JPH0360407B2 - - Google Patents

Info

Publication number
JPH0360407B2
JPH0360407B2 JP58043242A JP4324283A JPH0360407B2 JP H0360407 B2 JPH0360407 B2 JP H0360407B2 JP 58043242 A JP58043242 A JP 58043242A JP 4324283 A JP4324283 A JP 4324283A JP H0360407 B2 JPH0360407 B2 JP H0360407B2
Authority
JP
Japan
Prior art keywords
lens
object side
positive
component
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58043242A
Other languages
Japanese (ja)
Other versions
JPS59181314A (en
Inventor
Hiroshi Myamae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP58043242A priority Critical patent/JPS59181314A/en
Publication of JPS59181314A publication Critical patent/JPS59181314A/en
Publication of JPH0360407B2 publication Critical patent/JPH0360407B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144101Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +---

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、プラスチツクレンズを用いたズー
ムレンズ、特にVTR用小型カラーカメラに用い
るに適した高性能でコンパクトなズームレンズに
関す。 (従来技術) 物体側から順に、フオーカシング機能をもつ正
の第1レンズ成分、ズーミングと共に移動して主
として変倍を行う負の第2レンズ成分、ズーミン
グに伴なう移動により主に像位置を一定に保つ機
能を持つ負の第3レンズ成分、マスターレンズと
して像面上への結像機能を持つ正の第4レンズ成
分からなるズームレンズは公知である。 一方、ズームレンズにプラスチツクレンズを用
いることは、レンズ系全体の軽量化及び量産性を
高める上で極めて有効であるとこは明らかである
が、プラスチツクの物性的な制約から次のような
困難があつた。 (1) 透明性の勝れた光学用プラスチツク材料の種
類が限られており光学設計上の自由度がせまく
なる。 (2) 温度による屈折率の変化が無機ガラス材料に
比べて大きく、これを補正することが設計上困
難である。 (3) 上記2つの困難を克服したとしても、従来の
ガラスレンズのみによる設計と同程度或いはそ
れ以上の性能を得ようとすれば、レンズ全系が
大型化し、コンパクト性が損なわれる。 (発明の目的) この発明は、上記公知の正・負・負・正の構成
を持つズームレンズにプラスチツクレンズを使用
し、温度変化による焦点位置の変動を十分小さく
すると共に、併せて従来のズームレンズと同程度
の大きさで、同程度の性能を有するズームレンズ
を得ようとするものである。 (発明の構成) 一般に、光学用プラスチツク材料は温度が上昇
する程その屈折率は低下し、プラスチツクレンズ
の焦点距離は正単レンズの場合は長くなり、負単
レンズの場合はその絶対値が大になる傾向にあ
る。 しかし、このような正負の単レンズを何枚か重
ね、それらの合成屈折力を0に等しくしたとすれ
ば、各レンズの温度による屈折率変化の度合いが
全て等しいと仮定すれば、温度による屈折力の変
化もまた0に等しいことは明らかである。 この発明では、第3レンズ成分と第4レンズ成
分にプラスチツクレンズを計4枚使用している
が、上記の原理をこれらのレンズ間に適用してこ
れらのレンズの屈折力の和を一定値以下にするこ
とによつて全系の温度による焦点位置の変動を抑
えている。勿論現実のズームレンズではプラスチ
ツクレンズが互に離れて配置されており、合成屈
折力も完全に0にはならない場合も多いが、近似
的にこの条件が満されればよい。なお、フオーカ
シングの為の第1レンズ成分にプラスチツクレン
ズを用いた場合には、温度変化による第1成分の
焦点位置の変化の分だけ、第1レンズ成分を前後
に移動するだけ全系の焦点位置を一定位置に維持
できるので、第1レンズ成分に関しては光学設計
上の補正を行う必要はない。 第3、第4レンズ成分へプラスチツクレンズを
導入するに伴い、特に負レンズの屈折率低下の効
果が大きく、全系のペツバール和が減少しがちで
ある。また、色収差が全体に補正不足となる傾向
がある。この発明では特に第4レンズ成分中に低
屈折率低分散のガラスを正レンズに用いることに
よつてこの点を補正している。 このようなズームレンズは、具体的には、物体
側から順に正の焦点距離を持ち、フオーカシング
の行なう為の第1レンズ成分、負の焦点距離を持
ち変倍を行う為の第2レンズ成分、負の焦点距離
を持ち変倍に伴う像面の移動を補正する為の第3
レンズ成分、正の焦点距離を持ちマスターレンズ
成分として変倍中固定される第4レンズ成分の4
つのレンズ成分からなり、第1レンズ成分は物体
側に凸を向けたメニスカス負レンズL1、物体側
に凸を向けた正レンズL2物体側に凸を向けた正
レンズL3の3枚からなり、物体側の2枚は貼合
され、貼合せ正レンズとされることがある。第2
レンズ成分は像側へ凹を向けたメニスカス負レン
ズL4及び両凹レンズL5と物体側に凸を向けた正
レンズL6貼合せた貼合せ負レンズの2群3枚か
らなり、第3レンズ成分は物体側に凹を向けたメ
ニスカス負レンズL71枚からなり、第4レンズ成
分は像側へ凸を向けたメニスカス正レンズL8
両凸レンズL9、両凸レンズL11、両凸レンズL12
像側に凹面を向けた負レンズL13、両凸レンズ
L14、物体側に凸面を向けた正レンズL15の8群8
枚からなり、上記のL7、L8、L11、L13の各レンズ
はプラスチツクレンズであり、 fw:全糸の広角端での焦点距離 fi:物体側から第i番目のレンズの焦点距離 ni:物体側から第i番目のレンズの屈折率 νi:物体側から第i番目のレンズのアツベ数 とするとき −0.22<fw(1/f7+1/f8+1/f11+1/f13)<−
0.18……(1) n10 < 1.5 ……(2) 65 < ν10 ……(3) の条件を満すズームレンズとして構成される。 条件(1)はプラスチツクレンズを用いた為の温度
変化による焦点位置の変化を補償するための条件
であり、上限をこえるとプラスチツクレンズが全
体として正の屈折力を強め、温度の上昇(下降)
時にバツクオーカスが長く(短く)なる方向への
変化が大となる。逆に下限をこえると昇(降)温
時、バツクフオーカスが短く(長く)なる方向へ
の変化が大となる。 条件(2)は従来、比較的高い屈折率を持つガラス
を用いることの多かつた負レンズL7、L13に屈折
率の低いプラスチツクレンズを用いたことに伴う
全系のペツバール和の減少を抑える為の条件であ
る。 条件(3)は正レンズL8、L11、L13をプラスチツク
にしたことに伴い、マスターレンズ系で発生する
軸上の色収差を補正する為の条件で、下限をこえ
ると全変倍域にわたつてアンダーの軸上色収差が
残る。 この発明のズームレンズをVTR小型カラーカ
メラ用として用いる場合、ズーム比が6程度で、
しかもFナンバーが1.4〜1.2にも及ぶ大口径であ
ることが要求される。しかし、上記のように、適
正なペツパール和の維持する為、全体に正レンズ
の屈折率が低下し、これに伴なつて屈折面の曲率
半径が小になり、大口径化しようとすれば特に球
面収差のアンダー化が著しくなるが、プラスチツ
クレンズに球面からの変形量の大きい非球面を用
いることによつてFナンバー1.2にも及ぶ大口径
レンズにおいてもきわめて良好な収差補正が可能
となる。 このため、副次的に以下の条件を満すことが望
ましい。 非球面の形状を次式で表わす。 ここでXは非球面の頂点を原点とし、光軸に沿
つて物体側から像側に向かう座標で、hは同様に
非球面の頂点を原点とし、X軸と垂直な方向の座
標であり、cはこの面の近軸曲率を表わしてい
る。 この式を展開してhの6乗の項までとると、次
のように変形できる。 X=h2/2r+h4/8r3+h6/16r5+(k/8r3+A4) h4+(2k+k2/16r5+A6)h6 ここでr=1/cは面の近軸曲率半径である。式 中第4項、第5項は半径rをもつ球面からの変形
量を表わし、それぞれこの面で発生する3次収
差、5次収差と密接な関係を持つ。特に3次収差
に関しては三次非球面数を ≡(N′−N){8A4+k/r3} で定義した場合、この面で発生する球面収差Sコ
マ収差C、非点収差A及び歪曲収差Dはそれぞれ ΔS=h4 ΔC=h3 ΔA=h2 2 ΔD=h3 だけの変化を受けることが知られている。ここで
h及びは各々近軸軸上光線と近軸主光線がこの
非球面を通る高さを示している。 この発明のズームレンズは、レンズL11の物体
側の面に非球面を用いているが、この面が絞りに
非常に近い位置にある為、非球面を用いた効果は
主として球面収差Sに表われる。また、レンズ
L13の像側の面においては、h、共に正で比較
的大きな値をもつ為、この面を非球面化する効果
は主としてコマ収差C及び非点収差Aに表われ
る。 そして11 :物体側から第11番目のレンズL11の物体側の
面の3次非球面係数13 :物体側から第13番目のレンズL13の像側の面
の3次非球面係数 f〓:第2レンズ成分の焦点距離とするとき −0.2<f3 w 11<0……(4) 0<f3 w 13<0.1……(5) 1.2<|f〓|/fw<1.4……(6) の条件を満すことが望ましい。 条件(4)は上述のように全系のペツバール和を良
好に保つために条件(2)を導入したことに伴ない、
主としてレンズL10で発生するアンダーの球面収
差を補正するための条件で、11<0であるから
ΔS<0となり、球面収差のアンダー化を抑える
効果を有することがわかる。上限をこえると全変
倍域でアンダーの球面収差の発生が著しくなり、
逆に下限をこえると球面収差の補正が過剰とな
り、Fナンバー1.2にも及ぶ大口径とすることが
出来ない。 条件(5)はレンズL13としてアツベ数、屈折率と
もに低いプラスチツクレンズを用いたことに伴い
必要となる条件で、レンズL13にプラスチツクを
