JPH0359794B2 - - Google Patents

Info

Publication number
JPH0359794B2
JPH0359794B2 JP60121151A JP12115185A JPH0359794B2 JP H0359794 B2 JPH0359794 B2 JP H0359794B2 JP 60121151 A JP60121151 A JP 60121151A JP 12115185 A JP12115185 A JP 12115185A JP H0359794 B2 JPH0359794 B2 JP H0359794B2
Authority
JP
Japan
Prior art keywords
laser beam
workpiece
arc discharge
welding
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60121151A
Other languages
Japanese (ja)
Other versions
JPS61279390A (en
Inventor
Kohei Murakami
Susumu Hoshinochi
Masaharu Moryasu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60121151A priority Critical patent/JPS61279390A/en
Publication of JPS61279390A publication Critical patent/JPS61279390A/en
Publication of JPH0359794B2 publication Critical patent/JPH0359794B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/346Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
    • B23K26/348Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はレーザビーム加工装置、とくにアー
ク放電を付加することによつて高加工能率、高品
質化を図つたレーザビーム加工装置に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a laser beam processing device, and particularly to a laser beam processing device that achieves high processing efficiency and quality by adding arc discharge. .

〔従来の技術〕[Conventional technology]

従来、この種の装置として第5図及び第6図に
示すものがあつた。第5図は従来のアーク放電を
利用したレーザビーム加工装置を示す縦断面構成
図、第6図はその主要部を示す縦断面図である。
図において、1はレーザ発振器、2はレーザ発振
器1から出射されたレーザビーム、2aは集光ビ
ーム、3はレーザビーム2を加工部へ導くために
レーザビーム2を折り曲げるベンドミラー、4は
レーザビーム2を加工の目的にあつたエネルギー
密度に集光するための集光光学系である。5は集
光光学系4の下部にもうけられ、集光ビーム2a
と同軸で円筒上の電気絶縁材料により構成された
アシストガスノズル、6はアシストガスノズル5
の先端に設けられた集光ビーム2aと同軸円環状
の電極、7はアシストガス供給口である。また8
は被加工物、9は電極6と被加工物8との間に電
圧を印加するとともにアーク放電を発生させるア
ーク放電電源である。
Conventionally, there have been devices of this type as shown in FIGS. 5 and 6. FIG. 5 is a vertical cross-sectional configuration diagram showing a conventional laser beam machining device using arc discharge, and FIG. 6 is a vertical cross-sectional view showing the main parts thereof.
In the figure, 1 is a laser oscillator, 2 is a laser beam emitted from the laser oscillator 1, 2a is a focused beam, 3 is a bend mirror that bends the laser beam 2 to guide the laser beam 2 to the processing section, 4 is a laser beam This is a condensing optical system that condenses light into an energy density suitable for processing purposes. 5 is provided at the bottom of the condensing optical system 4, and the condensed beam 2a
An assist gas nozzle 6 is made of an electrically insulating material on a cylinder and is coaxial with the assist gas nozzle 5.
7 is an assist gas supply port. 8 again
9 is a workpiece, and 9 is an arc discharge power supply that applies a voltage between the electrode 6 and the workpiece 8 and generates arc discharge.

