そのままの回転
方向を保持し、現在の評価値が初期評価値に比べて、上
記変動幅よりも小であるという出力がなさl″Lだ場合
にはフォーカスモータ(3)の回転方向を逆にして、第
1比較器(8)の出力を監視する。
The focus motor control circuit (10) includes a second comparator (9).
) rotates the focus motor (3) in the initial direction until it outputs an output that is large or small, and outputs that the current focus evaluation value is larger than the initial evaluation value by a preset variation range. If the current evaluation value is smaller than the initial evaluation value and the above variation range, the focus motor (3) is output. The output of the first comparator (8) is monitored by reversing the direction of rotation of the comparator (8).

第1比較’f5(8)は最大値メモリ(6)に保持され
ている今までの最大の焦点評価値と現在の焦点評価値を
比較し、現在の焦点評価値が最大値メモリ(6)の内容
に比べて大きい(第1モード)、上記予め設定した第1
の閾値以上に減少したく第2モード)の2通りの比較信
号(PI)(P2)を出力する。ここで最大値メモリ(
6)は、第1比較器(8)の出力に基づいて、現在の焦
点評価値が最大値メモリ(6)の内容よりも大きい場合
にはその値が更新され、常に現在までの焦点評価値の最
大値が保持される。
The first comparison 'f5 (8) compares the maximum focus evaluation value up to now held in the maximum value memory (6) with the current focus evaluation value, and the current focus evaluation value is stored in the maximum value memory (6). (first mode), the preset first
In the second mode, two types of comparison signals (PI) (P2) are output in order to reduce the value to a threshold value or more. Here the maximum value memory (
6) is based on the output of the first comparator (8), and if the current focus evaluation value is larger than the content of the maximum value memory (6), the value is updated, and the current focus evaluation value is always updated. The maximum value of is maintained.

(13)はレンズ(1)を支持するフォーカスリング(
2)の位置を指示するフォーカスリング位置信号を受け
て、フォーカスリング位置を記憶するモータ作置メモリ
であり、最大値メモリ(6)と同様に第1比較器(8)
の出力に基いて、最大評価値となった場合のフォーカス
リング位置を常時保持するようにに更新される。ここで
、フォーカスリング(2)はフォーカスモータ(3)に
よ;2回転し、この回転に応じてレンズ(1)が光軸方
向に進退することは周知の技術である。尚、フォーカス
リング位置信号はフォーカスリング位置を検出するポテ
ンシャルメータにて出力されるが、フォーカスモータ(
3)をステノブピングモータとし、このモータの近点あ
るいは■恵方向へのステップ量を用いることも可能であ
る。
(13) is a focus ring (
2) is a motor operation memory that stores the focus ring position upon receiving the focus ring position signal that indicates the position of the first comparator (8) as well as the maximum value memory (6).
Based on the output of , the focus ring position is updated so as to always maintain the focus ring position when the maximum evaluation value is reached. Here, it is a well-known technique that the focus ring (2) is rotated twice by the focus motor (3), and the lens (1) moves forward and backward in the optical axis direction in accordance with this rotation. Note that the focus ring position signal is output by a potential meter that detects the focus ring position, but the focus ring position signal is output by a potential meter that detects the focus ring position.
It is also possible to use 3) as a steno-knobbing motor and use the amount of steps of this motor in the periapsis or direction.

