JPH0359349B2 - - Google Patents

Info

Publication number
JPH0359349B2
JPH0359349B2 JP57066655A JP6665582A JPH0359349B2 JP H0359349 B2 JPH0359349 B2 JP H0359349B2 JP 57066655 A JP57066655 A JP 57066655A JP 6665582 A JP6665582 A JP 6665582A JP H0359349 B2 JPH0359349 B2 JP H0359349B2
Authority
JP
Japan
Prior art keywords
valve
pressure
heat exchanger
compressor
switching valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57066655A
Other languages
Japanese (ja)
Other versions
JPS58184473A (en
Inventor
Akira Taguchi
Akira Hamaguchi
Juji Mori
Toshio Yokoi
Masanori Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57066655A priority Critical patent/JPS58184473A/en
Publication of JPS58184473A publication Critical patent/JPS58184473A/en
Publication of JPH0359349B2 publication Critical patent/JPH0359349B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 本発明は、冷凍サイクル中の高低圧間に電磁弁
などの能力制御用の開閉弁を設けた空気調和機に
おける圧力調整制御方法に関するもので、運転を
停止するための電源スイツチ開放時に前記開閉弁
を一定時間開いておくことにより冷凍サイクルの
高低圧力バランスを促進して、前記開閉弁の損傷
を防ぎ、また、特に能力制御用の開閉弁としてパ
イロツト型電磁弁を使用した際には、電磁弁内部
の振動による騒音を低減することを目的の一つと
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pressure adjustment control method for an air conditioner in which an on-off valve for capacity control such as a solenoid valve is provided between high and low pressures in a refrigeration cycle. By keeping the on-off valve open for a certain period of time when the power switch is opened, the high-low pressure balance of the refrigeration cycle is promoted, thereby preventing damage to the on-off valve, and in particular, a pilot type solenoid valve is used as the on-off valve for capacity control. One of the purposes is to reduce noise caused by vibration inside the solenoid valve.

従来、この種の空気調和機の冷凍サイクルおよ
びその運転制御装置は第1図および第2図に示す
如く構成されていた。
Conventionally, the refrigeration cycle of this type of air conditioner and its operation control device have been constructed as shown in FIGS. 1 and 2.

同図において、1は室内ユニツトで、室内熱交
換器2、室内フアン3等をそれぞれ具備してい
る。4は室外ユニツト、圧縮機5、室外熱交換器
6、室外フアン7、電磁切換弁8、能力制御用の
電磁弁9、減圧器11を備えている。
In the figure, reference numeral 1 denotes an indoor unit, which is equipped with an indoor heat exchanger 2, an indoor fan 3, and the like. 4 is equipped with an outdoor unit, a compressor 5, an outdoor heat exchanger 6, an outdoor fan 7, an electromagnetic switching valve 8, an electromagnetic valve 9 for capacity control, and a pressure reducer 11.

13は運転スイツチ、17は電磁弁9を開閉す
る能力制御用の圧力スイツチである。
13 is an operation switch, and 17 is a pressure switch for controlling the ability to open and close the solenoid valve 9.

上記従来の空気調和機において、電磁切換弁8
は、冷房暖房の切換えを行ない、また電磁弁9に
よつて構成されるバイパス回路12によつて能力
制御を行なつている。このバイパス回路12は圧
縮機5の吐出管5aと吸入管5bの間に連結され
ている。また18は冷媒を加熱する冷媒加熱器
で、電気ヒータあるいは石油ボイラなどの熱源を
具備している。
In the above conventional air conditioner, the electromagnetic switching valve 8
The system performs switching between cooling and heating, and performs capacity control using a bypass circuit 12 constituted by a solenoid valve 9. This bypass circuit 12 is connected between the discharge pipe 5a and suction pipe 5b of the compressor 5. Further, 18 is a refrigerant heater that heats the refrigerant, and is equipped with a heat source such as an electric heater or an oil boiler.