用いながら色収差の補正及び全系のペツバール和
を適当な値に維持しようとすると、レンズL13
像側の面の曲率が強くなる傾向があり、全変倍域
において非点隔差・コマ収差の発生が著しくな
る。条件(5)はこれを抑えるための条件で、下限を
こえると子午的像面が大きくオーバーに傾き、外
向性のコマ収差の発生が著しくなる。逆に上限を
こえると補正過剰になり、子午的像面、コマ収差
が共にアンダーになる。 条件(6)はレンズ全系をコンパクトにするための
基本的条件であり、上限をこえると第2レンズ成
分の移動量が大きくなり、全系をコンパクトに構
成することができなくなる。下限をこえれば負の
屈折力が過剰となり、変倍による収差変動が大き
くなり、高性能なズームレンズを得ることができ
なくなる。 (実施例) 以下この発明の実施例を示す。実施例1及び実
施例2は画面サイズ2/3インチVTR用小型カラー
カメラ用、実施例3及び実施例4は画面サイズ1/
2インチVTR小型カラーカメラ用ズームレンズで
あり、実施例1と実施例3は第1レンズ成分中に
プラスチツクレンズを用いている。各実施例のレ
ンズ断面図を第1図ないし第4図に示し、プラス
チツクレンズは断面のハツチングで示す。表中の
温度による焦点位置変化の値には第1レンズ成分
内のプラスチツクレンズにより焦点変化の効果は
含まれていない。 実施例2では第3面と第5面、実施例3では第
11面、実施例4では第3面、第5面、第12面に非
球面を用いているが、この発明においてこれらの
面は必ずしも非球面である必要はない。 また、実施例3及び4においては、第4レンズ
成分中にローパスフイルターL、Fに等価のガラ
ス板が、全ての実施例にカバーガラスC、G、が
含まれており、収差補正はこれらを含めた全系に
ついて行なわれている。
(Industrial Application Field) The present invention relates to a zoom lens using a plastic lens, particularly a high-performance and compact zoom lens suitable for use in a small color camera for VTR. (Prior art) In order from the object side: a positive first lens component with a focusing function, a negative second lens component that moves with zooming and mainly changes magnification, and a negative second lens component that moves with zooming to mainly keep the image position constant. A zoom lens is known that includes a negative third lens component that has the function of maintaining the image plane, and a positive fourth lens component that has the function of forming an image on the image plane as a master lens. On the other hand, it is clear that using plastic lenses in zoom lenses is extremely effective in reducing the weight of the entire lens system and increasing mass productivity, but due to the physical property limitations of plastics, the following difficulties arise. Ta. (1) The types of optical plastic materials with excellent transparency are limited, and the degree of freedom in optical design is limited. (2) The change in refractive index due to temperature is larger than that of inorganic glass materials, and it is difficult to correct this in terms of design. (3) Even if the above two difficulties are overcome, if an attempt is made to obtain performance equivalent to or better than a conventional design using only glass lenses, the entire lens system will become larger and its compactness will be compromised. (Purpose of the Invention) The present invention uses a plastic lens in the zoom lens having the above-known positive/negative/negative/positive configuration to sufficiently reduce fluctuations in the focal position due to temperature changes, and at the same time, it The objective is to obtain a zoom lens that is about the same size as the lens and has about the same performance. (Structure of the Invention) In general, the refractive index of optical plastic materials decreases as the temperature rises, and the focal length of a plastic lens becomes longer in the case of a positive single lens, and its absolute value increases in the case of a negative single lens. It tends to become. However, if we stack several positive and negative single lenses like this and make their combined refractive power equal to 0, then assuming that the degree of refractive index change due to temperature of each lens is the same, the refraction due to temperature will be It is clear that the change in force is also equal to zero. In this invention, a total of four plastic lenses are used for the third and fourth lens components, and the above principle is applied between these lenses to keep the sum of the refractive powers of these lenses below a certain value. By doing so, fluctuations in the focal position due to the temperature of the entire system are suppressed. Of course, in an actual zoom lens, the plastic lenses are arranged apart from each other, and the composite refractive power is often not completely zero, but it is sufficient that this condition is approximately satisfied. In addition, when a plastic lens is used as the first lens component for focusing, the focal position of the entire system can be changed by moving the first lens component back and forth by the change in the focal position of the first component due to temperature change. can be maintained at a constant position, there is no need to perform optical design correction regarding the first lens component. As plastic lenses are introduced into the third and fourth lens components, the effect of lowering the refractive index of the negative lens is particularly large, and the Petzval sum of the entire system tends to decrease. Additionally, chromatic aberrations tend to be undercorrected overall. In the present invention, this point is particularly corrected by using a glass having a low refractive index and low dispersion as the positive lens in the fourth lens component. Specifically, such a zoom lens includes, in order from the object side, a first lens component that has a positive focal length and is used for focusing, a second lens component that has a negative focal length and is used for zooming, and The third lens has a negative focal length and is used to correct the movement of the image plane due to zooming.