上記のように構成された従来のレーザビーム加
工装置では、レーザビーム2は、集光光学系4に
より、106〜108W/cm2という高エネルギー密度の
スポツトに集光され、被加工物8の表面に照射さ
れて切断、溶接、熱処理などの加工がおこなわれ
る。一方レーザビーム2が出射すると同時に、電
気絶縁材料により構成されたアシストガスノズル
5の先端に設けられた集光ビーム2aと同軸円環
状の電極6と被加工物8との間にアーク放電電源
9により電圧が印加される。このためガス供給口
6から導入されたアシストガスの作用とあいまつ
て、電極6と被加工物8の間にアークが発生す
る。アシストガスは、このアークにより高温に加
熱され、アシストガスの一部は解離して集光ビー
ム2aを取り巻く形で高温のガスプラズマ10と
なり、被加工物8の表面に集光ビーム2aと同時
に噴射される。このようにアークを利用したレー
ザビーム加工装置は、高エネルギー密度の集光レ
ーザビーム2aと、集光レーザビーム2a取り巻
くように形成された高温ガスプラズマ10とを被
加工物8に同時に照射するように構成してあるの
で、切断・溶接・熱処理の加工効率が上昇する。
特に溶接においてはギヤツプ裕度などが大幅に向
上している。第7図はこのようなアーク放電を利
用したレーザビーム加工装置をさらに改良した装
置を示す要部縦断面図であり、電極6の消耗を防
止するために、電極6が設けられたアシストガス
ノズルの外側にシールドノズル11を設けるな
ど、装置の高信頼化が図られ、実用化されてい
る。なお7aはシールドガスの供給パイプであ
る。
In the conventional laser beam processing device configured as described above, the laser beam 2 is focused by the focusing optical system 4 onto a spot with a high energy density of 10 6 to 10 8 W/cm 2 , and is focused on the workpiece. The surface of 8 is irradiated to perform processing such as cutting, welding, and heat treatment. On the other hand, at the same time as the laser beam 2 is emitted, an arc discharge power source 9 is connected between the focused beam 2a provided at the tip of the assist gas nozzle 5 made of an electrically insulating material, the coaxial annular electrode 6, and the workpiece 8. A voltage is applied. Therefore, together with the action of the assist gas introduced from the gas supply port 6, an arc is generated between the electrode 6 and the workpiece 8. The assist gas is heated to a high temperature by this arc, and a portion of the assist gas dissociates to become a high-temperature gas plasma 10 surrounding the focused beam 2a, which is injected onto the surface of the workpiece 8 at the same time as the focused beam 2a. be done. In this way, the laser beam processing device using an arc simultaneously irradiates the workpiece 8 with the focused laser beam 2a having high energy density and the high temperature gas plasma 10 formed around the focused laser beam 2a. The processing efficiency of cutting, welding, and heat treatment increases.
Especially in welding, gap tolerance etc. have been significantly improved. FIG. 7 is a longitudinal cross-sectional view of a main part showing a further improved laser beam machining device using such an arc discharge. The reliability of the device has been improved by providing a shield nozzle 11 on the outside, and the device has been put into practical use. Note that 7a is a shield gas supply pipe.

一方、鉄などの磁性材料に電流が流れると、そ
の電流の周囲に磁界が発生する。そしてこの材料
にギヤツプがあると、このギヤツプ部から磁束が
漏洩する。被加工物8とアーク溶接トーチ15に
設けた電極6との間に大電流のアーク放電を発生
させて行うアーク溶接では、この原理を応用した
第8図に示すような溶接線倣いアーク溶接装置が
考案されている。被加工物8に流れる電流により
加工線をなすギヤツプ部19からは磁束が漏洩す
る。そこで、洩れ磁気センサ12をギヤツプ部1
9に直交する方向、即ち、Y方向にセンサ駆動部
13により移動させつつこの洩れ磁束が最大とな
る位置をセンサ信号処理回路14および位置読取
器16で検出し、これを制御装置即ち、自動倣い
プロセツサ17に取り込み、溶接トーチ15と洩
れ磁気センサ12との距離差を演算処理し溶接ト
ーチ15の位置制御を行い、溶接トーチブロツク
18により溶接線倣いを行つている。
On the other hand, when a current flows through a magnetic material such as iron, a magnetic field is generated around the current. If there is a gap in this material, magnetic flux will leak from this gap. In arc welding, which is performed by generating a large current arc discharge between the workpiece 8 and the electrode 6 provided on the arc welding torch 15, a welding line tracing arc welding device as shown in Fig. 8 which applies this principle is used. has been devised. Due to the current flowing through the workpiece 8, magnetic flux leaks from the gap portion 19 forming the processed wire. Therefore, the leakage magnetic sensor 12 is connected to the gap part 1.
9, that is, in the Y direction, the sensor signal processing circuit 14 and the position reader 16 detect the position where the leakage magnetic flux is maximum, and this is detected by the control device, that is, the automatic copying The data is input into the processor 17, and the distance difference between the welding torch 15 and the leakage magnetic sensor 12 is processed, the position of the welding torch 15 is controlled, and the welding line is traced by the welding torch block 18.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