フォーカスモータ制御回路(10)は、第2比較器(9
)出力に基づいて決定された方向に7オーカスモータ(
3)を回転させながら、第1比較器(8)出力を監視し
、評価値の雑音による誤動作を防止するために、第1比
較器(8)出力にて現在の評価値が最大評価値に比して
上記予め設定された第1の閾値(Δy)より小さいとい
う第2モードが指示される(第4図のQに達する)と同
時に7オーカスモータ(3)は逆転される。この逆転後
、モータ位置メモリ(13)の内容と、現在のフォーカ
スリング位置信号とが第3比較器(14)にて比較され
、一致したとき、即ち7オーカスリング(2)が焦点評
価値が最大となる位置(P)に戻ったときに7オーカス
モータ(3)を停止させるようにフォーカスモータ制御
回路(10)は機能する。同時にフォーカスモーク制御
回路(10)はレンズ停止信号(LS)を出力する。
The focus motor control circuit (10) includes a second comparator (9).
) 7 orcus motors (
3), the output of the first comparator (8) is monitored, and in order to prevent malfunctions due to noise in the evaluation value, the current evaluation value is set to the maximum evaluation value at the output of the first comparator (8). On the other hand, the second mode in which the second mode is smaller than the preset first threshold value (Δy) is instructed (reaches Q in FIG. 4), and at the same time the 7 orcus motor (3) is reversed. After this reversal, the contents of the motor position memory (13) and the current focus ring position signal are compared in the third comparator (14), and when they match, that is, the 7 orcus ring (2) has a focus evaluation value. The focus motor control circuit (10) functions to stop the 7 orcus motor (3) when it returns to the maximum position (P). At the same time, the focus mask control circuit (10) outputs a lens stop signal (LS).

(11)はフォーカスモーフ制御回路(10)によるオ
ート7オーカス動作が終了して、レンズ停止信号(LS
)が発せられると同時にその時点での焦点評価値が保持
される第4メモリであり、後段の第4比較5 (12)
でこの第4メモリ(11)の保持内容は現在の焦点評価
値と比較され、その値が再起動のための第2の閾値より
大きくなった場みには、被写体が変化したとしてフォー
カスモーク制御回路(10)に被写体変化信号が出力さ
れる。フォーカスモータ制御回路(10)はこの信号を
受けると再びオートフォーカス動作をやり直して被写体
の変化に追随する。
(11) indicates that the auto 7 orcus operation by the focus morph control circuit (10) has been completed and the lens stop signal (LS
) is issued and at the same time the focus evaluation value at that time is held, and the fourth comparison 5 (12)
The content held in this fourth memory (11) is compared with the current focus evaluation value, and if the value becomes larger than the second threshold for restarting, focus morking control is performed as it is assumed that the subject has changed. A subject change signal is output to the circuit (10). When the focus motor control circuit (10) receives this signal, it restarts the autofocus operation to follow changes in the subject.

(ハ)発明が解決しようとする課題 前記従来技術の方式は、極めて追随性が高く、合焦精度
も高いのであるが、被写体照度が映像信号の1フイール
ドの周波数と異なる、一定の周波数で変化している場合
には、その照度変化によって、誤動作を生じる事がある
。この事情を以下に若干詳しく説明する。
(c) Problems to be Solved by the Invention The method of the prior art described above has extremely high followability and high focusing accuracy, but the illuminance of the subject changes at a constant frequency that is different from the frequency of one field of the video signal. If it is, the change in illuminance may cause malfunction. This situation will be explained in some detail below.

例えば、NTSC方式のビデオカメラではlフィールド
の周波数は60Hzであるが、これを50H2で点灯し
ている螢光灯の様な放電ランプの照明下で使用する場合
に、このような誤動作が生じる。50 Hzで点灯して
いる放電ランプの明るさは100Hzの周波数で変動す
るため、被写体照度も1oOHzの周波数で変化する。
For example, in an NTSC video camera, the frequency of the l field is 60 Hz, but such malfunctions occur when this camera is used under illumination of a discharge lamp such as a fluorescent lamp that is lit at 50H2. Since the brightness of a discharge lamp lit at 50 Hz changes at a frequency of 100 Hz, the illuminance of the subject also changes at a frequency of 100 Hz.

映像信号の1フイールドが60Hzであるため、これら
のビート周波数である2 0Hzのリップルが生じる。
Since one field of the video signal has a frequency of 60 Hz, a ripple of 20 Hz, which is the beat frequency, occurs.

