JPH0359173A - Flame-retardant modacrylic fiber having excellent rust-proofing property - Google Patents
Flame-retardant modacrylic fiber having excellent rust-proofing propertyInfo
- Publication number
- JPH0359173A JPH0359173A JP19116089A JP19116089A JPH0359173A JP H0359173 A JPH0359173 A JP H0359173A JP 19116089 A JP19116089 A JP 19116089A JP 19116089 A JP19116089 A JP 19116089A JP H0359173 A JPH0359173 A JP H0359173A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- weight
- fibers
- flame
- epoxy compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 77
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 title claims abstract description 15
- 239000003063 flame retardant Substances 0.000 title claims abstract description 15
- 229920002821 Modacrylic Polymers 0.000 title abstract description 7
- 150000001875 compounds Chemical class 0.000 claims abstract description 34
- 239000004593 Epoxy Substances 0.000 claims abstract description 32
- 229920000642 polymer Polymers 0.000 claims abstract description 19
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000000178 monomer Substances 0.000 claims abstract description 14
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 claims abstract description 13
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims abstract description 10
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000004846 water-soluble epoxy resin Substances 0.000 claims abstract description 7
- 125000000542 sulfonic acid group Chemical group 0.000 claims abstract description 5
- 125000000217 alkyl group Chemical group 0.000 claims abstract 2
- 229920002972 Acrylic fiber Polymers 0.000 claims description 16
- 230000002265 prevention Effects 0.000 claims description 13
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 5
- 238000009987 spinning Methods 0.000 abstract description 24
- 239000006185 dispersion Substances 0.000 abstract description 11
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 229930185605 Bisphenol Natural products 0.000 abstract description 4
- 238000005406 washing Methods 0.000 abstract description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 abstract description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 abstract description 2
- 239000003822 epoxy resin Substances 0.000 abstract 1
- 229920000647 polyepoxide Polymers 0.000 abstract 1
- 238000000034 method Methods 0.000 description 25
- 239000003921 oil Substances 0.000 description 11
- 239000002904 solvent Substances 0.000 description 9
- 239000011550 stock solution Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000001035 drying Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 6
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 229910052801 chlorine Inorganic materials 0.000 description 6
- 239000000460 chlorine Substances 0.000 description 6
- VRAHSRHQTRYBJV-UHFFFAOYSA-M sodium;2-methyl-1-oxoprop-2-ene-1-sulfonate Chemical compound [Na+].CC(=C)C(=O)S([O-])(=O)=O VRAHSRHQTRYBJV-UHFFFAOYSA-M 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- 229910052736 halogen Inorganic materials 0.000 description 5
- 150000002367 halogens Chemical class 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- RAYLUPYCGGKXQO-UHFFFAOYSA-N n,n-dimethylacetamide;hydrate Chemical compound O.CN(C)C(C)=O RAYLUPYCGGKXQO-UHFFFAOYSA-N 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 229920002239 polyacrylonitrile Polymers 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000004043 dyeing Methods 0.000 description 3
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 238000004031 devitrification Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000002166 wet spinning Methods 0.000 description 2
- 241000473391 Archosargus rhomboidalis Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 235000003385 Diospyros ebenum Nutrition 0.000 description 1
- 241000792913 Ebenaceae Species 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- INLLPKCGLOXCIV-UHFFFAOYSA-N bromoethene Chemical compound BrC=C INLLPKCGLOXCIV-UHFFFAOYSA-N 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000006298 dechlorination reaction Methods 0.000 description 1
- 238000007033 dehydrochlorination reaction Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- -1 etc. Chemical compound 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Artificial Filaments (AREA)
- Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は防錆性に優れた難燃化アクリル系繊維に関する
。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to flame-retardant acrylic fibers with excellent rust prevention properties.
〈従来の技術〉
アクリル系繊維は、風合いや染色性が優れることから古
くから広範囲の用途で使用されてbる。とくに近年は社
会的要求の高度化もあってその最大の欠点である易燃性
を改良した含ハロゲンアクリル糸線mいわゆるモダクリ
ル繊維もその需要量を伸ばしてきている。<Prior Art> Acrylic fibers have been used for a long time in a wide range of applications because of their excellent texture and dyeability. Particularly in recent years, as social demands have become more sophisticated, the demand for halogen-containing acrylic fibers, so-called modacrylic fibers, which have improved flammability, which is their biggest drawback, has increased.
しかしモダアクリル繊維では特に塩素成分を共重合成分
に含有する場合、繊維が光や熱によって、脱塩素反応を
かこし、繊維製造工程および紡績工程での発錆の問題の
要因となっている。However, when modacrylic fibers contain a chlorine component as a copolymer component, the fibers undergo a dechlorination reaction when exposed to light or heat, which causes rusting problems during the fiber manufacturing process and spinning process.
特開昭57−82516号公報、特開昭57−8961
5号公報ではグリシジルメタクリレート系重合体と共有
させることによって防錆性に効果があるとの記載がある
。JP-A-57-82516, JP-A-57-8961
Publication No. 5 states that rust prevention is effective when used in combination with a glycidyl methacrylate polymer.