レーザ溶接は、狭幅な深い溶け込みの溶接がで
きるが、そのような溶接を行うためには、溶接線
とビーム照射位置とを高精度で位置合せすること
が必要である。アーク付加によつて加工能率が向
上するとともに位置合わせに対する裕度はかなり
広くなつた。しかし、薄板などの溶接において
は、被溶接物の前加工精度もあまりよくなく、ま
た、溶接中に変形もおこるため、目はずれや融合
不良など溶接不良が多く発生しており、自動化を
大きく阻害している。
Laser welding allows welding with narrow width and deep penetration, but in order to perform such welding, it is necessary to align the weld line and the beam irradiation position with high precision. By adding an arc, machining efficiency improved and the margin for positioning became considerably wider. However, when welding thin plates, etc., the pre-processing accuracy of the workpiece is not very good, and deformation occurs during welding, resulting in many welding defects such as misalignment and poor fusion, which greatly hinders automation. are doing.

この発明は、上記のような問題点を解消するた
めになされたもので、レーザ溶接の高品質、高信
頼化を図るとともに、複雑な形状の被溶接物に対
しても簡単に適用できる溶接線自動倣い機能を備
えたレーザビーム加工装置を得ることを目的とす
る。
This invention was made to solve the above-mentioned problems, and aims to improve the quality and reliability of laser welding, as well as to create a welding line that can be easily applied to objects with complex shapes. The purpose of this invention is to obtain a laser beam processing device with an automatic tracing function.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るレーザビーム加工装置な、レー
ザビームを集光する光学系、レーザビームと同軸
に設けられたアシストガスノズル、このアシスト
ガスノズルの先端に上記レーザビームと同軸に設
けられた電極、この電極と被加工物間に電圧を印
加させるとともにアーク放電を発生させるアーク
放電電源、上記アーク放電による放電電流によ
り、上記被加工物の加工線をなすギヤツプ部に生
じる洩れ磁束を検出する磁気センサ、この磁気セ
ンサの駆動部、上記磁気センサで検出される信号
を処理して上記加工線の位置を求めるセンサ信号
処理手段、及びこのセンサ信号処理手段で得られ
た上記加工線の位置信号に基づいて、上記レーザ
ヘツドの位置制御を行うレーザヘツド駆動部を備
え、上記加工線を自動倣いするようにしたもので
ある。
The laser beam processing device according to the present invention includes an optical system for focusing the laser beam, an assist gas nozzle provided coaxially with the laser beam, an electrode provided coaxially with the laser beam at the tip of the assist gas nozzle, and the electrode and the assist gas nozzle provided coaxially with the laser beam. An arc discharge power supply that applies a voltage between the workpieces and generates an arc discharge, a magnetic sensor that detects leakage magnetic flux generated in the gap part of the machining line of the workpiece due to the discharge current caused by the arc discharge, and this magnetic sensor. A sensor driving unit, a sensor signal processing means for processing the signal detected by the magnetic sensor to determine the position of the processed line, and a position signal of the processed line obtained by the sensor signal processing means, the above-mentioned The machine is equipped with a laser head drive section that controls the position of the laser head, and is configured to automatically trace the processing line.

〔作用〕[Effect]