即ち、一定の照度を有する照明下で所定の被写体を撮影
した場合のフィールド毎の平均輝度レベルは、通常は第
5図(a)の如く一定値に維持されるが、前述の如<5
0Hzの放電ランプの照明下ではフリッカが生じ、第5
図(b)の如く3フイ一ルド周期で(\11)→(M2
)→013)→(Ml)→・・・と輝度レベルが変動す
る。ところで、前記従来技術における焦点評価値平均輝
度レベルと同様に、被写体までの距離に変化がなく、し
かも被写体自体も変化しなくとも、撮像素子への入射光
量に比例して変化する特性を有しており、第5図(b>
の如くフリッカが生じていると、同一被写体距離を維持
して同一被写体を撮影しているにも拘らず焦点評価値に
変動が生じることになり、この様なフリッカの影響を受
けた焦点評価値に基づいて前記従来技術の如く合焦動作
を行うと、合焦位置のピーク検出を誤ったり、焦点評価
値の最大値に変化が生じたとして被写体に変化がないに
も拘らず合焦動作の再起動が為される慣れがある。
That is, when a predetermined subject is photographed under illumination with a constant illuminance, the average brightness level for each field is normally maintained at a constant value as shown in FIG.
Flicker occurs under the illumination of a 0Hz discharge lamp, and the fifth
As shown in figure (b), (\11) → (M2
)→013)→(Ml)→... and the brightness level changes. By the way, similar to the focus evaluation value average brightness level in the prior art, it has a characteristic that it changes in proportion to the amount of light incident on the image sensor, even if the distance to the object does not change and the object itself does not change. Figure 5 (b>
If flicker occurs as shown in the figure, the focus evaluation value will change even though the same subject distance is maintained and the same subject is photographed, and the focus evaluation value affected by such flicker will change. If a focusing operation is performed as in the conventional technique based on the above, the peak of the focusing position may be incorrectly detected, or the focusing operation may be incorrect due to a change in the maximum value of the focus evaluation value, even though there is no change in the subject. There is a habit of rebooting.

(ニ)課題を解決するための手段 r補正等のカメラプロセス処理が行われていない映像信
号の周波数スペクトル強度は撮像素子へ入力する光の強
度に比例し、その時のスペクトル分布は一定である。そ
こで本発明では焦点評価値を得ると同時に、その焦点評
価値を得た映像信号と同一のフィールドの映像信号の低
域信号成分を積算した輝度積算値を得て、この輝度積算
値で焦点評価値を除算することで、平均輝度信号に対し
て前記焦点評価値を正規化した正規化焦点評価値を求め
、この正規化焦点評価値の増減によってオート7オーカ
ス動作を行うことを特徴とする。
(d) Means for Solving the ProblemsThe frequency spectrum intensity of a video signal that has not been subjected to camera process processing such as r correction is proportional to the intensity of light input to the image sensor, and the spectral distribution at that time is constant. Therefore, in the present invention, at the same time as obtaining a focus evaluation value, a luminance integrated value is obtained by integrating the low-frequency signal components of the video signal of the same field as the video signal from which the focus evaluation value was obtained, and the focus is evaluated using this luminance integrated value. By dividing the value, a normalized focus evaluation value is obtained by normalizing the focus evaluation value with respect to the average luminance signal, and an auto 7 orcus operation is performed by increasing or decreasing this normalized focus evaluation value.

(ホ)作 用 本発明は上述の如<構成したので、50Hzの放電灯に
よるフリッカの影響により、合焦動作の基礎となる焦点
評価値に生じる変動が抑えられる。
(E) Function Since the present invention is configured as described above, fluctuations caused in the focus evaluation value, which is the basis of focusing operation, due to the influence of flicker caused by the 50 Hz discharge lamp can be suppressed.

(へ)実施例 以下、図面に従い本発明の一実施例について説明する。(f) Example An embodiment of the present invention will be described below with reference to the drawings.

第1図は本実施例装置の全体の回路ブロック図である。FIG. 1 is an overall circuit block diagram of the device of this embodiment.

尚、この第1図において従来例の第2図と同一部分には
同一符号を付して説明を省略する。
In FIG. 1, the same parts as in FIG. 2 of the conventional example are given the same reference numerals, and their explanation will be omitted.

