JPH035878B2 - - Google Patents

Info

Publication number
JPH035878B2
JPH035878B2 JP17495687A JP17495687A JPH035878B2 JP H035878 B2 JPH035878 B2 JP H035878B2 JP 17495687 A JP17495687 A JP 17495687A JP 17495687 A JP17495687 A JP 17495687A JP H035878 B2 JPH035878 B2 JP H035878B2
Authority
JP
Japan
Prior art keywords
medium
penicillium
growth
present
chromaticity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17495687A
Other languages
Japanese (ja)
Other versions
JPS6418498A (en
Inventor
Akira Watanabe
Shigeki Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP17495687A priority Critical patent/JPS6418498A/en
Publication of JPS6418498A publication Critical patent/JPS6418498A/en
Publication of JPH035878B2 publication Critical patent/JPH035878B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は微生物による難生物分解性色度成分の
除去方法に関するものであり、より詳細にはクラ
フトパルプ廃水、し尿、下水、ゴミ汁廃水などの
難生物分解性の色度成分を含有する廃水に、ペニ
シリウム・ヤンチネラム(Penicillium
janthinellum)を接種して、廃水中の色度成分を
吸着もしくは分解により除去する方法に関するも
のである。 <従来の技術> 近年、環境保全に対する社会的関心が高まつて
きたこと、および水資源の有効利用等の観点か
ら、処理水をより高度に浄化することが求められ
ている。 特に色度成分は、BOD、COD、SSなどの汚染
指標とは異なり明確な規制はなく、かつ放流先の
生態系に大きな混乱をきたすものではないが、直
接視覚にうつたえるために、その効果的な処理方
法が期待されている。 従来、廃水中の着色物質は一般に難生物分解性
であることから、活性汚泥法のような生物処理の
みでは除去することが不可能であり、そのために
硫酸アルミニウムや塩化第二鉄を用いた凝集沈
殿、活性炭による吸着、あるいは塩素やオゾンに
よる塩化分解などの物理化学的処理が用いられて
きた。 しかしながら、凝集沈殿は廃スラツジの処理が
困難であり、活性炭は再生に伴うプロセスの複雑
化および経済性に問題があり、さらに塩素やオゾ
ンによる酸化分解は経済性はもちろんのこと安全
性・有効性に疑問が残されている。一方、本発明
と同様にペニシリウム層に属する菌体を用いて有
色廃水を脱色する方法は、特開昭59−46194号公
報に記載されているが、サルフアイドパルプ廃液
の主要色度成分であるリグニンスルフオン酸を対
象としたもので、使用する微生物もPenicillium
ochrochloronに類似するものであり、本発明と
は使用する微生物も対象とする色度成分も異な
る。また、クラフトパルプ廃水の生物学的脱色方
法も知られているが(例えば、特公昭57−7799号
公報、J.Ferment.Technol.46−569、1960、紙パ
技協誌30、215、1976など)、これらはトラメーテ
ス属およびテインクトポリア属、アスペルジラス
属などの糸状菌およびシユードモナス属の細菌を
使用するもので、本発明で使用する微生物とは全
く異なるものである。 <発明が解決しようとする問題点> 本発明の目的は、このような物理化学的処理方
法における問題点を克服し、生物学的にクラフト
パルプ廃液のみならずゴミ汁やし尿、下水などの
色度成分も効率良くかつ低コストで除去する新規
な方法を提供するものである。 <問題点を解決するための手段> 本発明者らは鋭意研究を重ねた結果、特定の菌
類がアルカリリグニンやフミン酸および胆汁末な
どの廃水中の色度原因物質を吸着もしくは分解に
より除去することに着目し、これらを水処理系内
で優占的に増殖させることにより前記目的を達成
しうることを見出し、この知見に基づいて本発明
を完成するに至つた。 すなわち、本発明は腐朽木片より分離したペニ
シリウム・ヤンチネラム(Penicillium
janthinellum)に属する菌株を、アルカリリグニ
ン、フミン酸および胆汁末を各々色度成分とする
培地で培養することにより、これらの色度成分を
培地中より急速に除去し、培地を透明化すること
を特徴とするものである。 なお、本菌株は脱色の進行とともに菌糸が着色
してくることから、培地中の色度成分が菌体表面
に吸着されることにより大部分が除去されるもの
と考えるが、一部は分解により除去されるものと
推察される。 本菌株による色素吸着のメカニズムは現時点で
は明らかではないが、本菌株の細胞壁成分の一つ
であるキチン質(キチンとキトサンを合わせた総
称)の含有量を測定した結果、乾燥重量当り10%
前後含有しており、また、本菌株から食品分析法
に示された方法で調整したキチン画分を用い、ア
ルカリリグニンの吸着を検討した結果、票−1に
示すように市販のキトサン(生化学工業製)と同
程度の吸着能を示した。 従つて、天然のカチオンポリマーであるキトサ
ンの静電気的引力で、リグニンやフミン酸などの
溶液中で負に帯電している物質が菌体表面に吸着
されることが大きな要因の1つであると考えられ
る。 しかしながら、ムコール・ローキシ(Mucor
roxii)のごとく、キチン質、とりわけキトサン
を30%程度もその細胞壁に含有するにもかかわら
ず全く色度成分を吸着しない例もあり、キチン質
の存在は必要条件ではあるが、それらの細胞表面
での存在状態が重要な因子になつているものと考
えられる。
<Industrial Application Field> The present invention relates to a method for removing non-biodegradable color components using microorganisms, and more specifically, the present invention relates to a method for removing non-biodegradable color components using microorganisms, and more specifically, the removal of non-biodegradable color components such as kraft pulp wastewater, human waste, sewage, garbage juice wastewater, etc. Penicillium yantinerum (Penicillium
The present invention relates to a method for removing chromatic components from wastewater by adsorption or decomposition by inoculating the wastewater with spp. janthinellum). <Prior Art> In recent years, social interest in environmental conservation has increased, and from the viewpoint of effective use of water resources, there is a need to purify treated water to a higher degree. In particular, chromaticity components, unlike pollution indicators such as BOD, COD, and SS, are not clearly regulated and do not cause major disruption to the ecosystem in which they are discharged. A new processing method is expected. Conventionally, colored substances in wastewater are generally difficult to biodegrade and cannot be removed by biological treatment alone such as the activated sludge method. Therefore, coagulation