JPH0360351A - Insulator life discriminating method for rotary electric machine winding - Google Patents

Insulator life discriminating method for rotary electric machine winding

Info

Publication number
JPH0360351A
JPH0360351A JP1193986A JP19398689A JPH0360351A JP H0360351 A JPH0360351 A JP H0360351A JP 1193986 A JP1193986 A JP 1193986A JP 19398689 A JP19398689 A JP 19398689A JP H0360351 A JPH0360351 A JP H0360351A
Authority
JP
Japan
Prior art keywords
winding
insulating strength
breakdown voltage
necessary
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1193986A
Other languages
Japanese (ja)
Inventor
Hideo Akahori
秀夫 赤堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1193986A priority Critical patent/JPH0360351A/en
Publication of JPH0360351A publication Critical patent/JPH0360351A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To take measure for preventive maintenance of a winding properly by judging whether the winding has insulating strength necessary for operation, or not, with an insulating strength lowering rate computed from the operation hysteresis of a rotary electric machine. CONSTITUTION:Between the average value Vav of the breakdown voltage of a winding and the lowest breakdown voltage Vmin among the coil of the winding, there is the relation of Vav=0.5XVmin. In the meantime, insulating strength 2E+1kV necessary for operation is 40-50% to the insulating strength of the winding at the time of manufacture, and so the insulating strength lowering rate of the winding to be lowered to the insulating strength necessary for operation from the insulating strength at the time of the manufacture is set to be 60-50%. Accordingly, from a relation between the average value of the breakdown voltage of the winding and the lowest breakdown voltage among the coil, the value of 0.5X50-60=25-30% is obtained as the average value of the insulating strength lowering rate. In this manner, with the insulating strength lowering rate computed from the operation hysteresis, it can be judged whether the winding has the insulating strength 2E+1kV necessary for the operation or not. For example, in said case, the threshold value of judgement may be set to be 25%.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は発電機等の巻線の絶縁寿命判定法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a method for determining the insulation life of windings in generators, etc.

(従来の技術) 電力系統に接続される発電機の固定子巻線は、系統で発
生する異常電圧を考慮した値に耐える絶縁状態を維持す
る必要がある。このため、予防保全の一環として、目視
点検や絶縁診断試験(非破壊絶縁特性試験)を定期的に
実施し、その経時変化のデータをもとに、絶縁状態の良
否を判定することが広く行なわれている。
(Prior Art) The stator winding of a generator connected to a power grid needs to maintain an insulated state that can withstand a value that takes into account abnormal voltages generated in the grid. For this reason, as part of preventive maintenance, it is widely practiced to periodically conduct visual inspections and insulation diagnostic tests (non-destructive insulation property tests), and to judge the quality of the insulation condition based on the data on changes over time. It is.

絶縁協調の観点から、異常電圧を考慮した値としては、
例えば特公昭58−29873号公報にも示されている
ように、2E+ 1kV (Eは定格電圧)が一般に用
いられている。従って、巻線が運転に必要な絶縁耐力を
有しているか否かの判定は、巻線が2E+1kVを上回
る絶縁耐力を有しているかを判定すれば良い。
From the perspective of insulation coordination, the value considering abnormal voltage is:
For example, as shown in Japanese Patent Publication No. 58-29873, 2E+1 kV (E is the rated voltage) is generally used. Therefore, it is sufficient to determine whether the winding has a dielectric strength necessary for operation by determining whether the winding has a dielectric strength exceeding 2E+1 kV.