この発明におけるレーザビーム加工装置は、ア
ーク放電電流によつて発生するギヤツプ部での洩
れ磁束を検出することにより自動的に加工線を特
定し、レーザ溶接の進行方向を制御するようにし
たことによつて、常に加工線とビーム照射位置と
整合が図られ、目はずれなど溶接欠陥のない高品
質な溶接が、完全自動で行なえる。
The laser beam processing device of this invention automatically identifies the processing line by detecting the leakage magnetic flux at the gap portion generated by the arc discharge current, and controls the direction of laser welding. Therefore, the processing line and the beam irradiation position are always aligned, and high-quality welding without welding defects such as misalignment can be performed completely automatically.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明の一実施例によるレーザビー
ム加工装置は示す縦断面構成図、第2図はその主
要部を一部切欠いて内部を示す斜視図である。図
において、12はアーク放電による放電電流によ
り、被加工物8の加工線19をなすギヤツプ部に
生じる洩れ磁束を検出する磁気センサ、13はこ
の磁気センサをスキヤンするための駆動部、20
はこれら磁気センサ12及び駆動部13よりなる
センサ格納部をレーザビームを中心軸に回転運動
させる駆動部である。
FIG. 1 is a vertical cross-sectional configuration diagram showing a laser beam processing apparatus according to an embodiment of the present invention, and FIG. 2 is a perspective view showing the inside with a part of the main part thereof cut away. In the figure, 12 is a magnetic sensor that detects the leakage magnetic flux generated in the gap part forming the machining line 19 of the workpiece 8 due to discharge current caused by arc discharge, 13 is a drive unit for scanning this magnetic sensor, and 20
is a drive unit that rotates the sensor storage unit made up of the magnetic sensor 12 and the drive unit 13 about the laser beam as a central axis.

第3図はこの発明の一実施例によるレーザビー
ム加工装置を示すブロツク図、第4図はその動作
を示すフローチヤートである。
FIG. 3 is a block diagram showing a laser beam processing apparatus according to an embodiment of the present invention, and FIG. 4 is a flowchart showing its operation.

電極6を介して、被溶接物8の厚さ方向の電流
が流れると、被加工物8内に磁気ループが作られ
る。被溶接物8が鋼材のような場合、加工線間の
空気との比磁率の違いによつて、加工線19上の
洩れ磁気が誘起される。磁気センサ12は、2個
の磁気検出素子により構成されている。この2個
の磁気センサ12からの出力は、比較器21で比
較され、2個のセンサ12の出力信号が等しくな
るまで、センサ移動用モータの駆動回路22、セ
ンサ移動用モータ23、センサ移動用治具等より
なる駆動部13,20により磁気センサ12をス
キヤンする。そして、その位置をリニヤポテンシ
ヨンメータ25で読み取り、A/D変換器26に
よりデイジタル信号に変換してこの出力信号を入
力回路27、CPU28、メモリ29、及び出力
回路30により処理して加工線の位置を求める。
この位置信号に基づいてレーザヘツドを、ヘツド
移動用モータの駆動回路31、ヘツド移動用モー
タ、及びヘツド移動用治具33よりなるレーザヘ
ツド駆動部34により位置制御する。
When a current flows through the electrode 6 in the thickness direction of the workpiece 8, a magnetic loop is created within the workpiece 8. When the object to be welded 8 is made of steel, leakage magnetism on the processed wire 19 is induced due to the difference in relative magnetic coefficient between the processed wire and the air. The magnetic sensor 12 is composed of two magnetic detection elements. The outputs from these two magnetic sensors 12 are compared by a comparator 21, and until the output signals of the two sensors 12 become equal, the sensor moving motor drive circuit 22, the sensor moving motor 23, the sensor moving motor The magnetic sensor 12 is scanned by drive units 13 and 20 made up of jigs and the like. Then, the position is read by the linear potentiometer 25, converted into a digital signal by the A/D converter 26, and this output signal is processed by the input circuit 27, CPU 28, memory 29, and output circuit 30, and the processed wire is processed. Find the location.
Based on this position signal, the position of the laser head is controlled by a laser head drive section 34 comprising a drive circuit 31 for a head movement motor, a head movement motor, and a head movement jig 33.

駆動部13,20は複雑な形状に追従できるよ
うに、センサ格納部全体が、レーザヘツドを中心
軸として回転駆動するようになつており、例え
ば、円形状の溶接をも完全自動で行なえるように
なつている。
The drive units 13 and 20 are designed to rotate the entire sensor storage unit around the laser head as a central axis so that it can follow complex shapes.For example, it is possible to completely automatically weld circular shapes. It's summery.