19,20はそれぞれ冷媒流通制御用の開閉弁
で、冷房運転時、通常暖房時においては開閉弁1
9が開き、開閉弁20が閉じる。また冷媒加熱器
18へ冷媒を流すときは、開閉弁19が閉じ、開
閉弁20が開く。
Reference numerals 19 and 20 are on-off valves for controlling refrigerant flow, and during cooling operation and normal heating operation, on-off valve 1 is used.
9 opens, and the on-off valve 20 closes. Further, when the refrigerant is to flow into the refrigerant heater 18, the on-off valve 19 is closed and the on-off valve 20 is opened.

そして、電磁切換弁8が通電され、図中電磁切
換弁8内が破線で示された回路となつて暖房運転
が開始されると、室内熱交換器2内の圧力は上が
り、室外熱交換器6内の圧力が下がつた状態とな
る。この状態から、運転スイツチ13により運転
停止となり、電磁切換弁8にも通電されなくなつ
た場合、電磁切換弁8内は、同図の実線で示され
た回路となり、室内熱交換器2な圧力が圧縮機5
の吸入側へ伝わり、圧縮機5の吐出側より圧力が
高くなつてバイパス回路12における電磁弁9へ
は弁が閉じた状態で逆圧がかかる。
Then, when the electromagnetic switching valve 8 is energized, the inside of the electromagnetic switching valve 8 becomes the circuit shown by the broken line in the figure, and heating operation is started, the pressure inside the indoor heat exchanger 2 increases and the outdoor heat exchanger The pressure inside 6 will drop. In this state, when the operation is stopped by the operation switch 13 and the electromagnetic switching valve 8 is no longer energized, the inside of the electromagnetic switching valve 8 becomes the circuit shown by the solid line in the figure, and the pressure in the indoor heat exchanger 2 increases. is compressor 5
The pressure is transmitted to the suction side of the compressor 5, and the pressure becomes higher than the discharge side of the compressor 5, and a reverse pressure is applied to the solenoid valve 9 in the bypass circuit 12 with the valve closed.

ここでパイロツト式の電磁弁においては、弁が
閉じた状態で逆圧がかかりその差圧が減少してく
ると電磁音に類する騒音が発生するため、空気調
和機使用者にとつては、電源を切つた後に音がす
ることから、不安感を与えることになる。
In pilot-type solenoid valves, when the valve is closed and reverse pressure is applied and the differential pressure decreases, noise similar to electromagnetic noise is generated, so for air conditioner users, it is important to The sound that can be heard after the machine is turned off creates a sense of unease.

この対策として防音材によつて電磁弁9を囲む
ことも考えられるが、電磁弁コイルの温度上昇が
大きくなり、好ましくないとともに抜本的対策と
はなつていない。
As a countermeasure to this problem, it is possible to surround the solenoid valve 9 with soundproofing material, but this increases the temperature rise of the solenoid valve coil, which is not preferable and is not a fundamental countermeasure.

またバイパス回路12中に直列に逆止弁を取り
付けることも考えられるが、差圧がなくなつてく
ると逆止弁はもれを生じるため、同様に電磁弁9
より騒音が発生する。
It is also conceivable to install a check valve in series in the bypass circuit 12, but the check valve will leak when the differential pressure disappears, so similarly, the solenoid valve 9
More noise is generated.

さらに電磁弁9として可逆式電磁弁、逆止弁付
電磁弁を使用することも考えられるが、この種構
造は、コスト高となるとともに、バイパス回路1
2に流す冷媒流量が多い場合は、電磁弁9のポー
ト径を大きくしなければならず、ポート径の大き
な可逆式電磁弁、逆止弁付電磁弁は、コスト高と
なる欠点を有している。
Furthermore, it is conceivable to use a reversible solenoid valve or a solenoid valve with a check valve as the solenoid valve 9, but this type of structure increases the cost and the bypass circuit 1
2, the port diameter of the solenoid valve 9 must be increased, and reversible solenoid valves with large port diameters and solenoid valves with check valves have the disadvantage of high cost. There is.

