JPH0360409B2 - - Google Patents

Info

Publication number
JPH0360409B2
JPH0360409B2 JP58093648A JP9364883A JPH0360409B2 JP H0360409 B2 JPH0360409 B2 JP H0360409B2 JP 58093648 A JP58093648 A JP 58093648A JP 9364883 A JP9364883 A JP 9364883A JP H0360409 B2 JPH0360409 B2 JP H0360409B2
Authority
JP
Japan
Prior art keywords
group
lens
positive
refractive power
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58093648A
Other languages
Japanese (ja)
Other versions
JPS59219710A (en
Inventor
Kyotaka Inatome
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP58093648A priority Critical patent/JPS59219710A/en
Priority to US06/612,069 priority patent/US4576445A/en
Publication of JPS59219710A publication Critical patent/JPS59219710A/en
Publication of JPH0360409B2 publication Critical patent/JPH0360409B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144109Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +--+

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は標準域を挾んで広角から望遠にわたる
いわゆるスタンダードズームレンズに関する。 従来より発散性レンズ群が先行する2群ズーム
レンズが広角ズームレンズとして用いられている
が、このタイプでは、前玉径を小さくすること、
また広角端での収差補正には有利であるが望遠ま
で含む3倍程度以上のズーム比を有する構成とす
ると発散レンズ群による球面収差、コマ収差など
が残存収差として残り望遠側に悪影響を及ぼすた
め高倍ズームレンズには不向きである。 一方、周斂性レンズ群が先行する3群あるいは
4群ズームレンズでは前玉径を小さくしておくた
めにズームレンズの各群の屈折力を強め、移動量
を小さくしなくてはならない。しかし、この場合
にはズーミングによる収差変動が大きくなり歪曲
収差、非点収差、そして球面収差を全ズーミング
域において小さく押えることは困難であつた。 正負正の3群構成ズームレンズ、あるいは正負
正正の4群構成ズームレンズでは屈折力を強める
ことでコンパクトなズームレンズを実現しようと
すると負レンズ群の屈折力が極めて強くなるため
上記の欠点は特に顕著に現われる。 その点正負負正の4群構成ズームレンズにおい
ては、屈折力が正レンズ群、負レンズ群の各2組
に配分されているため、各群の屈折力を強めコン
パクト化を計つた時に屈折力の強い群を避けるこ
とができる、上記欠点を軽減できる。このように
スタンダードズームレンズにおいて正負負正の4
群構成を採用したものには、特開昭49−76540号、
特開昭53−97451号、特開昭55−121418号、特開
昭56−48607号などがある。しかしながら各群の
屈折力の負担が軽減されたとはいえ、ズーミング
による収差変動は依然残存し、非点収差、特に歪
曲収差の変動も依然大きく、一方、前玉径もコン
パクトと表現できる程には縮小しにくいという欠
点を留めている。この欠点はスタンダードズーム
レンズの中でも広角域を含め望遠側にまで及ぶ高
倍率ズームレンズではさらに顕著になる。 本発明はこれらの欠点を解決し、前玉径を縮小
しレンズ全体の形状のコンパクト化と高性能化と
を共に実現したものである。 本発明は基本的には前述したごとき物体から正
負負正の4群構成を採ることで2つの正レンズ群
と2つの負レンズ群とにそれぞれ屈折力を配分し
たうえで各群の屈折力を強め無理のないパワー配
分にし、次に述べるズーム方式を採つた。 物体側から正負負正の4群からなるズームレン
ズの従来のズーム方式を第1図に、また本発明に
よるズーム方式を第2図にそれぞれ示したが、図
から明らかなように、従来光軸上を移動すること
で変倍系を成していた最も屈折力の強い負屈折力
の第2群G2を固定群としたことを大きな特徴と
している。そしてフオーカシング系として合焦の
ためのみに移動した正屈折力の第1群G1と、リ
レー系として像面に対して固定していた正屈折力
の第4群G4とを広角Wから望遠Tにかけて物体
側へ動かすことで第4群G4にも変倍作用をもた
せ、それによる像面の移動を負屈折力の第3群
G3で補正するというズーム方式である。第4群
G4と第1群G1とが共に物体側に移動することで
変倍系を成すことになり、変倍作用を第2群G2
と第4群G4とに配分できるので高倍ズーム化を
無理なく実現することができる。さらに図示のご
とく第1群、第4群が物体側に移動するからこの
ズーム方式では最前レンズ面から像面までの全長
が変化する。この全長の変化は広角W側から望遠
T側にかけて大きくなる方向である。つまり望遠
T側で全長が長くなるので、高倍ズーム化によつ
ても、望遠端で端遠比のかかり過ぎを軽減でき
る。このことは望遠端で無理な望遠比がかかるこ
とによる収差補正の困難化を引き起こすことな
く、収差補正上の利点となる。まき、本発明によ
るズーム方式においては絞りがズーミングにおい
て第3群と一体になつて物体側へ移動するので従
来方式に比べこの点でも前玉径の縮小に貢献でき
る。一方、屈折力の強い第2群G2を固定できさ
らに第1群G1と第4群G4を物体側へ単調に動か
すため簡単な機構で構成できるので精度を充分に
確保することができる。 上述のごとき変倍のための各群の移動方式を有
しつつ、本発明によるズームレンズにおいては第
1群の焦点距離をf1、第2群の焦点距離をf2、第
3群の焦点距離をf3、第4群の焦点距離をf4とす
るとき (1) 2.7<f1/−f2≦3.0 (2) 3.2<f3/f2<3.9 (3) 1.3<f4/−f2<1.7 の各条件を満足することがコンパクト化と収差補
正上必要である。 条件式(1)において下限値を越えると、第1群の
屈折力が相対的に強くなり大きな角度で入射する
光線により発生する非点収差の補正が困難にな
り、またズーミングによる球面収差の変動が大き
くなつてしまう。逆に上限値を越えてしまうと、
ズーミングによる非点収差と球面収差の補正には
有利であるが全長が増大し主光線の第1群を通る
位置が光軸から離れ、またフオーカシングによる
繰出量も大きくなり前玉径の増大につながる。条
件式(2)においては下限値より小さくなると全長、
前玉径は小さくできるが望遠側での第2群と第3
群の主点間隔が狭くなると同時にペツツバール和
が負に動く。逆に上限値より大きくなると第3群
と第4群の間隔が狭くなり、また全長の増大と主
光線が光軸から離れることで前玉径の増大が避け
られない条件式(3)においては下限値を越えると全
長は短かくなるが第3群と第4群の主点間隔が小
さくなり望遠側で両群が機械的に干渉を起こすこ
とになる一方、上限値を越えると全長の増大と同
時にペツツバール和が急激に負に落ち込む。 上記の条件式を満たすズームレンズで、かつズ
ーム比を3倍程度にすれば、変倍による像面移動
を補正する第3群の動きは第1群、第4群の移動
方向と同じく物体側に単調に動くため、カム機構
上さらに簡単になると考えらえ、製造上容易にな
り、ひいては高精度を維持するのに有利である。 なお、第1群、第4群を共に物体側へ動かすわ
けであるが、両群の関係を記述する関数は機構的
あるいは収差補正上、様々にとることができる。
もし各群の構造を工夫することで収差補正が充分
に達成できるならばこの関数は簡単なもの、例え
ば定数をとれば機構的にさらに簡単になる。さら
にリンク定数を1に、つまり、第1群と第4群を
一体として動かすと、構造を簡略化できさらに精
度を高めることができる。 前述のごとき本発明の基本構成において、各群
は具体的に以下のように構成されている。 正屈折力の第1群G1は物体側より順に貼り合
わせ正レンズと正レンズとの2成分からなり、最
終メンスカスレンズの焦点距離をf13、第1群の
合成焦点距離をf1としたときに (4) 1.1<f13/f1<1.6 の条件を満足することが望ましい。貼り合わせレ
ンズは像側の曲率のゆるやかな正レンズとし最終
正レンズを物体側に凸のメニスカス形状にするこ
とで、各レンズに光軸から離れた位置で入射する
光線が強く屈折されることがなく高次の球面収差
が発生しにくくしている。条件式(4)において下限
値を越すと像側メニスカス正レンズの屈折力が強
くなり、ズーミングによる球面収差と非点収差の
変動が大きくなり、収差補正が困難となる。逆に
上限を越えると貼り合わせレンズの屈折力が強く
なり前玉径の増大と共に高次収差が発生し、すな
おな収差補正ができなくなる。 負屈折力の第2群G2は物体側に凸の負メニス
カスレンズとして屈折力の負の貼り合わせレン
ズ、物体側に凸の正メニスカスレンズの3成分か
ら成り、曲率半径を第1群側から順にr6、r7、…