lens component, the fourth lens component 4, which has a positive focal length and is fixed during zooming as a master lens component.
The first lens component is made up of three lenses: a negative meniscus lens L 1 with a convex side facing the object side, a positive lens L 3 with a convex side facing the object side, and a positive lens L 3 with a convex side facing the object side. The two lenses on the object side are sometimes bonded together to form a bonded positive lens. Second
The lens components consist of 3 lenses in 2 groups: a meniscus negative lens L 4 with a concave side facing the image side, a biconcave lens L 5 and a positive lens L 6 with a convex side facing the object side. The component consists of one negative meniscus lens L 7 with a concave side facing the object side, and the fourth lens component is a positive meniscus lens L 8 with a convex side facing the image side.
Biconvex lens L 9 , Biconvex lens L 11 , Biconvex lens L 12 ,
Negative lens L 13 with concave surface facing the image side, biconvex lens
L 14 , positive lens L 15 with convex surface facing the object side, 8 groups 8
Each lens L 7 , L 8 , L 11 , and L 13 above is a plastic lens, f w : focal length at the wide-angle end of all threads f i : of the i-th lens from the object side. Focal length n i : Refractive index of the i-th lens from the object side ν i : Abbe number of the i-th lens from the object side -0.22<fw (1/f 7 +1/f 8 +1/f 11 +1/ f13 )<-
It is configured as a zoom lens that satisfies the following conditions: 0.18...(1) n 10 < 1.5...(2) 65 < ν 10 ...(3). Condition (1) is a condition for compensating for changes in focal position due to temperature changes due to the use of a plastic lens; if the upper limit is exceeded, the plastic lens as a whole will strengthen its positive refractive power, causing a rise (fall) in temperature.
Sometimes there is a large change in the direction of the back orcus becoming longer (shorter). On the other hand, when the lower limit is exceeded, the back focus changes significantly in the direction of becoming shorter (longer) when the temperature rises (falls). Condition (2) is based on the reduction in the Petzval sum of the entire system due to the use of plastic lenses with a low refractive index for the negative lenses L 7 and L 13 , which have conventionally often been made of glass with a relatively high refractive index. This is a condition to suppress it. Condition (3) is a condition for correcting the axial chromatic aberration that occurs in the master lens system due to the positive lenses L 8 , L 11 , and L 13 being made of plastic. Under-axial chromatic aberration remains. When the zoom lens of this invention is used for a VTR small color camera, the zoom ratio is about 6,
Moreover, it is required to have a large aperture with an F number of 1.4 to 1.2. However, as mentioned above, in order to maintain an appropriate Petzpar sum, the refractive index of the positive lens decreases overall, and as a result, the radius of curvature of the refractive surface decreases, especially when trying to increase the aperture. Although the spherical aberration becomes noticeably undervalued, by using an aspherical surface with a large amount of deformation from a spherical surface in the plastic lens, extremely good aberration correction is possible even in a large aperture lens with an F number as high as 1.2. For this reason, it is desirable that the following conditions be satisfied as a secondary condition. The shape of the aspherical surface is expressed by the following equation. Here, X is a coordinate with the apex of the aspherical surface as the origin and moving along the optical axis from the object side to the image side, and h is a coordinate with the apex of the aspherical surface as the origin and in the direction perpendicular to the X axis. c represents the paraxial curvature of this surface. If we expand this equation and take the term h to the 6th power, we can transform it as follows. X=h 2 /2r+h 4 /8r 3 +h 6 /16r 5 + (k/8r 3 +A 4 ) h 4 + (2k+k 2 /16r 5 +A 6 ) h 6 where r=1/c is the paraxial surface It is the radius of curvature. In the formula, the fourth and fifth terms represent the amount of deformation from a