グリシジルメタクリレート系重合体を共有させることは
、あらかじめグリシジルメタクリレ−ト系重合体を調製
する必要があり、工業的に有効な手法とは言し難く、製
造工程、紡績工程における発錆の問題は、塩素含有難燃
性モダアクリル繊維の大きな問題であるにもかかわらず
、有効な手段がい1だ見出されてい々いのが現状である
。Sharing a glycidyl methacrylate polymer requires preparing the glycidyl methacrylate polymer in advance, which is difficult to call an industrially effective method, and the problem of rusting during the manufacturing process and spinning process is Despite this being a major problem with chlorine-containing flame-retardant modacrylic fibers, no effective means have yet been found.
〈発明が解決しようとする課題〉
本発明Fii化ビニリデンtたは塩化ビニルを含有する
難燃性アクリル系繊維の有する製造工程、紡績工程にお
ける発錆の問題を解決し、防錆性を有する難燃性アクリ
ル系繊維を提供することにある。<Problems to be Solved by the Invention> The present invention solves the problem of rusting in the manufacturing process and spinning process of the flame-retardant acrylic fiber containing vinylidene fii or vinyl chloride, and The purpose of the present invention is to provide a flammable acrylic fiber.
<l1題を解決するための手段〉
本発明の要旨とするところは、アクリロニトリル45〜
70重量僑、塩化ビニリデン筐たは塩化ビニル30〜5
5重[1スルホン酸基含有単量体cLS〜3重量多カよ
び不飽和単量体0〜55重isの重合体からなる繊維で
あって、該Ni維衣表面ビスフェノールム型水溶性エポ
キシ樹脂筐たは下記式(1)に示すエポキシ化合物を繊
維に対して1.0〜1.5重量傷付着せしめたことを特
徴とする防錆性に優れた難燃化アクリル系繊維にある。<Means for Solving Problem 1> The gist of the present invention is that acrylonitrile 45-
70 weight, vinylidene chloride case or vinyl chloride 30-5
A fiber consisting of a polymer of 5-[1 sulfonic acid group-containing monomer cLS to 3-weight polycarbonate and unsaturated monomer 0-55 monomer is, the Ni fiber coating surface being a bisphenol-type water-soluble epoxy resin. The flame-retardant acrylic fiber is characterized by having 1.0 to 1.5 weight of an epoxy compound represented by the following formula (1) adhered to the fiber, and has excellent rust prevention properties.
但し、式中 a = 16、t) −4,4、R−アル
キル基本発明の繊維を構成するに用すられる重合体はハ
ロゲン含有単量体を共重合させたアクリロニトリル系重
合体である必要がある。However, in the formula a = 16, t) -4,4, R-alkyl The polymer used to construct the fiber of the basic invention must be an acrylonitrile-based polymer copolymerized with a halogen-containing monomer. be.
アクリル系繊維中にハロゲンを含有させる方法としては
アクリロニトリルとハロゲン含有単量体を共重合させる
方式が一般的であり、かつ共重合体より得られた繊維が
アクリル系繊維の性能を損なわないことよりもっとも好
ましい。A common method for incorporating halogen into acrylic fibers is to copolymerize acrylonitrile and a halogen-containing monomer, and the fibers obtained from the copolymer do not impair the performance of the acrylic fibers. most preferred.
ハロゲン含有単量体としては塩化ビニル、塩化ビニリデ
ン、臭化ビニル等が挙げられるが、塩化ビニリデン、塩
化ビニルが好1しく用いられる。特に塩化ビニリデンは
沸点がやや高いこともあって重合工程での取り扱いが容
易であるとともに塩化ビニリデン共重合体より製造され
た繊維の特性が難燃性能のレベルとのバランスからみて
一般のアクリル系繊維に近い優れた力学的あるいは熱的
性質を保有しているため、有利に使用することができる
。Examples of the halogen-containing monomer include vinyl chloride, vinylidene chloride, vinyl bromide, etc., and vinylidene chloride and vinyl chloride are preferably used. In particular, vinylidene chloride has a slightly high boiling point, making it easy to handle in the polymerization process, and the characteristics of fibers made from vinylidene chloride copolymers are superior to general acrylic fibers in terms of their flame retardant performance. It can be used advantageously because it has excellent mechanical or thermal properties close to those of .
塩化ビニリデンまたは塩化ビニルの含有量は、難燃M!
維としての有効な難燃性能を保有させるためには30重
量優以上が必要である。また5511Ef4を含有させ
てかけば現在の実用に供される用途で大部分の製品に利
用可能であって、難燃助剤との組合わせを含めるとこの
繊維はすべての用途に応用が可能である。The content of vinylidene chloride or vinyl chloride is flame retardant M!
In order to maintain effective flame retardant performance as a fiber, it is necessary to have a weight of over 30% by weight. Furthermore, if 5511Ef4 is added, it can be used in most products in current practical applications, and when combined with flame retardant additives, this fiber can be used in all applications. be.