using aluminum sulfate or ferric chloride Physicochemical treatments such as precipitation, adsorption with activated carbon, or chloride decomposition with chlorine or ozone have been used. However, coagulated sedimentation is difficult to treat waste sludge, activated carbon has problems with the complexity of the regeneration process and economic efficiency, and oxidative decomposition using chlorine and ozone is not only economical but also safe and effective. doubts remain. On the other hand, a method for decolorizing colored wastewater using microorganisms belonging to the Penicillium layer, similar to the present invention, is described in Japanese Patent Application Laid-open No. 59-46194. It targets lignin sulfonic acid, and the microorganism used is Penicillium.
It is similar to ochrochloron, and the microorganisms used and the chromaticity components targeted are different from the present invention. Biological decolorization methods for kraft pulp wastewater are also known (for example, Japanese Patent Publication No. 57-7799, J. Ferment. Technol. 46-569, 1960, Paper and Paper Technology Association Journal 30, 215, 1976). ), these use filamentous fungi such as the genus Trametes, the genus Taintopolia, and the genus Aspergillus, and bacteria of the genus Pseudomonas, which are completely different from the microorganisms used in the present invention. <Problems to be Solved by the Invention> The purpose of the present invention is to overcome the problems in such physicochemical treatment methods, and to biologically treat not only kraft pulp waste liquid but also garbage juice, human waste, sewage, etc. The present invention provides a new method for efficiently removing carbon dioxide components at low cost. <Means for solving the problem> As a result of extensive research, the present inventors have discovered that specific fungi remove substances that cause chromaticity in wastewater, such as alkaline lignin, humic acid, and bile powder, by adsorption or decomposition. Focusing on this, the inventors discovered that the above object could be achieved by allowing these to proliferate dominantly within the water treatment system, and based on this knowledge, the present invention was completed. That is, the present invention uses Penicillium yantinerum (Penicillium yantinerum) isolated from decaying wood chips.
janthinellum) in a medium containing alkaline lignin, humic acid, and bile powder as chromatic components, these chromatic components can be rapidly removed from the medium and the medium can be made transparent. This is a characteristic feature. In addition, since the hyphae of this bacterial strain become colored as decolorization progresses, we believe that most of the chromatic components in the medium are removed by adsorption to the bacterial surface, but some of them are removed by decomposition. It is assumed that it will be removed. The mechanism of dye adsorption by this strain is not clear at present, but as a result of measuring the content of chitin (generic term for chitin and chitosan), which is one of the cell wall components of this strain, it was found to be 10% by dry weight.
In addition, as a result of examining the adsorption of alkaline lignin using a chitin fraction prepared from this strain using the method shown in the food analysis method, we found that commercially available chitosan (biochemical It showed adsorption capacity comparable to that of industrially manufactured products. Therefore, one of the major factors is that negatively charged substances such as lignin and humic acid are adsorbed to the bacterial surface due to the electrostatic attraction of chitosan, which is a natural cationic polymer. Conceivable. However, Mucor roxi
roxii), which contain about 30% chitin, especially chitosan, in their cell walls but do not adsorb any chromatic components at all.Although the presence of chitin is a necessary condition, the cell surface It is thought that the state of existence is an important factor.