spherical surface with radius r, and have a close relationship with the third-order aberration and fifth-order aberration, respectively, occurring on this surface. In particular, regarding third-order aberrations, when the number of third-order aspherical surfaces is defined as ≡(N'-N) {8A 4 +k/r 3 }, the spherical aberration S coma aberration C, astigmatism A and distortion aberration occurring on this surface It is known that D undergoes changes by ΔS=h 4 ΔC=h 3 ΔA=h 2 2 ΔD=h 3 , respectively. Here, h and h indicate the heights at which the paraxial axial ray and the paraxial principal ray pass through this aspheric surface, respectively. The zoom lens of this invention uses an aspherical surface on the object side surface of the lens L11 , but since this surface is located very close to the aperture, the effect of using the aspherical surface is mainly expressed in the spherical aberration S. be exposed. Also, the lens
On the image-side surface of L13 , both h and h have positive and relatively large values, so the effect of making this surface aspherical mainly appears in coma C and astigmatism A. And 11 : The 3rd aspheric coefficient of the object side surface of the 11th lens L 11 from the object side 13 : The 3rd order aspheric coefficient f of the image side surface of the 13th lens L 13 from the object side: When the focal length of the second lens component is −0.2<f 3 w 11 <0...(4) 0<f 3 w 13 <0.1...(5) 1.2<|f〓|/fw<1.4...( 6) It is desirable to satisfy the following conditions. Condition (4) is due to the introduction of condition (2) in order to maintain a good Petzval sum of the entire system as described above.
This condition is mainly for correcting the under spherical aberration that occurs in the lens L 10 , and since 11 <0, ΔS < 0, and it can be seen that it has the effect of suppressing the under spherical aberration. If the upper limit is exceeded, under spherical aberration will occur significantly in the entire zoom range,
On the other hand, if the lower limit is exceeded, the spherical aberration will be overcorrected, making it impossible to achieve a large aperture of up to F number 1.2. Condition (5) is necessary due to the use of a plastic lens with a low Abbe number and low refractive index as the lens L 13 , and it is necessary to correct chromatic aberration and maintain an appropriate Petzval sum for the entire system while using plastic for the lens L 13 . If an attempt is made to maintain this value, the curvature of the image-side surface of the lens L13 tends to become stronger, and the occurrence of astigmatism and coma aberration becomes significant in the entire zoom range. Condition (5) is a condition for suppressing this; if the lower limit is exceeded, the meridional image plane will be greatly excessively tilted, and the occurrence of extroverted comatic aberration will become significant. On the other hand, if the upper limit is exceeded, the correction will be over-corrected and both the meridional image plane and coma will be under-corrected. Condition (6) is a basic condition for making the entire lens system compact; if the upper limit is exceeded, the amount of movement of the second lens component increases, making it impossible to make the entire lens system compact. If the lower limit is exceeded, the negative refractive power becomes excessive, and aberration fluctuations due to zooming become large, making it impossible to obtain a high-performance zoom lens. (Example) Examples of the present invention will be shown below. Examples 1 and 2 are for small color cameras with a screen size of 2/3 inch, and Examples 3 and 4 are for a small color camera with a screen size of 1/3 inch.
This is a zoom lens for a 2-inch VTR compact color camera, and Examples 1 and 3 use a plastic lens in the first lens component. Lens cross-sectional views of each embodiment are shown in FIGS. 1 to 4, and the plastic lens is indicated by hatching in the cross-section. The value of focal position change with temperature in the table does not include the effect of focal position change due to the plastic lens in the first lens component. In Example 2, the third and fifth surfaces, and in Example 3, the third and fifth surfaces.
Although the 11th surface, the 3rd surface, the 5th surface, and the 12th surface in Example 4 are aspherical, these surfaces do not necessarily have to be aspherical in the present invention. Furthermore, in Examples 3 and 4, glass plates equivalent to low-pass filters L and F are included in the fourth lens component, and cover glasses C and G are included in all Examples, and aberration correction is performed using these glass plates. This is done for the entire system including