しかし、現在床〈実施されている目視点検では、定量的
なデータを得ることが困難であり1巻線が運転に必要な
絶縁耐力を有しているか否かの判定はできない。また、
絶縁診断試験の場合、2E+1kVのような高い電圧で
試験を実施することは、様々な制約があるため実際には
不可能である。このため、E/73  (常規対地電圧
)からEの間で電圧を印加し、交流電流試験、誘電正接
試験、および部分放電試験の結果を総合的に考慮して、
絶縁状態の良否を判定しているのが現状である。しかし
、これらの試験から得られる特性値と絶縁破壊電圧の間
には、明確な相関関係が認められない場合があるため、
絶縁診断試験の結果から絶縁破壊電圧を直接に推定する
ことは難しい。
However, it is difficult to obtain quantitative data with the visual inspection currently being carried out on floors, and it is not possible to determine whether one winding has the dielectric strength necessary for operation. Also,
In the case of an insulation diagnostic test, it is actually impossible to perform the test at a high voltage such as 2E+1 kV due to various restrictions. For this reason, applying a voltage between E/73 (normal ground voltage) and E, and comprehensively considering the results of the alternating current test, dielectric loss tangent test, and partial discharge test,
Currently, the quality of insulation is determined. However, since there may not be a clear correlation between the characteristic values obtained from these tests and the breakdown voltage,
It is difficult to directly estimate dielectric breakdown voltage from the results of insulation diagnostic tests.

一方、絶縁強度低下率を運転履歴から推定する試みもい
くつか検討されているが、絶縁強度低下率と運転に必要
な絶縁耐力の関係が明確でないため、巻線の絶縁寿命判
定法としては現在実用的ではない。特に、運転履歴から
推定した絶縁強度低下率が平均的な値であるのに対し、
運転に必要な絶縁耐力は巻線を構成する複数のコイルの
なかの最も低い破壊電圧に依存するという相違がある。
On the other hand, several attempts have been made to estimate the dielectric strength deterioration rate from the operating history, but the relationship between the dielectric strength deterioration rate and the dielectric strength required for operation is not clear, so this is currently the only method for determining the insulation life of windings. Not practical. In particular, while the insulation strength reduction rate estimated from the operating history is an average value,
The difference is that the dielectric strength required for operation depends on the lowest breakdown voltage among the multiple coils that make up the winding.

(発明が解決しようとするiLiり このように、従来の巻線の絶縁寿命判定法は。(The iLi problem that the invention attempts to solve) In this way, the conventional method for determining the insulation life of winding wires is as follows.

運転に必要な絶縁耐力を有しているか、否かの判定する
手段としては十分とはいえない。
It cannot be said to be sufficient as a means of determining whether or not it has the dielectric strength necessary for operation.

本発明は、上記のような問題点を解決するためになされ
たものであり、運転履歴をもとにした運転履歴指標を用
いて巻線が運転に必要な絶縁耐力を有しているか否かを
判定できる回転電機巻線の絶縁寿命判定法を提供するこ
とを目的とする。
The present invention has been made to solve the above-mentioned problems, and uses an operating history index based on the operating history to determine whether the winding has the dielectric strength necessary for operation. The purpose of this invention is to provide a method for determining the insulation life of rotating electrical machine windings.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記課題を解決するため本発明においては、回転電機の
運転時間、起動停止回数、負荷変動回数などの運転履歴
から絶縁強度低下率を算出する手段を備え、絶縁強度低
下率を運転履歴としてこの値により巻線が運転に必要な
絶縁耐力を有しているかどうかの判定を行う。
(Means for Solving the Problems) In order to solve the above problems, the present invention includes means for calculating the insulation strength reduction rate from the operation history such as the operating time of the rotating electrical machine, the number of times of starting and stopping, and the number of load fluctuations. The strength reduction rate is used as the operation history, and this value is used to determine whether the winding has the dielectric strength necessary for operation.

(作用) 巻線の絶縁耐力は、巻線を構成する複数のコイルのなか
の最も低い破壊電圧値により決定されるが、発明者の研
究によれば、運転履歴より算出した絶縁強度低下率(運
転履歴指標)と、実機のコイルの破壊試験結果から求め
た絶縁強度低下率の平均値がほぼ一致することが明らか
になったことから、発電機巻線の絶縁耐力は、巻線を構
成する複数のコイルのなかの最も低い破壊電圧と、巻線
の破壊電圧の平均値の関係が明らかになれば推定可能で
あると着想した。
(Function) The dielectric strength of a winding is determined by the lowest breakdown voltage value among the plurality of coils that make up the winding, but according to the inventor's research, the dielectric strength reduction rate ( It has been revealed that the average value of the dielectric strength reduction rate obtained from the destructive test results of the actual coil (operating history index) and the actual coil breakdown test results almost match, so the dielectric strength of the generator winding is The idea was that it could be estimated if the relationship between the lowest breakdown voltage among multiple coils and the average breakdown voltage of the windings was clarified.