…、r12、とし貼り合わせレンズを構成する正、
負のレンズの焦点距離をそれぞれfa、fbアツベ数
をνa、νb、合成の焦点距離をfabとするとき (5) −2.0≦r7+r6/r7−r6≦−1.0 (6) −0.1<fab(1/faa+1/fbb)<−0.01 (7) 3.0<r12+r11/r12−r11<20.0 の条件を満足することが望ましい。条件式(5)は第
2群中最も物体側の負メニスカスレンズのベンデ
イングの強さを規定するものである。 第1群を通つた周辺光は第2群に大きな角度で
入射し大きく屈折される。このため条件式(5)を満
足しない場合は高次の収差発生の影響で非点収差
の補正が困難になる。またズーミングによる球面
収差の変動の補正が難しくなりコンパクト化にお
いて支障をきたす。条件式(6)はコンパクト化い伴
い強い曲率をもつた各面から発生する色収差、特
に倍率の色収差を有効にかつ無理なく補正するた
めに欠かせないものである。条件式(7)は望遠側で
の球面収差を補正する上で必要な正メニスカスレ
ンズのベンデイングの強さを規定したものであ
る。 負屈折力の第3群G3は互いに貼り合わされた
両凹レンズと両凸レンズから成り、曲率半径を、
第2群側より順にr13、r14、r15としたとき (8) 1.5<r15+r13/r15−r13<4.0 の条件を満足することが望ましい。第3群として
の貼合せ負レンズのベンテイングを規定するこの
条件式(8)を満足することでズーミングによる球面
収差の変動とコマ収差の対称性を確保することが
できる。 正屈折力の第4群G4は物体側より順に両凸レ
ンズと色消のための貼り合わせ正レンズそして両
凸レンズの3成分から成る合成で正の前群、続い
て両凹レンズと正レンズ、屈折力が正の貼り合わ
せレンズの3成分から成る合成で負の後群とから
成る。 前群の貼り合わせ面の曲率をr19、その前後の
正レンズと負レンズの屈折率をそれぞれn11、n12
前群最後の正レンズの曲率を物体側から順にr21
r22とするとき (9) 0.002<n11+n12/r19<0.02 (10) 0.4<r22+r21/r22−r21<1.0 の条件式を満足することが望ましい。条件式(9)は
貼合せ面の屈折力を表わす量であり、この条件を
満たすことでコマ収差と同時に色収差をバランス
させて補正できる。条件式の範囲外ではコマ収差
と色の球面収差を同時に補正することができなく
なる。条件式(10)は前群最後の正レンズのベンデイ
ングの強さに関する規定であり、ズーミングによ
る球面収差の変動を補正する上で有効であり、特
に望遠側での開放F値を明るくする場合に役だつ
後群の物体側負レンズの曲率半径を順次r23、r24
厚さをdとし、像側貼り合わせ正レンズの正レン
ズ、負レンズの屈折率をそれぞれn16、n17とし貼
り合わせ面の曲率半径をr28としたときに (11) 0.08<d/f4 (12) −0.9<r24+r23/r24−r23<−0.4 (13) 0.002<n16−n17/r28<0.02 の条件式を満足することが望ましい。条件式
(11)を満たすことで球面収差の改善を計り、条
件式(12)は後群の物体側負レンズのベンデイン
グの強さを規定するもので上記(12)式を満足し
ないと非点収差とコマ収差をバランスよく補正す
ることが困難となる条件式(13)は最終貼り合わ
せ面の面パワーを規定しコマ収差を補正する上で
望ましい。 本発明においてはズーム比3倍程度からそれ以
上の高倍化が可能であるが、実施例としては、高
精度を確保するため前述したように、補正系をな
す第3群がズーミングにおいて常に第1群と第4
群の動きと同じ方向であるようなズーミング範囲
を採用した。また第1群と第4群の関係は常に
1:1を取る状況、つまりリンク定数として1を
採ることで移動の簡便化を計つた。 以下に本発明による3つの実施例の諸元を示す
が、各諸元表中において添数字は物体側からの順
序を示しており、屈折率はd線(λ=587.6nm)
に対する値である。
The present invention relates to a so-called standard zoom lens that spans the standard range from wide-angle to telephoto. Traditionally, a two-group zoom lens with a diverging lens group in front has been used as a wide-angle zoom lens.
In addition, although it is advantageous for aberration correction at the wide-angle end, if the configuration has a zoom ratio of about 3x or more, including up to telephoto, spherical aberration and coma aberration due to the diverging lens group will remain as residual aberrations and have a negative impact on the telephoto end. It is not suitable for high-power zoom lenses. On the other hand, in a three-group or four-group zoom lens in which a periphery lens group precedes the lens group, in order to keep the diameter of the front lens small, the refractive power of each group of the zoom lens must be strengthened and the amount of movement must be reduced. However, in this case, aberration fluctuations due to zooming become large, making it difficult to keep distortion, astigmatism, and spherical aberration small over the entire zooming range. If you try to create a compact zoom lens by increasing the refractive power of a zoom lens with a 3-group configuration of positive and negative lenses, or a zoom lens with a 4-group configuration of positive, negative, and positive lenses, the refractive power of the negative lens group will become extremely strong, so the above drawbacks will not occur. Especially noticeable. On the other hand, in a zoom lens with a four-group configuration of positive, negative, negative, and positive, the refractive power is distributed to two sets each of the positive lens group and the negative lens group. strong groups can be avoided, and the above disadvantages can be alleviated. In this way, in a standard zoom lens, there are four
For those that adopt the group structure, Japanese Patent Application Laid-open No. 49-76540,