第4図は、溶接加工線検出の手順を示すフロー
チヤートであり、検出が開始されるとまずセンサ
格納部が回転し(ステツプ(34))、大まかな溶接
加工線検出が行なわれる。そして信号が検出され
ると(ステツプ(35))、磁気センサをスキヤンニ
ングし(ステツプ(36))、2つの磁気センサ信号
が等しくなる点をエンコーダにより検出する(ス
テツプ(36))。そして溶接加工線の計算を行い
(ステツプ(38))、レーザヘツドを駆動する(ス
テツプ(39))。曲線が急激な変化した場合は再び
センサ回転から始める。このようにして、常に溶
接加工線とビーム照射位置との整合が図られ、目
はずれなどの溶接欠陥のない高品質な溶接が完全
自動で行なえる。
FIG. 4 is a flowchart showing the procedure for detecting a welding line. When detection is started, the sensor storage section first rotates (step (34)), and a rough welding line is detected. When the signal is detected (step (35)), the magnetic sensor is scanned (step (36)), and the encoder detects the point where the two magnetic sensor signals are equal (step (36)). Then, the welding line is calculated (step (38)), and the laser head is driven (step (39)). If the curve suddenly changes, start rotating the sensor again. In this way, the welding line and the beam irradiation position are always aligned, and high-quality welding without welding defects such as misalignment can be performed completely automatically.

なお、上記実施例ではセンサ駆動部を駆動部1
3と駆動部20の2段階としたが駆動部13の機
能を駆動部20に含ませてもよい。
Note that in the above embodiment, the sensor drive section is the drive section 1.
3 and the drive unit 20, the function of the drive unit 13 may be included in the drive unit 20.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、高温ガスプ
ラズマを併用したレーザ溶接に対し、溶接線自動
倣い機能を付加する構成をしたので、精度の高い
加工及び、完全自動化が実施できる。
As described above, according to the present invention, an automatic welding line tracing function is added to laser welding using high-temperature gas plasma, so highly accurate processing and complete automation can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるレーザビー
ム加工装置を示す縦断面構成図、第2図はその主
要部の一部切欠いて内部を示す斜視図、第3図は
この発明の一実施例によるレーザビーム加工装置
を示すブロツク図、第4図はその動作を示すフロ
ーチヤート、第5図は従来のレーザビーム加工装
置を示す縦断面構成図、第6図はその主要部を示
す縦断面図、第7図は改良された従来のレーザビ
ーム加工装置の主要部を示す縦断面図、及び第8
図は従来の自動倣いアーク溶接装置を示すブロツ
ク構成図である。 図において、2はレーザビーム、4は集光光学
系、5はアシストガスノズル、6は電極、8は被
加工物、9はアーク放電電源、12は磁気セン
サ、13,20はセンサ駆動部、21は比較器、
25はリニアポテンシヨメータ、28はCPU、
29はメモリ、34はレーザヘツド駆動部であ
る。なお、図中、同一符号は同一又は相当部分を
示す。
FIG. 1 is a longitudinal cross-sectional configuration diagram showing a laser beam processing device according to an embodiment of the present invention, FIG. 2 is a partially cutaway perspective view of the main part of the device, and FIG. 3 is an embodiment of the present invention. FIG. 4 is a flowchart showing its operation, FIG. 5 is a vertical cross-sectional configuration diagram showing a conventional laser beam processing device, and FIG. 6 is a vertical cross-sectional view showing its main parts. , FIG. 7 is a vertical sectional view showing the main parts of an improved conventional laser beam processing device, and FIG.
The figure is a block diagram showing a conventional automatic tracing arc welding device. In the figure, 2 is a laser beam, 4 is a focusing optical system, 5 is an assist gas nozzle, 6 is an electrode, 8 is a workpiece, 9 is an arc discharge power source, 12 is a magnetic sensor, 13 and 20 are sensor drive units, and 21 is a comparator,
25 is a linear potentiometer, 28 is a CPU,
29 is a memory, and 34 is a laser head drive section. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 レーザヘツドより出射する高エネルギー密度
のレーザビームを用いて、被加工物の加工を行う
レーザビーム加工装置において、上記レーザビー
ムを集光する光学系、上記レーザビームと同軸に
設けられたアシストガスノズル、このアシストガ
スノズルの先端に上記レーザビームと同軸に設け
られた電極、この電極と上記被加工物間に電圧を
印加させるとともにアーク放電を発生させるアー
ク放電電源、上記アーク放電による放電電流によ
り、上記被加工物の加工線をなすギヤツプ部に生
じる洩れ磁束を検出する磁気センサ、この磁気セ
ンサの駆動部、上記磁気センサで検出される信号
を処理して上記加工線の位置を求めるセンサ信号
処理手段、及びこのセンサ信号処理手段で得られ
た上記加工線の位置信号に基づいて上記レーザヘ
ツドの位置制御を行うレーザヘツド駆動部を備
え、上記加工線を自動倣いすることを特徴とする
レーザビーム加工装置。
1. A laser beam processing device that processes a workpiece using a high-energy-density laser beam emitted from a laser head, an optical system that focuses the laser beam, an assist gas nozzle provided coaxially with the laser beam, An electrode is provided at the tip of the assist gas nozzle coaxially with the laser beam, an arc discharge power source applies a voltage between the electrode and the workpiece, and generates an arc discharge, and a discharge current generated by the arc discharge is used to generate the workpiece. a magnetic sensor for detecting leakage magnetic flux generated in a gap forming a processing line of a workpiece; a drive unit for the magnetic sensor; a sensor signal processing means for processing signals detected by the magnetic sensor to determine the position of the processing line; A laser beam machining device comprising: a laser head driving section that controls the position of the laser head based on a position signal of the machining line obtained by the sensor signal processing means, and automatically tracing the machining line.
JP60121151A 1985-06-04 1985-06-04 Laser beam machining equipment Granted JPS61279390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60121151A JPS61279390A (en) 1985-06-04 1985-06-04 Laser beam machining equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60121151A JPS61279390A (en) 1985-06-04 1985-06-04 Laser beam machining equipment