さらに、巻線の破壊電圧の平均値(Vav)と、巻線を
構成するコイルのなかで最も低い破壊電圧(Vmin)
の間には、以下の関係があることが明らかになった。
Furthermore, the average value of the breakdown voltage of the winding (Vav) and the lowest breakdown voltage (Vmin) of the coils that make up the winding.
It has become clear that there is the following relationship between them.

Vav=0.5XVmin 一方、運転に必要な絶縁耐力(2E+ 1 kV)は、
これまでに調査した結果から、製造当時における巻線の
絶縁耐力に対し40〜50%であるため、製造当時の絶
縁耐力から運転に必要な絶縁耐力に低下するまでの巻線
の絶縁強度低下率は60〜50%となる。
Vav=0.5XVmin On the other hand, the dielectric strength (2E+1 kV) required for operation is:
From the results of the investigation so far, it is 40 to 50% of the dielectric strength of the winding at the time of manufacture, so the rate of decrease in the dielectric strength of the winding until the dielectric strength at the time of manufacture decreases to the dielectric strength required for operation. is 60-50%.

従って、巻線の破壊電圧の平均値(Vav)と、巻線を
構成するコイルのなかで最も低い破壊電圧(VIIli
n)との関係から、絶縁強度低下率の平均値として以下
の値が得られる。
Therefore, the average value of the breakdown voltage of the winding (Vav) and the lowest breakdown voltage (VIIli
From the relationship with n), the following values can be obtained as average values of the dielectric strength reduction rate.

(0,5) x (50〜60) = 25〜30(%
)すでに述べたように、運転履歴より算出した絶縁強度
低下率と、実機のコイル破壊試験の結果から求めた絶縁
強度低下率の平均値がほぼ一致することから、運転履歴
より算出した絶縁強度低下率(運転履歴指l1l)によ
り、運転に必要な絶縁耐力(2E+1 kV)を有して
いるか否かの判定をすることができる。例えば、上記の
場合、判定のしきい値を25%とすれば良い。
(0,5) x (50~60) = 25~30(%
) As mentioned above, the average value of the insulation strength reduction rate calculated from the operating history and the average value of the insulation strength reduction rate calculated from the results of the coil breakdown test of the actual machine is almost the same. Based on the rate (operation history index l1l), it can be determined whether the dielectric strength (2E+1 kV) required for operation is present. For example, in the above case, the determination threshold may be set to 25%.

(実施例) 以下本発明の一実施例について説明する。(Example) An embodiment of the present invention will be described below.

約21年間運転された発電機(2P−290MVA−1
5kV)の固定予巻、Ii(コイル数144本)から上
コイル6本をサンプリングし、絶縁破壊電圧を調査した
Generator (2P-290MVA-1) that has been operated for about 21 years
Six upper coils were sampled from Ii (144 coils) with a fixed pre-winding of 5 kV), and the dielectric breakdown voltage was investigated.

供試機の運転時間は127,043 h起動停止回数は
433回であり、最大出力の1/2以上に及ぶ大幅な負
荷変動運転や、115の範囲で極めて頻度の多い負荷変
動を繰り返す負荷変動運転を実施したものである。 コ
イルの破壊電圧は、最弱点リングモデルから考案された
ワイブル分布に従うことが知られている。製造時とサン
プリング試験時の破壊電圧をワイブル分布で処理し、絶
縁強度低下率を求めた。
The operating time of the test machine was 127,043 hours, and the number of starts and stops was 433 times, including large load fluctuations that reached more than 1/2 of the maximum output, and load fluctuations that repeated extremely frequent load fluctuations in the range of 115. This is what the operation was carried out. It is known that the breakdown voltage of a coil follows a Weibull distribution devised from the weakest ring model. The breakdown voltage during manufacturing and sampling tests was processed using Weibull distribution, and the rate of insulation strength reduction was determined.

累積故障確率(以後、F(v)と略記)50%における
絶縁強度低下率(以後、低下率)は18%、F(v)0
.7%(144本のコイル中1本が破壊する確率)では
39%であった。
The insulation strength reduction rate (hereinafter referred to as the reduction rate) at a cumulative failure probability (hereinafter abbreviated as F(v)) of 50% is 18%, F(v)0
.. At 7% (probability that one out of 144 coils will break), it was 39%.