These include JP-A-53-97451, JP-A-55-121418, and JP-A-56-48607. However, even though the burden on the refractive power of each group has been reduced, aberration fluctuations due to zooming still remain, astigmatism, especially distortion, fluctuations are still large, and the front lens diameter is still not large enough to be described as compact. The drawback is that it is difficult to downsize. This shortcoming is even more noticeable with high-power zoom lenses that extend from the wide-angle range to the telephoto end, even among standard zoom lenses. The present invention solves these drawbacks, reduces the diameter of the front lens, and achieves both a more compact lens overall shape and higher performance. Basically, the present invention adopts a four-group configuration of positive, negative, negative, and positive from the above-mentioned object, distributes the refractive power to two positive lens groups and two negative lens groups, and then adjusts the refractive power of each group. We created a strong and reasonable power distribution and adopted the zoom method described below. The conventional zoom system of a zoom lens consisting of four groups (positive, negative, negative, positive) from the object side is shown in Fig. 1, and the zoom system according to the present invention is shown in Fig. 2.As is clear from the figures, it is clear that the conventional optical axis A major feature is that the second group G2 , which has negative refractive power and has the strongest refractive power, is now a fixed group, which was used to form a variable magnification system by moving above. Then, the first group G1 with positive refractive power, which was moved only for focusing as a focusing system, and the fourth group G4 with positive refractive power, which was fixed relative to the image plane as a relay system, were moved from wide-angle W to telephoto. By moving it toward the object side over T, the fourth group G 4 also has a variable magnification effect, and the resulting movement of the image plane is controlled by the third group with negative refracting power.
It is a zoom method that uses G 3 to compensate. 4th group
By moving both G 4 and the first group G 1 toward the object side, a variable power system is formed, and the variable power effect is transferred to the second group G 2
and the fourth group G4 , it is possible to easily achieve high-power zooming. Furthermore, as shown in the figure, since the first and fourth groups move toward the object side, the total length from the front lens surface to the image surface changes in this zoom system. This change in overall length increases from the wide-angle W side to the telephoto T side. In other words, since the total length becomes longer on the telephoto T side, it is possible to reduce excessive end ratio at the telephoto end even when zooming at a high magnification. This is advantageous in correcting aberrations without making it difficult to correct aberrations due to an unreasonable telephoto ratio at the telephoto end. However, in the zoom system according to the present invention, the diaphragm moves toward the object side together with the third group during zooming, so this also contributes to reducing the diameter of the front lens compared to the conventional system. On the other hand, since the second group G2 , which has a strong refractive power, can be fixed and the first group G1 and fourth group G4 can be moved monotonically toward the object side, it can be configured with a simple mechanism, so sufficient accuracy can be ensured. . In the zoom lens according to the present invention, the focal length of the first group is f 1 , the focal length of the second group is f 2 , and the focal length of the third group is When the distance is f 3 and the focal length of the fourth group is f 4 , (1) 2.7<f 1 /−f 2 ≦3.0 (2) 3.2<f 3 /f 2 <3.9 (3) 1.3<f 4 / It is necessary to satisfy the conditions −f 2 <1.7 for compactness and aberration correction. If the lower limit of conditional expression (1) is exceeded, the refractive power of the first group becomes relatively strong, making it difficult to correct astigmatism caused by light rays incident at a large angle, and fluctuations in spherical aberration due to zooming. becomes larger. Conversely, if the upper limit is exceeded,
Although it is advantageous for correcting astigmatism and spherical aberration due to zooming, the overall length increases, the position where the principal ray passes through the first group moves away from the optical axis, and the amount of extension due to focusing also increases, leading to an increase in the diameter of the front lens. . In conditional expression (2), if the total length is smaller than the lower limit,
The front lens diameter can be made smaller, but the 2nd and 3rd groups on the telephoto side