Publications (2)

Publication Number Publication Date
JPS61279390A JPS61279390A (en) 1986-12-10
JPH0359794B2 true JPH0359794B2 (en) 1991-09-11

Family

ID=14804107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60121151A Granted JPS61279390A (en) 1985-06-04 1985-06-04 Laser beam machining equipment

Country Status (1)

Country Link
JP (1) JPS61279390A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT410067B (en) * 2000-11-16 2003-01-27 Fronius Schweissmasch Prod DEVICE FOR A LASER HYBRID WELDING PROCESS

Also Published As

Publication number Publication date
JPS61279390A (en) 1986-12-10

Similar Documents

Publication Publication Date Title
US4830261A (en) Eddy current tool positioning system
Fan et al. A precise initial weld point guiding method of micro-gap weld based on structured light vision sensor
JP3427320B2 (en) Robot movement of object on workpiece surface
JP4020099B2 (en) Laser processing method
JPS59144579A (en) Actual time control for controlling operation characteristics of welding mechanism movable along connection part of product to be welded
JPS6021190A (en) Spot welding by laser beam
EP1153695B1 (en) A laser welding head-controlling system and a method for controlling a laser welding head
JPH0359794B2 (en)
Kim et al. A study of a dual-electromagnetic sensor system for weld seam tracking of I-butt joints
JP2751780B2 (en) Laser beam processing equipment
JP2005138126A (en) Welding system
JPS589783A (en) Method of inspection for laser working
JPH06328281A (en) Method and device for alignment of laser beam in laser beam machine
JP2740002B2 (en) Laser welding method and laser processing machine used for the method
JPS5933477B2 (en) Laser processing equipment
JPS61103692A (en) Laser beam machine
JP3443022B2 (en) Laser welding monitoring method and apparatus and laser welding apparatus
JPS63137596A (en) Laser sensing method
JPS62114787A (en) Laser beam welding device with welding position corrector
JPH05337669A (en) Laser beam machine
KR100353969B1 (en) Weld line tracing system of automatic welding machine
JP2569968B2 (en) Beam alignment adjustment method for electron beam processing machine
JPS59218291A (en) Laser working device
JPS594976A (en) Controlling of copying welding
JPH05333911A (en) Laser welding machining method