かくして得られた塩素含有アクリロニトリル系重合体は
従来のアクリル系繊維の紡糸方式によってfs、、!1
に賦型されるが、生産性あるいは熱履歴の少ない点から
湿式紡糸方式で繊維化することが望筐しい。The thus obtained chlorine-containing acrylonitrile polymer is spun by a conventional acrylic fiber spinning method. 1
However, from the viewpoint of productivity and low heat history, it is preferable to use a wet spinning method to form fibers.
しかし、塩素含有アクリロニトリル系重合体を湿式紡糸
方式によって繊維に賦型する場合その凝固特性からボイ
ドを生成しやすb欠点かある。このボイドは乾燥工程で
一旦焼きつぶされるものの湿熱緩和工程あるいは染色工
程において再び発生し、繊維を失透させ染色鮮明性を損
なわせる。However, when a chlorine-containing acrylonitrile polymer is shaped into fibers by a wet spinning method, it has a drawback that voids are easily generated due to its coagulation properties. Although these voids are once burned out in the drying process, they occur again in the moist heat relaxation process or the dyeing process, causing the fibers to devitrify and impairing the clarity of the dyeing.
このような問題を解決するために、メタクリルスルホン
酸ソーダの如きスルホンe基含有単量体を共重合させ重
合体中にスルホン酸基を導入させる手法が有効であり、
スルホン酸基含有単量体の含有量はa5〜3重量憾、好
筐しくば1.0〜五〇重量噂である。In order to solve such problems, an effective method is to copolymerize a sulfone e group-containing monomer such as sodium methacrylsulfonate to introduce a sulfonic acid group into the polymer.
The content of the sulfonic acid group-containing monomer is rumored to be 1.0 to 50% by weight, and 1.0 to 50% by weight.
その他の共重合成分としての不飽和単量体がt4知られ
ているが、これらは繊維の特性改良のためによって導入
できる単量体で、例えばアクリル酸、メタアクリル酸、
酢酸ビニル、メタアクリルアミドあるいはそれらのエス
テル類等を挙げることができる。ただし共重合量は多く
とも5.5重量鳴に限定すべきであり、これ以上の導入
は繊維の耐熱性を特徴とする特性を著しく低下させる。Other unsaturated monomers as copolymerization components are known, but these are monomers that can be introduced to improve the properties of fibers, such as acrylic acid, methacrylic acid,
Examples include vinyl acetate, methacrylamide, and esters thereof. However, the amount of copolymerization should be limited to at most 5.5% by weight; introduction of more than this will significantly reduce the heat resistance properties of the fibers.
本発明のIRmの防錆性は、ビスフェノールム型水溶性
エポキシ樹脂または前記式(1)に示すエポキシ化合物
を繊維に対して1.0〜1.51!量優M!雑表面に付
着させることによって得られる。The rust prevention property of the IRm of the present invention is 1.0 to 1.51 when the bisphenol type water-soluble epoxy resin or the epoxy compound shown in the formula (1) is applied to the fibers! Quantity M! Obtained by adhering to rough surfaces.
一般的にエポキシ化合物は脱塩酸反応により生成した塩
酸を化学反応により不活性にする効果を有していること
は公知である。しかし本発明のm雑を製造する工程にか
いて繊維の乾燥、湿熱緩和処理を行なう必要があり、こ
のような繊維に熱履歴を与える工程にかいて易反応性の
エポキシ化合物は容易に分解し本来の目的を達成するこ
とが出来なしだけでなく、繊維を桃色に変色させる欠点
を有していた0本発明では前記の特定のエポキシ化合物
を使用することによってこのようなエポキシ化合物の欠
点を解決し、繊維に防錆性を与えることが出来る。It is generally known that epoxy compounds have the effect of inactivating hydrochloric acid produced by a dehydrochlorination reaction through a chemical reaction. However, in the process of manufacturing the m-miscellaneous material of the present invention, it is necessary to dry the fibers and subject them to moist heat relaxation treatment, and in the process of imparting thermal history to the fibers, the highly reactive epoxy compounds are easily decomposed. In addition to being unable to achieve the original purpose, it also had the disadvantage of causing the fibers to turn pink.The present invention solves these disadvantages of epoxy compounds by using the above-mentioned specific epoxy compounds. It can also impart rust prevention properties to the fibers.
本発明に使用されるエポキシ化合物はビスフェノールム
型水溶性エポキシ樹脂、または前記式(1)に示すエポ
キシ化合物である。これら化合物を繊維に対して1.0
〜t5重量噂を繊維表面に付着させることによって本発
明の目的を達成することができる。付着量が1.0重量
憾未満では十分な防錆性を与えることが出来ず、逆に1
.5重最上を超えるとN&維の乾燥工程にかいて乾燥ロ
ールへのガムアップ現象を起こし、操業性の低下の原因
となる。The epoxy compound used in the present invention is a bisphenol type water-soluble epoxy resin or an epoxy compound shown in the above formula (1). 1.0 of these compounds to fiber
The object of the present invention can be achieved by attaching a ~t5 weight layer to the fiber surface. If the amount of adhesion is less than 1.0% by weight, it will not be possible to provide sufficient rust prevention;
.. When the number of layers exceeds 5, gum-up phenomenon occurs on the drying roll during the drying process of N&fiber, which causes a decrease in operability.