As the interval between principal points of the group becomes narrower, the Petzval sum becomes negative. On the other hand, when the upper limit is exceeded, the distance between the third and fourth groups becomes narrower, and in conditional expression (3), the front lens diameter inevitably increases due to the increase in overall length and the separation of the chief ray from the optical axis. If the lower limit is exceeded, the overall length will be shortened, but the distance between the principal points of the 3rd and 4th groups will become smaller, causing mechanical interference between the two groups on the telephoto side.On the other hand, if the upper limit is exceeded, the overall length will increase. At the same time, the Petzval sum suddenly drops to negative. If you use a zoom lens that satisfies the above condition and set the zoom ratio to about 3x, the movement of the third group to correct the image plane movement due to zooming will be on the object side in the same direction as the movement of the first and fourth groups. Since the cam mechanism moves monotonically, the cam mechanism is considered to be simpler, which facilitates manufacturing and is advantageous in maintaining high accuracy. Although both the first group and the fourth group are moved toward the object side, various functions can be used to describe the relationship between the two groups mechanically or in terms of aberration correction.
If sufficient aberration correction can be achieved by devising the structure of each group, then this function can be made simpler, for example, by taking a constant, which will further simplify the mechanism. Further, by setting the link constant to 1, that is, by moving the first group and the fourth group as one unit, the structure can be simplified and the accuracy can be further improved. In the basic configuration of the present invention as described above, each group is specifically configured as follows. The first group G 1 with positive refractive power consists of two components, a positive lens and a positive lens, which are bonded together in order from the object side, and the focal length of the final Menscus lens is f 13 and the combined focal length of the first group is f 1 . It is desirable to satisfy the following condition (4): 1.1<f 13 /f 1 <1.6. The laminated lens is a positive lens with a gentle curvature on the image side, and the final positive lens has a meniscus shape convex toward the object side, so that light rays that enter each lens at a position far from the optical axis are strongly refracted. This makes it difficult for higher-order spherical aberration to occur. When the lower limit of conditional expression (4) is exceeded, the refractive power of the image-side meniscus positive lens becomes strong, and fluctuations in spherical aberration and astigmatism due to zooming become large, making it difficult to correct aberrations. On the other hand, if the upper limit is exceeded, the refractive power of the bonded lens becomes strong, the diameter of the front lens increases, and higher-order aberrations occur, making it impossible to correct aberrations properly. The second group G2 with negative refractive power is composed of three components: a negative meniscus lens with a negative refractive power convex to the object side, and a positive meniscus lens convex to the object side, and the radius of curvature is changed from the first group side. In order, r 6 , r 7 ,...
..., r 12 , and the positive constituting the bonded lens,
When the focal length of the negative lens is f a , the f b Atsube numbers are ν a and ν b , and the combined focal length is f ab (5) −2.0≦r 7 +r 6 /r 7 −r 6 ≦− 1.0 (6) −0.1<f ab (1/f aa +1/f bb )<−0.01 (7) 3.0<r 12 +r 11 /r 12 −r 11 <20.0 is satisfied. desirable. Conditional expression (5) defines the bending strength of the negative meniscus lens closest to the object in the second group. Ambient light passing through the first group enters the second group at a large angle and is largely refracted. Therefore, if conditional expression (5) is not satisfied, it becomes difficult to correct astigmatism due to the influence of higher-order aberrations. Furthermore, it