撮像回路(4)からの撮像映像信号中の輝度信号は、焦
点評価値発生回路(5)(第1焦点評価値検出手段)に
入力されて、従来例と同様に画面中央のフォーカスエリ
ア内での輝度信号の高域成分のlフィールド期間にわた
るディジタル積分値が、現フィールドでの焦点評価fi
t(S)(第1焦点評価値)として出力される。また、
撮像映像信号中のvi度倍信号、輝度評価値発生回路(
30) C輝度評価値検出手段)にも入力される。
The luminance signal in the captured video signal from the imaging circuit (4) is input to the focus evaluation value generation circuit (5) (first focus evaluation value detection means), and is detected within the focus area at the center of the screen as in the conventional example. The digital integral value of the high-frequency component of the luminance signal over l field period is the focus evaluation fi in the current field.
It is output as t(S) (first focus evaluation value). Also,
vi degree multiplied signal in the captured video signal, brightness evaluation value generation circuit (
30) It is also input to C brightness evaluation value detection means).

輝度評価値発生回路(30)は第6図に示す様に、ゲー
ト回路(30c )、LPF(ローパスフィルタ)(3
0d)、A / D変換回路(30f)及び積Ii器(
30g)により構成される。
As shown in FIG. 6, the brightness evaluation value generation circuit (30) includes a gate circuit (30c), an LPF (low pass filter) (3
0d), A/D conversion circuit (30f) and product Ii (
30g).

ゲート回路(30c)は焦点評価値発生回路(5)内の
ゲート制御回路(5b)からのゲート開閉信号により開
閉が制御され、ゲート回路(5C)と全く同様に7オー
カスエリアの範囲内に対応する輝度信号のみが時分割に
抜き取られてL P F (30d)に入力され、その
低域成分のみが分離されて後段のA/D変換回路(30
1)に入力される。
The opening/closing of the gate circuit (30c) is controlled by the gate opening/closing signal from the gate control circuit (5b) in the focus evaluation value generation circuit (5), and corresponds to the range of 7 orcus areas just like the gate circuit (5C). Only the luminance signal is extracted in a time-division manner and input to L P F (30d), and only its low frequency component is separated and sent to the subsequent A/D conversion circuit (30d).
1) is input.

このLPF出力は、A/D変換回路(30f)にて、A
/D変換回路(5f)のサンプリング周期と全く同一の
同期でA/D変換され、このA、’D変換値が積算器(
30g)にてlフf−ルド期間にわたってディジタル積
分され、このフォーカスエリア内の輝度信号の低域成分
の1フイ一ルド分の積分値が該当フィールドでの平均輝
度レベルを示す輝度評価1直(K)として1フイールド
毎に出力される。尚、ゲート回路(5c)(30c)、
A/D変換回路(5f)(30f)、積算器(5g)(
30g)はいずれも全く同一の構成を有している。また
、ゲート回路(30c)の機能をゲート回路(5C)に
兼用せしめ、ゲート回路(5c)の出力をL P F 
(30d)に供給する様に構成すれば、ゲート回路(3
0c)が省略できることは言うまでもない。
This LPF output is converted to A/D in the A/D conversion circuit (30f).
A/D conversion is performed in exactly the same synchronization as the sampling period of the /D conversion circuit (5f), and the A/D conversion values are sent to the integrator (
The integrated value for one field of the low-frequency component of the luminance signal within this focus area is digitally integrated over the field period at 30g), and the integrated value for one field indicates the average luminance level in the corresponding field. K) is output for each field. In addition, gate circuits (5c) (30c),
A/D conversion circuit (5f) (30f), integrator (5g) (
30g) have exactly the same configuration. In addition, the function of the gate circuit (30c) is also used by the gate circuit (5C), and the output of the gate circuit (5c) is L P F
(30d), the gate circuit (30d)
It goes without saying that 0c) can be omitted.

こうして円発生回路(5)(30)より得られた焦点評
価値(S)及び輝度評価値(K)は、演算回路(31)
に入力される。
The focus evaluation value (S) and brightness evaluation value (K) thus obtained from the circle generation circuits (5) and (30) are then sent to the calculation circuit (31).
is input.