エポキシ化合物を繊維表面に付着させる方法としては、
延伸洗浄後の未乾燥iたは乾燥した繊維をエポキシ化合
物の分散液中に浸せきした後乾燥固着させる方式が挙げ
られるが、製造工程上前者の未乾燥繊維を浸せきする方
式が好筐しい。エポキシ化合物の繊維上への固着温度は
130〜130℃の範囲で有効に実施される。The method for attaching an epoxy compound to the fiber surface is as follows:
Methods include immersing the undried or dried fibers after stretching and washing in a dispersion of an epoxy compound and then drying and fixing them, but the former method of immersing the undried fibers is preferable in terms of the manufacturing process. The temperature at which the epoxy compound is fixed onto the fibers is effectively carried out within the range of 130 to 130°C.
また繊維表面へ付着されるエポキシ化合物の量は、エポ
キシ化合物の分散液中へ連続的に添加される量を調整す
ることによって設定できる。Further, the amount of the epoxy compound attached to the fiber surface can be set by adjusting the amount continuously added to the dispersion of the epoxy compound.
一般に紡績に供されるアクリル系繊維はその工程通過性
を確保するために防錆用の油剤を繊維表面に付着される
。本発明に用いられるエポキシ化合物はこれらの紡績油
剤との混合分散液として繊維に付着するか、筐たは別々
の分散液として*Sに付着せしめてもよく、防錆性の効
果を損なうものではない。しかし、本発明に用いられる
以外のエポキシ化合物は紡績用油剤の中の制電成分であ
るカチオン油剤とは反応し防錆効果を有しなくなる。In general, acrylic fibers used for spinning are coated with a rust-preventing oil agent on the surface of the fibers to ensure processability. The epoxy compound used in the present invention may be attached to the fibers as a mixed dispersion with these spinning oils, or may be attached to the casing or *S as a separate dispersion without impairing the rust-preventing effect. do not have. However, epoxy compounds other than those used in the present invention react with the cationic oil, which is an antistatic component in the spinning oil, and lose their antirust effect.
本発明に用いられるアクリロニトリル系重合体を溶解可
能な溶剤として、好1しくはジメチルアセトアミド、ジ
メチルホルムアミド、ジメチルスルホキシド等の有機溶
剤が挙げられる。Preferable examples of the solvent capable of dissolving the acrylonitrile polymer used in the present invention include organic solvents such as dimethylacetamide, dimethylformamide, and dimethylsulfoxide.
なお溶剤として無S塩類、強酸塩、アセトン等も利用可
能であるが、条件設定にあたっては個々に検討を要す。Note that S-free salts, strong acid salts, acetone, etc. can also be used as solvents, but each condition must be considered individually.
紡糸原液の調製にはアクリロニトリル系重合体の濃度を
工程通過性確保の理由から15〜30重を優の溶剤溶液
とし、熱による着色をさけるため30℃以下の低温で溶
解する。本発明の繊維の耐光性、耐熱性、難燃性を向上
させる上で紡糸原液に種々の化合物を添加することも、
本発明の効果を損なわないものであれば可能である。To prepare the spinning stock solution, the concentration of the acrylonitrile polymer is set at 15 to 30 parts by weight in order to ensure process passability, and the solution is dissolved at a low temperature of 30 DEG C. or lower to avoid coloring due to heat. In order to improve the light resistance, heat resistance, and flame retardance of the fiber of the present invention, various compounds can be added to the spinning dope.
Any method is possible as long as it does not impair the effects of the present invention.
このように調製された紡糸原液は溶剤と水との混合液よ
りなる凝固浴にノズルから吐出して未延伸糸に賦型され
る。The spinning stock solution prepared in this manner is discharged from a nozzle into a coagulation bath consisting of a mixed solution of a solvent and water, and is shaped into an undrawn yarn.
得られた未延伸糸は洗浄−延伸工程で溶剤を洗い流しな
がら延伸されるが染色工程における失透を紡糸するうえ
で熱水中での延伸比を出来るだけ高く設定することが好
筐しい。通常最大延伸比の30傷となるようにして熱水
中の延伸を行ない油剤および本発明に用いられるエポキ
シ化合物の水分散液中に浸せき処理後、乾燥緻密化並び
エポキシ化合物の付着を行なう。必要に応じては乾燥終
了後乾熱化で再度延伸を行なうことも可能である。The obtained undrawn yarn is drawn while washing away the solvent in the washing-drawing process, but it is preferable to set the drawing ratio in hot water as high as possible in order to spin the devitrification in the dyeing process. Stretching is carried out in hot water at a normal maximum stretching ratio of 30 scratches, and after immersion treatment in an oil agent and an aqueous dispersion of the epoxy compound used in the present invention, drying and densification and attachment of the epoxy compound are performed. If necessary, it is also possible to perform stretching again by dry heat after drying.