becomes difficult to correct fluctuations in spherical aberration due to zooming, which poses a problem in making the lens compact. Conditional expression (6) is indispensable for effectively and reasonably correcting chromatic aberrations, especially chromatic aberrations of magnification, which occur from surfaces with strong curvature due to compactness. Conditional expression (7) defines the bending strength of the positive meniscus lens necessary to correct spherical aberration on the telephoto side. The third group G3 with negative refractive power consists of a biconcave lens and a biconvex lens bonded together, and has a radius of curvature of
When r 13 , r 14 , and r 15 are set in order from the second group side, it is desirable to satisfy the following condition (8): 1.5<r 15 +r 13 /r 15 −r 13 <4.0. By satisfying conditional expression (8) that defines the bending of the bonded negative lens as the third group, it is possible to ensure the symmetry of fluctuations in spherical aberration and coma aberration due to zooming. The fourth group G 4 with positive refractive power is composed of three components in order from the object side: a biconvex lens, a bonded positive lens for achromatization, and a biconvex lens.The positive front group is followed by a biconcave lens, a positive lens, and a refractive lens. It consists of a composite of three components of a bonded lens with a positive force and a rear group with a negative force. The curvature of the bonding surface of the front group is r 19 , and the refractive index of the positive and negative lenses before and after it is n 11 and n 12 , respectively.
The curvature of the last positive lens in the front group is r 21 from the object side,
When r 22 , it is desirable to satisfy the conditional expression (9) 0.002<n 11 +n 12 /r 19 <0.02 (10) 0.4<r 22 +r 21 /r 22 −r 21 <1.0. Conditional expression (9) is a quantity representing the refractive power of the bonded surfaces, and by satisfying this condition, comatic aberration and chromatic aberration can be balanced and corrected at the same time. Outside the range of the conditional expression, comatic aberration and chromatic spherical aberration cannot be corrected at the same time. Conditional expression (10) is a regulation regarding the bending strength of the last positive lens in the front group, and is effective in correcting fluctuations in spherical aberration due to zooming, especially when increasing the aperture f-number at the telephoto end. The radius of curvature of the negative lens on the object side of the rear group is sequentially r 23 and r 24
When the thickness is d, the refractive index of the positive lens and negative lens of the image side bonded positive lens are n 16 and n 17 respectively, and the radius of curvature of the bonded surface is r 28 , (11) 0.08<d/f 4 (12) −0.9<r 24 +r 23 /r 24 −r 23 <−0.4 (13) It is desirable to satisfy the following conditional expression: 0.002<n 16 −n 17 /r 28 <0.02. Spherical aberration is improved by satisfying conditional expression (11), and conditional expression (12) specifies the bending strength of the object side negative lens in the rear group, and if the above expression (12) is not satisfied, astigmatism occurs. Conditional expression (13), which makes it difficult to correct aberrations and coma in a well-balanced manner, is desirable for defining the surface power of the final bonded surface and correcting coma. In the present invention, it is possible to increase the zoom ratio from about 3 times to more, but in order to ensure high accuracy, in the embodiment, as described above, the third group forming the correction system is always set to the first group during zooming. group and fourth
We adopted a zooming range that was in the same direction as the movement of the group. Furthermore, the relationship between the first group and the fourth group is always 1:1, that is, the link constant is set to 1 to simplify movement. The specifications of three embodiments according to the present invention are shown below. In each specification table, the subscript number indicates the order from the object side, and the refractive index is for the d-line (λ = 587.6 nm).
is the value for