演算回路(31)は除算回路であり、現フィールドでの
焦点評価値(S)を現フィールドでの輝度評価(i(K
)にて除算し、J=S、/Kを算出する。
The arithmetic circuit (31) is a division circuit, which converts the focus evaluation value (S) in the current field into the brightness evaluation (i(K)
) to calculate J=S, /K.

ここで、撮像素子への入射光量がFoの時の輝度評価値
及び焦点評価値を夫々に=、Soとすると、入射光量が
Flに変化した時の輝度及び焦点評価値(K)(S)を
求めると、平均輝度レベルは入射光量に比例して変化す
るので、K ” < F +、/ Fo ) X K 
aとなる。更にこの時の入射光量の変化の比(F 5.
、/ F O)をLとすると、K = I−x K a
と表わせる。また、輝度信号の高域成分もまた通常は入
射光量(L)に比例して変化するので、焦点評価値(S
)は S ” L x S 。
Here, if the brightness evaluation value and focus evaluation value when the amount of incident light to the image sensor is Fo are respectively = and So, then the brightness and focus evaluation values when the amount of incident light changes to Fl (K) (S) Since the average brightness level changes in proportion to the amount of incident light, we get K ''< F +, / Fo ) X K
It becomes a. Furthermore, the ratio of the change in the amount of incident light at this time (F5.
, / F O) is L, then K = I-x Ka
It can be expressed as In addition, since the high-frequency component of the brightness signal usually changes in proportion to the amount of incident light (L), the focus evaluation value (S
) is S ” L x S.

と表わすことができる。It can be expressed as

そこで、前述の除算結果(J)は、 J = (A/K) X S = l/ (LXKO)l X (LxSo)−A X
 S O/ K O とな1)、撮像素子への入射光量の変化の比(L )に
よる依存性を除去できる。即ち、除算結果(J)は焦点
評価値(S)を平均輝度レベルにより正規化したことに
なる。この除算結果(J)は正規化焦点評価値として従
来技術の焦点評価値に代えて後段の各回路に供給され、
第1.第2比較器cs )(9>以下の回路は、正規化
焦点評価値(J)に基いて、第2図と全く同一の動作を
為し、正規化焦点評価値が最大値をとる位置にてレンズ
(1)が停止し、この停止後は正規化焦点評価値に第2
の閾値以上の変動が生じた時にフォーカスモータ(3)
を再起動する一連のオート7オーカス動作が実行される
Therefore, the above division result (J) is J = (A/K) X S = l/ (LXKO)l X (LxSo)-A
S O / K O 1), the dependence of the change in the amount of light incident on the image sensor on the ratio (L) can be removed. That is, the division result (J) is the focus evaluation value (S) normalized by the average brightness level. This division result (J) is supplied as a normalized focus evaluation value to each subsequent circuit in place of the focus evaluation value of the prior art.
1st. 2nd comparator cs) (9> The following circuit performs exactly the same operation as shown in Fig. 2 based on the normalized focus evaluation value (J), and reaches the position where the normalized focus evaluation value takes the maximum value. The lens (1) stops, and after this stop, the normalized focus evaluation value is changed to the second one.
The focus motor (3) is activated when a fluctuation exceeding the threshold value occurs.
A series of auto7 orcus operations are executed to restart the auto7 orcus operation.

尚、(32)は撮像回路(4)からの撮像映像信号にγ
補正灯のビデオ信号として必要な処理を行うカメラプロ
セス回路である。
In addition, (32) is γ in the imaged video signal from the imaging circuit (4).
This is a camera process circuit that performs the necessary processing for the video signal of the correction lamp.

また、本実施例ではフォーカスモータ(3)にてフォー
カスリング(2)を回動させ、レンズ(1)を光軸方向
に進退させてレンズ(1)の撮像素子に吋する相対位置
を変化させて7オーカス制御を行っているが、レンズ(
1〉を固定し、撮像素子を圧電素子に支持せしめ、フォ
ーカスモータ制御回路(10)から7オーカスモータ(
3)へ供給される制御信号を圧電素子に供給し、撮像素
子自体を光軸方向に進退させても、レンズ(1)の撮像
素子に対する相対位置を変化させてフォーカス制御を行
うことが可能であることは言うまでもない。
In addition, in this embodiment, the focus ring (2) is rotated by the focus motor (3), and the lens (1) is moved forward and backward in the optical axis direction, thereby changing the relative position of the lens (1) toward the image sensor. 7 orcus control is performed, but the lens (
1> is fixed, the image sensor is supported by the piezoelectric element, and the focus motor control circuit (10) is connected to the 7 orcus motor (
Even if the control signal supplied to 3) is supplied to the piezoelectric element and the image sensor itself moves forward and backward in the optical axis direction, it is possible to perform focus control by changing the relative position of the lens (1) with respect to the image sensor. It goes without saying that there is.