延伸乾燥後の繊維は湿熱下で弛緩緩和処理を施され強伸
度バランスの取れたMMとした後、必要な長さにカット
して紡績用原綿とする。このようにして得られたm維は
、従来から刈られている塩素含有5lffi性アクリル
系繊維に比較して優れた防錆性を有する難燃化アクリル
系繊維である。After stretching and drying, the fibers are subjected to a relaxation treatment under moist heat to form MM with well-balanced strength and elongation, and then cut into required lengths to obtain raw cotton for spinning. The thus obtained m-fibers are flame-retardant acrylic fibers that have superior rust prevention properties compared to conventionally cut chlorine-containing acrylic fibers.
〈実施例〉
以下、実施例により本発明をさらに詳しく説明する。実
施例中の評価法は以下のとかりである。難燃性の評価は
酸素指数法(Jより K720−1a1号)に拠った
。重合体比粘度の測定はα5幅ジメチルホルムアミド溶
液25℃で行なった。繊維の透明性の評価は以下に示す
光透過重性により行なった。<Example> Hereinafter, the present invention will be explained in more detail with reference to Examples. The evaluation method in the examples is as follows. Flame retardancy was evaluated based on the oxygen index method (No. K720-1a1 from J). The polymer specific viscosity was measured in α5 dimethylformamide solution at 25°C. The transparency of the fibers was evaluated using the light transmission weight shown below.
1時間清水処理した繊維を長さ30鯛に切断し、これを
5を採取し、たて×よと100■×200閣、厚さ1■
のフェルトをニードルパンチ法によシ作成する。The fibers treated with fresh water for 1 hour were cut into 30 lengths of sea bream, and 5 pieces were collected, 100cm wide x 200cm wide, 1cm thick.
The felt is created using the needle punch method.
10 m X 20−のフェルト片、重量soqを採取
し、ベンジルアルコール5mを入れた厚さ10−のガラ
スセルに入れ、この時の透過率を分光光度計を用いて4
915 nmの波長で測定する。A 10 m x 20 m felt piece weighing soq was taken and placed in a 10 m thick glass cell containing 5 m of benzyl alcohol.
Measured at a wavelength of 915 nm.
この方法によれば少量のサンプルでしかも精度よく判定
できる。筐た透過率鳴で表示される数値の絶対値は小さ
いが清水処理繊維の透過率が40曝以上あればその繊維
の透明性は極めて良好であり、失透防止性は十分と判断
される。According to this method, determination can be made with high accuracy even with a small amount of sample. Although the absolute value of the numerical value displayed as the transmittance value is small, if the transmittance of the clean water-treated fiber is 40 or more, the transparency of the fiber is extremely good, and the devitrification prevention property is judged to be sufficient.
防錆性の評価は以下に示す方式でおこなった。Rust prevention was evaluated using the method shown below.
十分開繊した繊維11?を200 cc のビーカー
に入れ蓋をする。これを140℃の乾熱下で40分処理
を行なう。処理後の繊維の中に紡績スチールビン10本
を差し込み634RH。Fully opened fiber 11? Pour into a 200 cc beaker and cover with a lid. This is treated under dry heat at 140° C. for 40 minutes. Insert 10 spun steel bottles into the treated fibers to obtain 634RH.
25℃の恒温恒湿下で24時間放置する。放置後の紡績
スチールビンを取り出し、各ビンの発錆状況をチエツク
し、その度合いに応じてポイントを付けた。ポイントは
30点を満点とし、30点が全く発錆なし、0点がすべ
て発錆てあり、ポイントが高い程防錆性に優れているこ
とを示す。Leave it for 24 hours under constant temperature and humidity at 25°C. The spun steel bottles were taken out after being left unused, and the rusting status of each bottle was checked, and points were given according to the degree of rust. The maximum score is 30, with 30 points being no rust and 0 points being all rust, and the higher the point, the better the rust prevention.
繊維表面に付着したエポキシ化合物の量は以下の方式で
測定した。The amount of epoxy compound attached to the fiber surface was measured by the following method.
十分開繊した原綿をエタノールで処理し、繊維表面に付
着したエポキシ化合物を抽出する。Thoroughly opened raw cotton is treated with ethanol to extract the epoxy compounds attached to the fiber surface.
この抽出液中のエボキVt−樵酸−ジオキサン法によっ
て定量する( W eq /f−繊維)。この値をそれ
ぞれのエポキシ化合物のエボΦシ当量(E f/eq)
で割ることによって繊維表面に付着したエポキシ化合物
の量を定量した。The amount of ebony in this extract is determined by the Vt-boric acid-dioxane method (W eq /f-fiber). This value is calculated as the epoxy equivalent (E f/eq) of each epoxy compound.
The amount of epoxy compound attached to the fiber surface was quantified by dividing by .