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 上記の各実施例はいずれも35mm一眼レフカメラ
用のズームレンズとして広角から準望遠領域まで
をカバーする焦点距離f=36〜102mmで約3倍の
ズーム比を有し、第1実施例、第2実施例はFメ
ンバーが3.4〜4.6、第3実施例においては全域で
ほぼ3.5を有するものである。さらに、前玉径、
全長とも非常にコンパクトになつておりレンズ系
の最前部に装着されるフイルターサイズは第1実
施例、第2実施例では52mmと小さく、第3実施例
ではFナンバーを全域で3.5にしたにもかかわら
ず62mmに納めてある。 第1〜第3実施例のレンズ構成図をそれぞれ第
3図、第4図、第5図に示した。また第1〜第3
実施例の収差図をそれぞれ第6図、第7図、第8
図に示した。撮影距離がいずれも無限遠の収差図
であり、球面収差Sph、非点収差Ast、歪曲収差
Disを最短、中間、最長の各焦点距離についてそ
れぞれ示した。各収差図から各実施例とも35mm一
眼レフカメラ用ズームレンズとして前玉径が非常
に小さく構成されていながら、諸収差とも十分良
好に補正されていることが明らかである。 以上述べたごとく、本発明によれば広角から望
遠までの広い変倍領域を有しつつも前玉径がかな
り小型でレンズ全体の形状もコンパクトであり、
しかも変倍領域全体にわたつて常に優れた結像性
能を有するズームレンズが達成される。
[Table] Each of the above embodiments is a zoom lens for a 35mm single-lens reflex camera, and has a focal length of f = 36 to 102mm, which covers the wide-angle to semi-telephoto range, and a zoom ratio of about 3 times. For example, in the second embodiment, the F member is 3.4 to 4.6, and in the third embodiment, it is approximately 3.5 over the entire range. Furthermore, the front ball diameter,
The overall length is extremely compact, and the filter size installed at the front of the lens system is as small as 52mm in the first and second embodiments, and even though the F number is set to 3.5 over the entire area in the third embodiment. Regardless, it is set at 62mm. Lens configuration diagrams of the first to third embodiments are shown in FIGS. 3, 4, and 5, respectively. Also, 1st to 3rd
The aberration diagrams of the examples are shown in Fig. 6, Fig. 7, and Fig. 8, respectively.
Shown in the figure. All aberration diagrams are taken at infinite shooting distance, and show spherical aberration Sph, astigmatism Ast, and distortion aberration.
Dis is shown for each of the shortest, middle, and longest focal lengths. It is clear from the aberration diagrams that each example has a very small front lens diameter as a zoom lens for a 35 mm single-lens reflex camera, yet all aberrations are sufficiently well corrected. As described above, although the present invention has a wide range of variable power from wide-angle to telephoto, the diameter of the front lens is quite small and the overall shape of the lens is compact.
Moreover, a zoom lens that always has excellent imaging performance over the entire zoom range can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の4群構成ズームレンズの移動軌
跡、第2図は本発明に拠るズームレンズの移動軌
跡を示した図、第3図、第4図、第5図はそれぞ
れ第1〜第3実施例のレンズ構成図、第6図、第
7図、第8図には各実施例の無限遠における諸収
差図である。 〔主要部分の符号の説明〕、G1……第1群、G2
……第2群、G3……第3群、G4……第4群。
Fig. 1 shows the movement trajectory of a conventional zoom lens with four groups, Fig. 2 shows the movement trajectory of the zoom lens according to the present invention, and Figs. The lens configuration diagrams of the three embodiments, and FIGS. 6, 7, and 8 are diagrams of various aberrations at infinity for each embodiment. [Explanation of symbols of main parts], G 1 ... 1st group, G 2
... 2nd group, G 3 ... 3rd group, G 4 ... 4th group.