更に、平均輝度レベルである輝度評価値を導出するに際
して、第6図のL P F (30d)を用いて低域成
分を抽出したが、L P F (30d)を通過させず
にゲート回路(30c)出力を直接検波回路(30e)
に供給しても良いことは言うまでもない。
Furthermore, when deriving the brightness evaluation value which is the average brightness level, the low frequency component was extracted using L P F (30d) in Fig. 6, but the gate circuit ( 30c) Direct detection circuit for output (30e)
Needless to say, it may be supplied to

ところで、本実施例において、演算回路(31)からフ
ォーカスモータ制御回路(10)の一連の回路動作をマ
イクロコンピュータによりソフトウェア的に処理可能で
ある。
Incidentally, in this embodiment, a series of circuit operations from the arithmetic circuit (31) to the focus motor control circuit (10) can be processed by software using a microcomputer.

(ト)発明の効果 上述の如く本発明によれば、50Hzの放電灯等の照明
下においても、フリッカの影響による合焦動作の誤動作
を防止することが可能となる。
(g) Effects of the Invention As described above, according to the present invention, it is possible to prevent malfunctions in focusing operations due to flicker even under illumination such as a 50 Hz discharge lamp.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の全体の回路ブロック図、第
6図は同要部回路ブロック図、第2図及び第3図は従来
例の回路ブロック図、第4図は山登りオート7オーカス
方式の原理説明図、第5図はフリッカによる輝度レベル
の変化を説明する図である。 (5)・・焦点評価値発生回路(第1焦点評価値検出手
段) 、 (30)・・・輝度評価値発生回路(輝度評
価値検出手段)、(31)・・・演算回路、(3)・・
・7オーカスモータ()オーカス制御手段)。
Fig. 1 is an overall circuit block diagram of an embodiment of the present invention, Fig. 6 is a circuit block diagram of the same main part, Figs. 2 and 3 are circuit block diagrams of a conventional example, and Fig. 4 is a mountain climbing auto 7. FIG. 5, which is a diagram explaining the principle of the Orcus method, is a diagram illustrating changes in brightness level due to flicker. (5)...Focus evaluation value generation circuit (first focus evaluation value detection means), (30)...Brightness evaluation value generation circuit (brightness evaluation value detection means), (31)...Arithmetic circuit, (3 )・・
・7 Orcus motor () Orcus control means).

Claims (1)

【特許請求の範囲】[Claims] (1)撮像素子から得られる撮像輝度信号の高域成分レ
ベルを第1焦点評価値として所定期間毎に検出する第1
焦点評価値検出手段と、 前記撮像輝度信号の輝度レベルを輝度評価値として前記
所定期間毎に検出する輝度評価値検出手段と、 該輝度評価値に対する前記第1焦点評価値の比を第2焦
点評価値として出力する演算手段と、該第2焦点評価値
が最大値となる様に、フォーカス制御を行うフォーカス
制御手段とを備えてなるオートフォーカスカメラ。
(1) A first method that detects the high-frequency component level of the imaging luminance signal obtained from the image sensor as a first focus evaluation value at predetermined intervals.
focus evaluation value detection means; brightness evaluation value detection means for detecting the brightness level of the imaging brightness signal as a brightness evaluation value at each of the predetermined periods; An autofocus camera comprising: arithmetic means for outputting an evaluation value; and a focus control means for performing focus control so that the second focus evaluation value becomes a maximum value.
JP1197249A 1989-07-28 1989-07-28 Automatic focus camera Pending JPH0360580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1197249A JPH0360580A (en) 1989-07-28 1989-07-28 Automatic focus camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1197249A JPH0360580A (en) 1989-07-28 1989-07-28 Automatic focus camera