そこで本発明は、上記従来の問題点を解決する
ために、運転スイツチ13が開放されても、電磁
弁9を一定時間開くことにより、電磁弁9にかか
る負担を低減させ、騒音をも防止するものであ
る。
Therefore, in order to solve the above conventional problems, the present invention reduces the load on the solenoid valve 9 and prevents noise by opening the solenoid valve 9 for a certain period of time even when the operation switch 13 is opened. It is something.

以下、本発明の一実施例について添付図面の第
3図を参考に説明する。なお冷凍サイクル図につ
いては従来例と同一であるので省略する。第3図
において、第2図と同一のものには同一の番号を
付して、その説明を省略する。
Hereinafter, one embodiment of the present invention will be described with reference to FIG. 3 of the accompanying drawings. Note that the refrigeration cycle diagram is the same as the conventional example, so it will be omitted. In FIG. 3, the same parts as in FIG. 2 are given the same numbers and their explanations will be omitted.

同図において、14はタイマ装置、15は前記
運転スイツチ13と連動する連動スイツチで、前
記運転停止スイツチ13の「開」、「閉」動作と逆
に「閉」、「開」動作し、タイマ装置14への通電
を制御する。16aは前記タイマ装置14の接点
で、タイマ装置14の作動と同時に接点16aが
「閉」となる。そして所定時間経過すると接点1
6aは「開」となる。
In the figure, 14 is a timer device, and 15 is an interlocking switch that works in conjunction with the operation switch 13, which operates to “close” and “open” in reverse to the “open” and “close” operations of the operation stop switch 13, and Controls power supply to the device 14. 16a is a contact of the timer device 14, and the contact 16a becomes "closed" at the same time as the timer device 14 is activated. Then, after a predetermined time has elapsed, contact 1
6a becomes "open".

次に、暖房運転から停止までの冷媒の挙動を説
明する。暖房運転時、電磁切換弁8は、破線で示
されるようにつながつており、室内熱交換器2内
の冷媒圧力が上がり、室外熱交換器6内の圧力は
下がつている。この時電磁弁9は、能力制御する
か否かによつて能力制御用の圧力スイツチ17に
より開いても、閉じてもよい。
Next, the behavior of the refrigerant from heating operation to stop will be explained. During heating operation, the electromagnetic switching valves 8 are connected as shown by broken lines, and the refrigerant pressure in the indoor heat exchanger 2 increases and the pressure in the outdoor heat exchanger 6 decreases. At this time, the solenoid valve 9 may be opened or closed by the pressure switch 17 for capacity control depending on whether capacity control is to be performed or not.

この状態から、運転スイツチ13を閉じると電
磁切換弁8は第1図の実線で示されるよう切換わ
り、運転スイツチ13と連動した連動スイツチ1
5が閉じ、同時にタイマ装置14が通電され、一
定時間接点16aが「閉」動作することにより電
磁弁9も開く。よつて室内熱交換器2内の高圧冷
媒は、電磁切換弁8を通り電磁弁9を通つて室外
熱交換器6へ流れる。なお能力制御用の圧力スイ
ツチ17は運転停止と同時に圧力が下がることに
より接点は開く。
When the operation switch 13 is closed from this state, the electromagnetic switching valve 8 is switched as shown by the solid line in FIG.
5 is closed, the timer device 14 is energized at the same time, and the contact 16a is "closed" for a certain period of time, so that the solenoid valve 9 is also opened. Therefore, the high-pressure refrigerant in the indoor heat exchanger 2 flows through the electromagnetic switching valve 8 and the electromagnetic valve 9 to the outdoor heat exchanger 6. Note that the contact of the pressure switch 17 for capacity control opens when the pressure decreases at the same time as the operation is stopped.

これにより、吐出管5aと吸入管5bとの圧力
差はなくなる。
This eliminates the pressure difference between the discharge pipe 5a and the suction pipe 5b.

その結果、運転停止後において電磁弁9に逆圧
がかかり、騒音を発生するといつた問題が解消で
き、電磁弁9の故障もなくなる。
As a result, the problem of back pressure being applied to the electromagnetic valve 9 and noise generation after the operation is stopped can be solved, and failures of the electromagnetic valve 9 can also be eliminated.