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 (発明の効果) 上記のように、この発明のズームレンズは、プ
ラスチツクレンズを導入し、レンズ系の軽量化及
び量産性を高めることが出来、しかも従来困難で
あつた温度変化による焦点位置の変化を抑えるこ
とが出来た。その上、大口径化の場合にはプラス
チツクレンズに非球面を用いることによつて収差
曲線図に見るようにF1.2〜1.4に及ぶ大口径であ
るにも拘らず、各種の収差が良く補正されたコン
パクトなズームレンズを得ることが出来たもので
ある。
[Table] (Effects of the Invention) As described above, the zoom lens of the present invention incorporates a plastic lens, which makes it possible to reduce the weight of the lens system and improve mass production. We were able to suppress changes in position. Furthermore, when increasing the aperture, by using an aspherical surface for the plastic lens, various aberrations can be well corrected despite the large aperture of F1.2 to F1.4, as shown in the aberration curve diagram. This makes it possible to obtain a compact zoom lens with a compact design.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図、第4図はそれぞれこ
の発明のズームレンズの実施例1、2、3、4の
レンズ断面図、第5図、第6図、第7図、第8図
は同じく実施例1、2、3、4の収差曲線図であ
る。
1, 2, 3, and 4 are lens sectional views of Examples 1, 2, 3, and 4 of the zoom lens of the present invention, and FIG. 5, FIG. 6, FIG. 7, and FIG. Similarly, FIG. 8 is an aberration curve diagram of Examples 1, 2, 3, and 4.