大容量機の場合、低下率は(ヒートサイクル)劣化と、
運転時間に関係する(熱・電気)劣化に支配されると考
えられる。(ヒートサイクル)劣化は、ベースロード機
では起動停止回数のみを考慮すればよいが、ピークロー
ド機の場合は、負荷変動の影響を変動幅に応じた等倒起
動停止回数に換算する必要がある。今回の結果では図に
示すように、運転履歴から算出した低下率として20%
が得られた。この値がF(ν)50%における低下率(
18%)とほぼ一致したことから、本手法の妥当性を確
認できた。
In the case of large capacity machines, the rate of decline is due to (heat cycle) deterioration,
It is thought to be dominated by (thermal/electrical) deterioration related to operating hours. (Heat cycle) Deterioration only needs to be considered in terms of the number of starts and stops for base load machines, but for peak load machines, it is necessary to convert the influence of load fluctuations into the number of even starts and stops according to the range of fluctuation. . In this result, as shown in the figure, the reduction rate calculated from the driving history was 20%.
was gotten. This value is the reduction rate (
18%), confirming the validity of this method.

今回の場合、運転に必要とされる絶縁耐力は製造時破壊
電圧の40〜50%であるので、低下率としては50〜
60%となる。一方、F (v)0.7%における破壊
電圧はF(v)50%のほぼ1/2の値である。従って
、運転履歴から算出した低下率が25〜30%に到達す
ると1巻線の破壊電圧は運転に必要とされる絶縁耐力ま
で低下していると予測できるので、運転履歴から算出し
た低下率により、絶縁更新等の予防保全対策を立案する
ことが可能となる。
In this case, the dielectric strength required for operation is 40 to 50% of the breakdown voltage during manufacturing, so the reduction rate is 50 to 50%.
It becomes 60%. On the other hand, the breakdown voltage at F(v) of 0.7% is approximately 1/2 of the value of F(v) of 50%. Therefore, when the rate of decrease calculated from the operating history reaches 25 to 30%, it can be predicted that the breakdown voltage of the first winding has decreased to the dielectric strength required for operation. , it becomes possible to plan preventive maintenance measures such as insulation renewal.

すなわち、第1表に示すように、運転履歴指標の数値か
ら巻線の予防保全計画を立案することが可能である。
That is, as shown in Table 1, it is possible to formulate a preventive maintenance plan for the windings from the numerical values of the operation history index.

第1表  運転履歴指標(H,1,)による巻線の予防
保全計画〔発明の効果〕 以上述べたように、本発明によれば回転電機の運転履歴
から算出した絶縁強度低下率により巻線が運転に必要な
絶縁耐力を有しているか否かを直接判定できるので1巻
線の予防保全対策を的確に計画することが可能となり、
電力供給の信頼性向上に著しい効果がある。
Table 1 Preventive maintenance plan for windings based on the operating history index (H, 1,) [Effects of the invention] As described above, according to the present invention, windings are Since it is possible to directly determine whether or not the winding has the dielectric strength necessary for operation, it is possible to accurately plan preventive maintenance measures for each winding.
This has a significant effect on improving the reliability of power supply.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を説明するための運転履歴と破
壊強度の関係を模式的に示した図である。
The drawing is a diagram schematically showing the relationship between driving history and breaking strength for explaining one embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 運転時間、起動停止回数、負荷変動回数などの運転履歴
より絶縁強度低下率を算出し、この絶縁強度低下率を運
転履歴指標としてこの値から巻数が運転に必要な絶縁耐
力を有しているか否かを判定することを特徴とする回転
電機巻線の絶縁寿命判定法。
The insulation strength reduction rate is calculated from the operation history such as operation time, number of starts and stops, and number of load fluctuations, and this insulation strength reduction rate is used as an indicator of the operation history.From this value, it is determined whether the number of turns has the dielectric strength required for operation. A method for determining the insulation life of a rotating electrical machine winding.
JP1193986A 1989-07-28 1989-07-28 Insulator life discriminating method for rotary electric machine winding Pending JPH0360351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1193986A JPH0360351A (en) 1989-07-28 1989-07-28 Insulator life discriminating method for rotary electric machine winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1193986A JPH0360351A (en) 1989-07-28 1989-07-28 Insulator life discriminating method for rotary electric machine winding