Publications (1)

Publication Number Publication Date
JPH0360580A true JPH0360580A (en) 1991-03-15

Family

ID=16371326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1197249A Pending JPH0360580A (en) 1989-07-28 1989-07-28 Automatic focus camera

Country Status (1)

Country Link
JP (1) JPH0360580A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0556783A2 (en) * 1992-02-19 1993-08-25 Sanyo Electric Co., Ltd. Automatic focusing method according to light flickering for videocamera
JP2006034075A (en) * 2004-07-21 2006-02-02 Tempearl Ind Co Ltd Distribution switchboard
JP2008083338A (en) * 2006-09-27 2008-04-10 Fujitsu Ltd Optical zoom correction imaging apparatus by af detection
JP2011027184A (en) * 2009-07-27 2011-02-10 Sadataka Ichimaru Corner fitting for assembling type steel shelf and method of attaching corner fitting
JP2020166197A (en) * 2019-03-29 2020-10-08 キヤノン株式会社 Focus detection device, and control method of the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6359274A (en) * 1986-08-29 1988-03-15 Victor Co Of Japan Ltd Automatic focusing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6359274A (en) * 1986-08-29 1988-03-15 Victor Co Of Japan Ltd Automatic focusing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0556783A2 (en) * 1992-02-19 1993-08-25 Sanyo Electric Co., Ltd. Automatic focusing method according to light flickering for videocamera
EP0556783A3 (en) * 1992-02-19 1994-01-19 Sanyo Electric Co
US5430483A (en) * 1992-02-19 1995-07-04 Sanyo Electric Co., Ltd. Automatic focusing apparatus having an improved apparatus for achieving an in-focus lens position
JP2006034075A (en) * 2004-07-21 2006-02-02 Tempearl Ind Co Ltd Distribution switchboard
JP2008083338A (en) * 2006-09-27 2008-04-10 Fujitsu Ltd Optical zoom correction imaging apparatus by af detection
JP2011027184A (en) * 2009-07-27 2011-02-10 Sadataka Ichimaru Corner fitting for assembling type steel shelf and method of attaching corner fitting
JP4647697B2 (en) * 2009-07-27 2011-03-09 禎隆 一丸 Corner brackets for assembling steel shelves and methods for attaching corner brackets
JP2020166197A (en) * 2019-03-29 2020-10-08 キヤノン株式会社 Focus detection device, and control method of the same

Similar Documents

Publication Publication Date Title
US20110080494A1 (en) Imaging apparatus detecting foreign object adhering to lens
JP6906950B2 (en) Imaging device, its control method, program and recording medium
US20150358552A1 (en) Image combining apparatus, image combining system, and image combining method
US9615031B2 (en) Imaging device and scene determination method
JP2010074484A (en) Image capturing apparatus
US20180241946A1 (en) Image processing apparatus, imaging apparatus, and method for controlling image processing apparatus
US20020012063A1 (en) Apparatus for automatically detecting focus and camera equipped with automatic focus detecting apparatus
JP5106283B2 (en) Video camera
JPH0360580A (en) Automatic focus camera
US11330192B2 (en) Acquisition method, computer readable recording medium and image apparatus
JP2721459B2 (en) Moving image tracking cursor generation circuit
JP5818451B2 (en) Imaging apparatus and control method
JPH0396178A (en) Automatic focus device
JP2877379B2 (en) Auto focus camera
JPH0373682A (en) Focusing controller
JP2010286577A (en) Electronic camera
JPS63203068A (en) Automatic focusing video camera
JPH04172779A (en) Automatic focusing device
JP2007166142A (en) Imaging apparatus
JPH0370273A (en) Autofocus camera
JPS63203067A (en) Automatic focusing video camera
JP2762786B2 (en) Imaging device
JPH01175373A (en) Focus control circuit
JPH06311416A (en) Panning detector
JPH0243397B2 (en)