繊維表面に付着したエポキシ化合物の量(vrtlg)
= −X 10 G実施例1
アクリロニトリル5a5重量傷、塩化ビニリダン上0重
量係、メタクリルスルホン酸ソーダ1.5重量幅からな
る重合体(比粘度1.10 )をジメチルアセトアミド
に40℃で溶解し、重合体濃度25重量多の紡糸原液を
得た。この紡糸原液を孔径(1076mのノズルを用い
て53fi量幅のジメチルアセトアミド−水の混合液中
(30℃)に紡出し、脱溶剤処理を施した後熱水中で6
倍延伸し、油剤シよびビスフェノールA型水溶性エポキ
シ樹脂(InM−101ナガセ化或工業製)を繊維に対
して第1表に示すように連続的に供給される水分散液中
に浸せき処理して付与した後140℃で乾燥し、温熱緩
和処理を施し1.75デニールの繊維をえた。Amount of epoxy compound attached to fiber surface (vrtlg)
= -X 10 G Example 1 A polymer (specific viscosity 1.10) consisting of acrylonitrile 5a 5 weight range, vinylidan chloride 0 weight range, and sodium methacryl sulfonate 1.5 weight range was dissolved in dimethylacetamide at 40°C. A spinning dope having a polymer concentration of 25% by weight was obtained. This spinning dope was spun into a dimethylacetamide-water mixture (30°C) with a pore size of 53 fi using a nozzle with a hole size of 1076 m, and after solvent removal treatment, it was placed in hot water for 60 min.
The fibers were stretched twice and treated by immersing an oil solution and a bisphenol A type water-soluble epoxy resin (InM-101 manufactured by Nagase Kaoru Kogyo Co., Ltd.) into an aqueous dispersion that was continuously supplied to the fibers as shown in Table 1. After application, it was dried at 140°C and subjected to thermal relaxation treatment to obtain a 1.75 denier fiber.
との繊維を先に述べた方法によ り評価した。The fibers of was evaluated.
第
表
実施例2
アクリロニトリル5&5重t4、塩化ビニリデン40重
量l メタクリルスルホン酸ソーダ1.5重量傷からな
る重合体(比粘度1.1 o )をジメチルアセトアミ
ドに40℃で溶解し、重合体濃度25重量最上紡糸原液
を得た。この紡糸原液を孔径[LO76+wのノズルを
用いて55重量鳴のジメチルアセトアミド−水の混合液
中(30℃)に紡出し、脱溶剤処理を施した後熱水中で
6倍延伸し、油剤わよびビスフェノールA型水溶性エポ
キン樹脂(ml:M−10!S ナガセ化成工業製)
を繊維に対して第2表に示すように連続的に供給される
水分散液中に浸せき処理して付与した後140℃で乾燥
し、湿熱緩和処理を施し1.75デニールの繊維をえた
。この繊維を先に述べた方法により評価した。Table Example 2 A polymer (specific viscosity 1.1 o ) consisting of acrylonitrile 5&5 weight t4, vinylidene chloride 40 weight liter, sodium methacrylsulfonate 1.5 weight scratches (specific viscosity 1.1 o) was dissolved in dimethylacetamide at 40°C, and the polymer concentration was 25. A weight best spinning stock solution was obtained. This spinning stock solution was spun into a dimethylacetamide-water mixture (30°C) of 55 weight by weight using a nozzle with a hole diameter of LO76+W, and after being subjected to solvent removal treatment, it was stretched 6 times in hot water, and an oil solution was drawn. and bisphenol A type water-soluble Epoquine resin (ml: M-10!S manufactured by Nagase Chemical Industries)
was applied to the fibers by immersion in an aqueous dispersion that was continuously supplied as shown in Table 2, dried at 140° C., and subjected to a moist heat relaxation treatment to obtain fibers of 1.75 denier. This fiber was evaluated by the method described above.
第 2 表
実施例3
アクリロニト
リ ル 5
a5重ダン上
塩化ビニリ
デン40重量%、メタクリルスルホン酸ソーダ1.5重
量幅からなる重合体(比粘度1.10 )をジメチルア
セトアミドに40℃で溶解し、重合体濃度25重ダン上
紡糸原液を得た。この紡糸原液を孔径住076閣のノズ
ルを用いて533重量のジメチルアセトアミド−水の混
合液中(30℃)に紡出し、脱溶剤処理を施した後熱水
中で6倍延伸し、油剤)よび前記式(1)に示すエポキ
シ化合物(ブナコールKM−125ナガセ化成工業製)
を繊維に対して第3表に示すように連続的に供給される
水分散液中に浸せき処理して付与した後140℃で乾燥
し、湿熱緩和処理を施し1.75デニールの繊維をえた
。この繊維を先に述べた方法にょb評価した。Table 2 Example 3 Acrylonitrile 5a A polymer consisting of 40% by weight of vinylidene chloride and 1.5% by weight of sodium methacrylsulfonate (specific viscosity 1.10) was dissolved in dimethylacetamide at 40°C, A spinning dope with a combined density of 25 times was obtained. This spinning stock solution was spun into a 533 weight dimethylacetamide-water mixture (30°C) using a nozzle with a pore size of 076 mm, and after being subjected to solvent removal treatment, it was stretched 6 times in hot water (oil agent). and the epoxy compound shown in the above formula (1) (Bunacol KM-125 manufactured by Nagase Chemical Industries)
was applied to the fibers by immersion in an aqueous dispersion continuously supplied as shown in Table 3, dried at 140° C., and subjected to a moist heat relaxation treatment to obtain fibers of 1.75 denier. This fiber was evaluated using the method previously described.