なお、本実施例の冷凍サイクルは、通常のヒー
トポンプ式冷凍サイクルの暖房の場合について説
明したが、冷房の場合も同様であり、また冷媒加
熱装置18を有する熱搬送式の冷凍サイクルにつ
いても同様に実施できる。さらに、本発明は空気
調和機の圧力調整制御方法に関するもので、制御
装置については、電子制御回路などからも同様に
実施できる。また本実施例では、能力制御用の電
磁弁9を圧力調整のための弁装置と兼ねさせた
が、圧力調整用の弁装置を別途設けても同様の作
用効果が得られる。さらにこの弁装置を取付ける
位置も冷凍サイクルの高圧側と低圧側を短絡する
位置であればよく、特に限定されるものではな
い。
Although the refrigeration cycle of this embodiment has been described for the heating case of a normal heat pump type refrigeration cycle, the same applies to the case of cooling, and the same applies to a heat transfer type refrigeration cycle having the refrigerant heating device 18. Can be implemented. Further, the present invention relates to a pressure adjustment control method for an air conditioner, and the control device can be similarly implemented using an electronic control circuit or the like. Further, in this embodiment, the electromagnetic valve 9 for capacity control also serves as a valve device for pressure adjustment, but similar effects can be obtained even if a valve device for pressure adjustment is provided separately. Further, the position where this valve device is installed is not particularly limited as long as it is a position that short-circuits the high pressure side and the low pressure side of the refrigeration cycle.

上記実施例より明らかなように、本発明におけ
る空気調和際の圧力調整制御方法は、圧縮機、電
磁切換弁、室外熱交換機、室内熱交換機および減
圧器をそれぞれ連結して冷凍サイクルを構成し、
さらに前記圧縮機の吐出側と吸入側間にこの両者
間を連通あるいは遮断する電磁開閉弁を連結し、
前記圧縮機および前記電磁切換弁への通電を可能
とする電源スイツチの開放後において一定時間前
記電磁開閉弁を開いて圧縮機の吐出側と吸入側の
圧力差をなくすようにしたもので、電源スイツチ
を開放して運転を停止しても電磁弁を一定時間開
くことにより、冷凍サイクル内における高低圧間
の圧力差を円滑に消去し、しかも電磁弁へ閉じた
状態での逆圧をかけることがないため、電磁弁は
常に保護されるとともに電磁弁の閉塞時における
冷媒の移動による騒音を発生することもないなど
効果を奏する。室外熱交換器に冷媒を流す通常の
暖房運転と比べると、冷媒加熱運転の運転停止後
にパイロツト型電磁弁に加わる逆圧は高く、その
逆圧の高さによつて発生する異常音を本発明は確
実に防止する。
As is clear from the above embodiments, the pressure adjustment control method for air conditioning according to the present invention includes a refrigeration cycle configured by connecting a compressor, an electromagnetic switching valve, an outdoor heat exchanger, an indoor heat exchanger, and a pressure reducer, respectively.
Further, an electromagnetic on-off valve is connected between the discharge side and the suction side of the compressor to communicate or disconnect between the two,
The electromagnetic switching valve is opened for a certain period of time after the power switch that enables energization to the compressor and the electromagnetic switching valve is opened to eliminate the pressure difference between the discharge side and the suction side of the compressor. By opening the solenoid valve for a certain period of time even if the switch is opened and operation is stopped, the pressure difference between high and low pressures in the refrigeration cycle is smoothly eliminated, and in addition, reverse pressure is applied to the solenoid valve when it is closed. Therefore, the solenoid valve is always protected, and there are no noises caused by the movement of refrigerant when the solenoid valve is closed. Compared to normal heating operation in which refrigerant flows through an outdoor heat exchanger, the back pressure applied to the pilot type solenoid valve after the refrigerant heating operation is stopped is high. will definitely be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は空気調和機の冷凍サイクル図、第2図
は従来例を示す電気制御回路図、第3図は本発明
の一実施例における空気調和機の電気制御回路図
である。 2……室内熱交換器、5……圧縮機、5a……
吐出管、5b……吸入管、6……室外熱交換機、
8……電磁切換弁、9……電磁開閉弁。
FIG. 1 is a refrigeration cycle diagram of an air conditioner, FIG. 2 is an electric control circuit diagram showing a conventional example, and FIG. 3 is an electric control circuit diagram of an air conditioner according to an embodiment of the present invention. 2... Indoor heat exchanger, 5... Compressor, 5a...
Discharge pipe, 5b... Suction pipe, 6... Outdoor heat exchanger,
8...Solenoid switching valve, 9...Solenoid on-off valve.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、電磁切換弁、室外熱交換機、減圧
器、室内熱交換機をそれぞれ順に連結するととも
に前記室外熱交換器と前記減圧器とに並列に冷媒
加熱器を接続して冷凍サイクルを構成し、前記圧
縮機の吐出側と吸入側をパイロツト型電磁開閉弁
を有するパイパス回路で接続した空気調和機にお
いて、前記圧縮機および前記電磁弁切換弁への通
電を可能とする電源スイツチの開放後、一定時間
前記パイロツト型電磁開閉弁を開く空気調和機の
圧力調整制御方法。
1. A refrigeration cycle is constructed by connecting a compressor, an electromagnetic switching valve, an outdoor heat exchanger, a pressure reducer, and an indoor heat exchanger in order, and connecting a refrigerant heater in parallel to the outdoor heat exchanger and the pressure reducer, In an air conditioner in which the discharge side and suction side of the compressor are connected by a bypass circuit having a pilot type electromagnetic switching valve, after opening a power switch that enables energization to the compressor and the electromagnetic valve switching valve, a constant A pressure adjustment control method for an air conditioner in which the pilot type electromagnetic on-off valve is opened at certain times.
JP57066655A 1982-04-20 1982-04-20 Method of controlling pressure regulation of air conditioner Granted JPS58184473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57066655A JPS58184473A (en) 1982-04-20 1982-04-20 Method of controlling pressure regulation of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57066655A JPS58184473A (en) 1982-04-20 1982-04-20 Method of controlling pressure regulation of air conditioner