Claims (1)

【特許請求の範囲】 1 物体側から順に正の焦点距離を持ち、フオー
カシングを行なう為の第1レンズ成分、負の焦点
距離を持ち変倍を行う為の第2レンズ成分、負の
焦点距離を持ち変倍に伴う像面の移動を補正する
為の第3レンズ成分、正の焦点距離を持ちマスタ
ーレンズ成分として変倍中固定される第4レンズ
成分の4つのレンズ成分からなり、第1レンズ成
分は物体側に凸を向けたメニスカス負レンズL1
物体側に凸を向けた正レンズL2物体側に凸を向
けた正レンズL3の3枚であつて、物体側の2枚
は分離されたままであるか或は貼合され、貼合せ
正レンズとされることがある3群3枚あるいは2
群3枚からなり、第2レンズ成分は像側へ凹を向
けたメニスカス負レンズL4及び両凹レンズL5
物体側に凸を向けた正レンズL6を貼合せた貼合
せ負レンズの2群3枚からなり、第3レンズ成分
は物体側に凹を向けたメニスカス負レンズL71枚
からなり、第4レンズ成分は像側へ凸を向けたメ
ニスカス正レンズL8両凸レンズL9、両凸レンズ
L11、両凸レンズL12、像側に凹面を向けた負レン
ズL13、両凸レンズL14物体側に凸面を向けた正レ
ンズL15の8群8枚からなり、上記のL7、L8
L11、L13の各レンズはプラスチツクレンズであ
り、 fw:全系の広角端での焦点距離 fi:物体側から第i番目のレンズの焦点距離 ni:物体側から第i番目のレンズの屈折率 νi:物体側から第i番目のレンズのアツベ数とす
るとき −0.22<fw(1/f7+1/f8+1/f11+1/f13)<−
0.18 n10 < 1.5 65 < ν10 の条件を満足することを特徴とするプラスチツク
レンズを用いたズームレンズ。
[Claims] 1. In order from the object side, a first lens component has a positive focal length and is used for focusing, a second lens component has a negative focal length and is used for zooming, and a negative focal length. It consists of four lens components: a third lens component for correcting the movement of the image plane due to zooming, and a fourth lens component that has a positive focal length and is fixed during zooming as a master lens component. The component is a meniscus negative lens L 1 with the convex side facing the object side,
A positive lens L with a convex side facing the object side and a positive lens L3 with a convex side facing the object side.The two lenses on the object side remain separated or are bonded together, and the bonded positive lens 3 elements or 2 elements in 3 groups, sometimes referred to as a lens
The group consists of three elements, and the second lens component is a negative meniscus lens L4 with a concave side facing the image side, a double concave lens L5 , and a positive lens L6 with a convex side facing the object side. The group consists of three elements, the third lens component consists of one meniscus negative lens L 7 with a concave side facing the object side, and the fourth lens component consists of a meniscus positive lens L 8 with a convex side facing the image side, a biconvex lens L 9 , double convex lens
L 11 , biconvex lens L 12 , negative lens L 13 with a concave surface facing the image side, biconvex lens L 14 positive lens L 15 with a convex surface facing the object side . ,
Each lens L 11 and L 13 is a plastic lens, f w : focal length of the entire system at the wide-angle end f i : focal length of the i-th lens from the object side n i : i-th lens from the object side Refractive index ν i of the lens: −0.22<fw (1/f 7 +1/f 8 +1/f 11 +1/f 13 )<− when the Atsube number of the i-th lens from the object side
A zoom lens using a plastic lens characterized by satisfying the following conditions: 0.18 n 10 < 1.5 65 < ν 10 .
JP58043242A 1983-03-17 1983-03-17 Zoom lens using plastic lens Granted JPS59181314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58043242A JPS59181314A (en) 1983-03-17 1983-03-17 Zoom lens using plastic lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58043242A JPS59181314A (en) 1983-03-17 1983-03-17 Zoom lens using plastic lens