第
表
実施例4
アクリロニトリル5a5重量%、塩化ビニリデン40重
量%、メタクリルスルホン酸ソーダ1.5重量優からな
る重合体(比粘度1.10 )をジメチルアセトアミド
に400で溶解し、重合体濃度25重量優の紡糸原液を
得た。この紡糸原液を孔径an 76wrのノズルを用
いて533重量のジメチルアセトアミド−水の混合液中
(30℃)に紡出し、脱溶剤処理を施した後熱水中で6
倍延伸し1.油剤釦よびビスフェノールム涜水溶性エポ
キシ樹脂(IIIM−1(11ナガセ化成工業#)を繊
維に対してt o i量優にたるように連続的に供給さ
れる水分散液中に別涜に浸せき処理して付与した後14
0℃で乾燥し、湿熱緩和処理を施し1.75デニールの
繊維をえた。この繊維の防錆性は30点で紡績油剤と混
合し付着せしめたものと同様な防錆効果が得られた。(
実験A17)
比較例1
アクリロニトリル5a5重量鳴、塩化ビニリデン40i
量1 メタクリルスルホン酸ソーダt 5 fg量噂か
らなる重合体(比粘度1.10 )をジメチルアセトア
ミドに40℃で溶解し、重合体濃度25重ダン上紡糸原
液を得た。この紡糸原液を孔径[1L076囮のノズル
を用いて53重tht優のジメチルアセトアミド−水の
混合液中(30℃)に紡出し、脱溶剤処理を施した後熱
水中で6倍延伸し、油剤シよび第4表に示すエポキシ化
合物を繊維に対して1.0重量優になるように連続的に
供給される水分散液中に別々に浸せき処理して付与した
後1
4
℃で乾燥し、
温熱緩和処理を施し1゜
デニールの繊維をえ
た。Table Example 4 A polymer (specific viscosity 1.10) consisting of 5% by weight of acrylonitrile 5a, 40% by weight of vinylidene chloride, and 1.5% by weight of sodium methacrylsulfonate was dissolved in dimethylacetamide at a concentration of 400%, and the polymer concentration was 25% by weight. A spinning stock solution of Yu was obtained. This spinning stock solution was spun into a 533 weight dimethylacetamide-water mixture (30°C) using a nozzle with a hole diameter of 76 wr, and after solvent removal treatment, it was placed in hot water for 6 hours.
Stretched 1. A water-soluble epoxy resin (IIIM-1 (11 Nagase Kasei Kogyo #)) containing an oil agent button and bisphenol is immersed in an aqueous dispersion solution that is continuously supplied to the fibers so that the fibers are coated in an extremely large amount. After processing and applying 14
It was dried at 0°C and subjected to moist heat relaxation treatment to obtain a 1.75 denier fiber. The rust prevention effect of this fiber was 30 points, and the same rust prevention effect as that obtained by adhering the fiber by mixing it with a spinning oil was obtained. (
Experiment A17) Comparative Example 1 Acrylonitrile 5a5 weight, vinylidene chloride 40i
Amount: 1 Sodium methacrylsulfonate t 5 fg A polymer (specific viscosity: 1.10) consisting of the following was dissolved in dimethylacetamide at 40°C to obtain a stock solution for spinning on top with a polymer concentration of 25 times. This spinning stock solution was spun into a dimethylacetamide-water mixture (30°C) with a pore size of [1L076] using a nozzle with a pore diameter of [1L076], and after solvent removal treatment, it was stretched 6 times in hot water. The oil agent and the epoxy compound shown in Table 4 were separately immersed in an aqueous dispersion that was continuously supplied so that the weight of the fiber was 1.0% by weight, and then dried at 14°C. A 1° denier fiber was obtained by thermal relaxation treatment.
第 表 エポキシ化合物■ ブナコール旧ト ナガセ化戒工業製 エポキシ化合物■ ブナコールKx− ナガセ化成工業製 エポキシ化合物■ ブナコールff1X−31 ナガセ化或工業製 EIR OH!OOH重−〇H−OH雪 \0/ Rニ ーOH1たは一00H禽0H−OH。No. table Epoxy compound ■ Bunacol old To Manufactured by Nagase Kakai Industries Epoxy compound ■ Bunacol Kx- Manufactured by Nagase Chemical Industries Epoxy compound ■ Bunacol ff1X-31 Manufactured by Nagase Kaoru Kogyo EIR Oh! OOH heavy-〇H-OH snow \0/ Rni -OH1 or 100H bird0H-OH.