Publications (1)

Publication Number Publication Date
JPH0360351A true JPH0360351A (en) 1991-03-15

Family

ID=16317069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1193986A Pending JPH0360351A (en) 1989-07-28 1989-07-28 Insulator life discriminating method for rotary electric machine winding

Country Status (1)

Country Link
JP (1) JPH0360351A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002893A (en) * 2006-06-21 2008-01-10 Chubu Electric Power Co Inc Remaining life expectancy evaluation method for turbogenerator stator coil
US8206561B2 (en) 2004-03-05 2012-06-26 Tosoh Corporation Cylindrical sputtering target, ceramic sintered body, and process for producing sintered body
JPWO2020105557A1 (en) * 2018-11-20 2021-09-27 三菱電機プラントエンジニアリング株式会社 Remaining life diagnosis method for rotary electric machines and remaining life diagnosis device for revolving electric machines

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8206561B2 (en) 2004-03-05 2012-06-26 Tosoh Corporation Cylindrical sputtering target, ceramic sintered body, and process for producing sintered body
JP2008002893A (en) * 2006-06-21 2008-01-10 Chubu Electric Power Co Inc Remaining life expectancy evaluation method for turbogenerator stator coil
JP4675837B2 (en) * 2006-06-21 2011-04-27 中部電力株式会社 Evaluation method of remaining life of turbine generator stator coil
JPWO2020105557A1 (en) * 2018-11-20 2021-09-27 三菱電機プラントエンジニアリング株式会社 Remaining life diagnosis method for rotary electric machines and remaining life diagnosis device for revolving electric machines
US11885848B2 (en) 2018-11-20 2024-01-30 Mitsubishi Electric Corporation Method for assessing remaining life of rotating electrical machine and device for assessing remaining life of rotating electrical machine

Similar Documents

Publication Publication Date Title
US7042229B2 (en) System and method for on line monitoring of insulation condition for DC machines
Kim et al. Assessment of deterioration in epoxy/mica machine insulation
Stone et al. Effect of manufacturer, winding age and insulation type on stator winding partial discharge levels
Lachman et al. On-line diagnostics of high-voltage bushings and current transformers using the sum current method
Yang et al. Experimental evaluation of using the surge PD test as a predictive maintenance tool for monitoring turn insulation quality in random wound AC motor stator windings
US20050218906A1 (en) System and method for monitoring of insulation condition
Yang et al. An advanced stator winding insulation quality assessment technique for inverter-fed machines
Yang et al. A stator winding insulation condition monitoring technique for inverter-fed machines
Grubic et al. Online surge testing applied to an induction machine with emulated insulation breakdown
JPH0360351A (en) Insulator life discriminating method for rotary electric machine winding
Mladenovic et al. Artificial aging and diagnostic measurements on medium-voltage, paper-insulated, lead-covered cables
Rux et al. Assessing the condition of hydrogenerator stator winding insulation using the ramped high direct-voltage test method
CN111175621B (en) Method, system and equipment for detecting insulation defects of medium and high voltage rotating motor in nuclear power station
Gupta et al. Turn insulation capability of large AC motors Part 3-Insulation coordination
JP2001074802A (en) Partial discharge detecting method of electric rotating machine
JP2000206213A (en) Method for monitoring insulation of rotating machine
Shaikh et al. Offline common-mode voltage based inverter-embedded groundwall insulation testing for motors
Ward et al. A quality control test for high voltage stator insulation
Farahani et al. A method for the evaluation of insulation systems for high voltage rotating machines
Shaikh et al. A Simple Offline Test for Detecting Rotor Faults in Wound Field Synchronous Machines
Gupta et al. Use of machine hipot testing in electric utilities
JPH048382Y2 (en)
Okubo Recent activity and future trend on ageing characteristics of electrical insulation in GIS from manufacturer's view point
JPS6217192B2 (en)
Zhu et al. Identification of stator insulation deterioration using on-line partial discharge testing