Publications (2)

Publication Number Publication Date
JPS59181314A JPS59181314A (en) 1984-10-15
JPH0360407B2 true JPH0360407B2 (en) 1991-09-13

Family

ID=12658424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58043242A Granted JPS59181314A (en) 1983-03-17 1983-03-17 Zoom lens using plastic lens

Country Status (1)

Country Link
JP (1) JPS59181314A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782149B2 (en) * 1985-03-08 1995-09-06 コニカ株式会社 Zoom lenses
JPH0712203B2 (en) * 1989-08-31 1995-02-08 松下電器産業株式会社 Lens for TV camera
EP1574890B1 (en) * 2004-03-10 2016-06-29 Canon Kabushiki Kaisha Zoom lens and image display apparatus including the zoom lens

Also Published As

Publication number Publication date
JPS59181314A (en) 1984-10-15

Similar Documents

Publication Publication Date Title
US7227700B2 (en) Wide zoom lens system
US7142370B2 (en) Zoom lens system
JP2621247B2 (en) Zoom lens
JP3200925B2 (en) Zoom lens with wide angle of view
JPH05173071A (en) Wide angle zoom lens
JPH05157965A (en) Wide-angle lens
JPS6119016B2 (en)
JP2004264458A (en) Super-high magnifying wide angle zoom lens
JPH08184758A (en) Zoom lens
US6621643B2 (en) Zoom lens system
JPH0894933A (en) High magnifying power zoom lens
JPS6354163B2 (en)
JP3029148B2 (en) Rear focus zoom lens
JPS6132654B2 (en)
JPH10333037A (en) Zoom lens
JP2004264457A (en) Super-high magnifying zoom lens
JPH07104183A (en) Bright triplet lens
JP2597510B2 (en) Variable focal length lens
JP2924153B2 (en) Compact zoom lens
JP2711717B2 (en) High power zoom lens for finite distance
JPH0360407B2 (en)
JP3744042B2 (en) Zoom lens
JPS6126044B2 (en)
JPH0574806B2 (en)
JPH0448201B2 (en)