Claims (1)

【特許請求の範囲】 1 物体側より順に、正屈折力の第1レンズ群、
負屈折力の第2レンズ群、同じく負屈折力の第3
レンズ群、正屈折力の第4レンズ群を有し、広角
から望遠への変倍に際して、前記第2群は像面に
対して固定され、前記第1群と前記第4群とが共
に物体側に移動するとともに、前記第3群が他の
群とは独立に移動し、該第1、第2、第3、第4
群各々の焦点距離をf1、f2、f3、f4とするとき、 (1) 2.7<f1/−f2≦3.0 (2) 3.2<f3/f2<3.9 (3) 1.3<f4/−f2<1.7 の各条件を満足することを特徴とするズームレン
ズ。
[Claims] 1. In order from the object side, a first lens group with positive refractive power;
The second lens group has negative refractive power, and the third lens group also has negative refractive power.
The lens group has a fourth lens group with positive refractive power, and when changing magnification from wide-angle to telephoto, the second group is fixed to the image plane, and both the first group and the fourth group are fixed to the image plane. side, the third group moves independently of the other groups, and the first, second, third, fourth
When the focal lengths of each group are f 1 , f 2 , f 3 , f 4 , (1) 2.7<f 1 /−f 2 ≦3.0 (2) 3.2<f 3 /f 2 <3.9 (3) 1.3 A zoom lens that satisfies the following conditions: <f 4 /−f 2 <1.7.
JP58093648A 1983-05-27 1983-05-27 Zoom lens Granted JPS59219710A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58093648A JPS59219710A (en) 1983-05-27 1983-05-27 Zoom lens
US06/612,069 US4576445A (en) 1983-05-27 1984-05-18 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58093648A JPS59219710A (en) 1983-05-27 1983-05-27 Zoom lens