\0′
エポキシ化合物の
ブナコールKX−81
ナガセ化成工業製
OH雪−0H−oHt OOH,口H,OOH,01(
−OH食\0/ \0/〈
発明の効果〉
本発明は従来から問題とされている塩化ビニリデン、塩
化ビニル等塩素含有アクリル系繊維の発錆性の問題を改
良し、しかも優れた耐先安定性、透明性を有する難燃性
アクリル系繊維を提供することを可能にし、難燃繊維と
しての用途が広がり社会的環境の安全向上に関連した多
方面からの要請に答えることができるものである。\0' Epoxy compound Bunacol KX-81 OH Snow-0H-oHt manufactured by Nagase Chemical Industries OOH, H, OOH, 01 (
-OH food \0/ \0/
Effects of the Invention> The present invention improves the rusting problem of chlorine-containing acrylic fibers such as vinylidene chloride and vinyl chloride, and provides flame retardant fibers with excellent tip stability and transparency. This makes it possible to provide acrylic fibers, which can be used as flame-retardant fibers, and can meet demands from various fields related to improving the safety of the social environment.
Claims (1)
たは塩化ビニル30〜55重量%、スルホン酸基含有単
量体0.5〜3重量%および不飽和単量体0〜5.5重
量%の重合体からなる繊維であつて、該繊維表面にビス
フェノールA型水溶性エポキシ樹脂または下記式(1)
に示すエポキシ化合物を繊維に対して1.0〜1.5重
量%付着せしめたことを特徴とする防錆性に優れた難燃
化アクリル系繊維。 ▲数式、化学式、表等があります▼式(1) 但し、式中a=1.6、b=4.4、R=アルキル基Scope of Claims: 45-70% by weight of acrylonitrile, 30-55% by weight of vinylidene chloride or vinyl chloride, 0.5-3% by weight of sulfonic acid group-containing monomers, and 0-5.5% by weight of unsaturated monomers. % of a polymer, the fiber surface is coated with bisphenol A type water-soluble epoxy resin or the following formula (1).
A flame-retardant acrylic fiber with excellent rust prevention properties, characterized in that 1.0 to 1.5% by weight of the epoxy compound shown in the following is attached to the fiber. ▲There are mathematical formulas, chemical formulas, tables, etc.▼Formula (1) However, in the formula, a = 1.6, b = 4.4, R = alkyl group
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19116089A JPH0359173A (en) | 1989-07-24 | 1989-07-24 | Flame-retardant modacrylic fiber having excellent rust-proofing property |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19116089A JPH0359173A (en) | 1989-07-24 | 1989-07-24 | Flame-retardant modacrylic fiber having excellent rust-proofing property |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0359173A true JPH0359173A (en) | 1991-03-14 |
Family
ID=16269900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19116089A Pending JPH0359173A (en) | 1989-07-24 | 1989-07-24 | Flame-retardant modacrylic fiber having excellent rust-proofing property |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0359173A (en) |
-
1989
- 1989-07-24 JP JP19116089A patent/JPH0359173A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0359173A (en) | Flame-retardant modacrylic fiber having excellent rust-proofing property | |
US3253880A (en) | Sulfonation of acrylonitrile polymers with sulfur trioxide to increase dye receptivity | |
US3846226A (en) | High luster,antisoiling acrylic fibers | |
CN106609401B (en) | A kind of flexible fiber and preparation method thereof with flame retardant property | |
CN105887482B (en) | A kind of preparation method of the fire-retardant polyacrylonitrile fire resistance fibre containing high vertical structure polyacrylonitrile | |
JPH0364579A (en) | Flame-retardant acrylic fiber having excellent rust-proofing property, light-stability and transparency | |
JPH06158422A (en) | Flame-retardant acrylic fiber having high shrinkage | |
US2734043A (en) | Solutions of polypyrrolidone | |
US2571777A (en) | Acrylonitrile polymer mixed with copolymer of vinyl acetate and isopropenyl acetate | |
JPS5930803B2 (en) | Acrylic synthetic fiber with excellent flame retardancy | |
JPS63265839A (en) | Sizing agent for glass fiber | |
US3306955A (en) | Bacteriostatic acrylonitrile polymers | |
JP2601775B2 (en) | Flame retardant acrylic composite fiber | |
JPS63126913A (en) | Highly flame-retardant acrylic fiber having excellent light resistance and transparency and production thereof | |
JPH02210027A (en) | Production of flame-retardant acrylic fiber with excellent opacification-proofness | |
JP2646375B2 (en) | Flame retardant acrylic fiber with excellent rust resistance, light stability, and transparency | |
KR970007687B1 (en) | Preparation process of high shrinkage polyester fiber | |
TWI508982B (en) | A method for fabricating a flame retardant modified pan and a flame retardant fiber | |
JP2851366B2 (en) | Method for producing water-repellent polyester fiber with excellent durability | |
JPH03294515A (en) | Production of highly flame-retardant acrylic fiber having excellent transparency | |
JPS61119720A (en) | Production of acrylic fiber | |
JP3461966B2 (en) | Flame-retardant acrylic synthetic fiber with excellent light resistance | |
JPH02277810A (en) | Flame-retardant high-shrinkage modacrylic fiber | |
JPH01183574A (en) | Modified polyester fiber | |
JPS62223380A (en) | Treatment of acrylic fiber |