Publications (2)

Publication Number Publication Date
JPS58184473A JPS58184473A (en) 1983-10-27
JPH0359349B2 true JPH0359349B2 (en) 1991-09-10

Family

ID=13322125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57066655A Granted JPS58184473A (en) 1982-04-20 1982-04-20 Method of controlling pressure regulation of air conditioner

Country Status (1)

Country Link
JP (1) JPS58184473A (en)

Also Published As

Publication number Publication date
JPS58184473A (en) 1983-10-27

Similar Documents

Publication Publication Date Title
JPH0341750B2 (en)
JP2008534911A (en) Prevention of reverse rotation when power supply to the compressor in the heat pump unit is stopped
JPH0359349B2 (en)
JPH0673667U (en) Pressure equalizer in multi-room air conditioning type heat pump system
JPH0359358A (en) Air conditioner
JP3420652B2 (en) Air conditioner
JP2898826B2 (en) Air conditioner
JP2019124419A (en) Air conditioning device
JP3099574B2 (en) Air conditioner pressure equalizer
JPS6246789B2 (en)
JP3913440B2 (en) Air conditioner
JPS6217571A (en) Starting compensator for air conditioner
JP4057379B2 (en) Electric expansion valve
JPS6038105Y2 (en) Air conditioner control circuit
JPS63293373A (en) Two stage operating type solenoid valve
JPH06323673A (en) Multi-room type air-conditioner
JPS6058379B2 (en) Multi-room air conditioner
JPH01142358A (en) Refrigerant heating type cooling and heating machine
JPS6038106Y2 (en) Air conditioner control circuit
KR100310362B1 (en) Air-conditioning equipment and its equalization method
JPH0581819B2 (en)
JP2000130890A (en) Refrigerating/cooling cycle, operation control method therefor and expansion valve with solenoid valve
JP2676577B2 (en) Air conditioning system and its control method
JPS6017636Y2 (en) Multi-room air conditioner
JPS6062562A (en) Preventive device for flowing sound of refrigerant for air conditioner