Publications (2)

Publication Number Publication Date
JPS59219710A JPS59219710A (en) 1984-12-11
JPH0360409B2 true JPH0360409B2 (en) 1991-09-13

Family

ID=14088187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58093648A Granted JPS59219710A (en) 1983-05-27 1983-05-27 Zoom lens

Country Status (1)

Country Link
JP (1) JPS59219710A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100616646B1 (en) 2004-12-27 2006-08-28 삼성전기주식회사 Inner Zoom Lens System
CN110297321B (en) 2014-03-27 2021-08-27 株式会社尼康 Zoom lens and image pickup apparatus
JP6511722B2 (en) * 2014-03-27 2019-05-15 株式会社ニコン Variable power optical system and imaging apparatus
JP2020144206A (en) * 2019-03-06 2020-09-10 株式会社タムロン Zoom lens and image capturing device
JP2020144207A (en) * 2019-03-06 2020-09-10 株式会社タムロン Zoom lens and image capturing device

Also Published As

Publication number Publication date
JPS59219710A (en) 1984-12-11

Similar Documents

Publication Publication Date Title
US6308011B1 (en) Zoom lens and photographic apparatus having the same
JP3958489B2 (en) Zoom lens
JPH083580B2 (en) Compact high-magnification zoom lens
JPH0476511A (en) Small-sized three-group zoom lens
JPH05173071A (en) Wide angle zoom lens
JPH0527166A (en) Two-group zoom lens
JPH0566348A (en) Variable power lens with short overall length
JPH0668575B2 (en) Small zoom lens
JP3412908B2 (en) Zoom lens
JPH0833514B2 (en) Compact high-magnification zoom lens
JP2001228396A (en) Achromatic lens and zoom lens using the same
JPH0235965B2 (en)
JP3245452B2 (en) Small three-group zoom lens
US4591244A (en) Zoom lens
JPH0727976A (en) Small-sized two-group zoom lens system
JPH05281470A (en) Small-sized two-group zoom lens
JP2676400B2 (en) High magnification compact zoom lens
JPH06175026A (en) Zoom lens including wide angle range
US5831773A (en) Zoom lens
JPH0634883A (en) Super wide-angle variable power zoom lens
JPH0360409B2 (en)
JPH095629A (en) High variable power zoom lens
JP3423508B2 (en) Rear focus zoom lens
JPH0360410B2 (en)
JPS6116962B2 (en)