【表】 備考:100〜200メツシユに粒径をそろえた各キチ
ン質を所定量はかりとり、100mg/のリグニ
ン溶液(0.1Mリン酸緩衝液、PH7.0に溶解)25
mlをいれた100ml容バイアルビンに移し密栓後、
一夜振とうした。その後、遠心分離により上澄
液を分取し、その410nmにおける吸光度を測
定した。 本発明において使用するペニシリウム属の糸状
菌は、Penicillium janthinellum NF−1として
工業技術院微生物工業技術研究所に受託番号微工
研菌寄第9346号(FERM P−9346)として寄託
されており、次のような菌学的性質を有する。 1 形態 分生子柄(2.5〜3.0μm×95〜190μm)は単
生または1〜2本の分枝を形成し、わずかに粗
面(punctate)、ペニシリ(Penicilli)は非対
称体−複輪生体(Asymmetrical
biverticillate)で散開型(divaricate form)、
長さは20〜30μm、散開型のもつれた分生子連
鎖となる。フイアライド(2.4μm×9.6〜12.5μ
m)は4〜8本からなり、やや散開状、先細り
型(abruptly tapered to narrow−bearing
tube)。分生胞子(Conidia)は亜球形〜だ円
形で2〜2.5μm×2.5〜2.8μm、粗面 2 各培地における生育状態 (1) ツアペツク培地での生育は比較的良好で、
25℃、10日間で直径約5cmに達する。菌糸層
は白色でビロード状。分生子着成部は緑色〜
灰緑色(Tea green〜gray−green)を示
し、古くなると灰色となる。集落裏面は明橙
色(Purple red)を示す。 (2) ステイープ培地でもツアペツク同様の生育
状態を示すが、ツアペツク培地に比べて生育
は速く、10日間で直径約6cmに達した。 (3) 麦芽寒天培地は最も良好な生育を示し、10
日間で直径約7cmに達したが、集落裏面はく
すんだ淡黄色を呈し、他とは異なる色調を示
した。 (4) 最適PH4.0〜8.0、最適温度12℃〜35℃ 以上の結果から以下の文献を参照して分離菌株
の同定を行ない、Penicillium janthinellum
Biourgeであることを確認した。 ΓK.B.Raper、C、Thom and D.I.Fennell、A
Manual of the Penicillia、1949 ΓCarlos Ramirez and A.T.Martinez、
Manual and Atlas of the Penicillia 1982 ΓS.Abe、J.Gen.Appl.Microbiol.Tokyo、2.76
(1956) 以下に本発明の実施例について説明する。 実施例 1 KH2PO4 0.8g/、K2HPO4 1.2g/、
NH4NO3 1.0g/、NaCl 1.0g、MgSO4
7H2O 0.05g/、CaCl2・2H2O 0.05g/、
PH6.7の基礎培地に色度成分としてアルカリリグ
ニン(東京化成工業製)100mg/、フミン酸
(和光純薬工業製)50mg/、胆汁末(和光)40
mg/、炭素源としてグルコース、グリセリン、
酢酸を5g/、各々添加して、計9種類の系で
脱色実験を試みた。 500ml三角フラスコに100mlの前記培地を入れ、
2.1×106ケ/ml培地のペニシリウム・ヤンチネラ
ムの胞子を接種した後、28℃、60rpmの旋回で4
日間培養した。結果を表−2に示す。
[Table] Note: Weigh out the specified amount of each chitin material with a uniform particle size of 100 to 200 meshes, and add 100 mg/lignin solution (dissolved in 0.1 M phosphate buffer, pH 7.0)25
Transfer to a 100ml vial containing ml and seal it tightly.
Shake overnight. Thereafter, the supernatant was collected by centrifugation, and its absorbance at 410 nm was measured. The filamentous fungus of the genus Penicillium used in the present invention has been deposited as Penicillium janthinellum NF-1 with the National Institute of Microbiology, Agency of Industrial Science and Technology under the accession number FERM P-9346. It has mycological properties such as. 1 Morphology The conidiophore (2.5-3.0 μm x 95-190 μm) is solitary or forms one or two branches, and has a slightly rough surface (punctate). Asymmetrical
biverticillate) and divaricate form;
The length is 20 to 30 μm, and the conidia are spread out and tangled. Fireride (2.4μm×9.6~12.5μ
M) consists of 4 to 8 hairs, slightly spread-shaped, tapered to narrow-bearing.
tube). Conidia are subspherical to elliptical, 2-2.5 μm x 2.5-2.8 μm, with rough surface 2. Growth status on each medium (1) Growth on Czapetsk medium is relatively good.
It reaches a diameter of about 5 cm in 10 days at 25℃. The mycelial layer is white and velvety. The conidia attachment part is green ~
It exhibits a tea green to gray-green color and turns gray as it ages. The back side of the village shows purple red. (2) Growth conditions were similar to those in the Czapetsk medium on the Stape medium, but the growth was faster and reached a diameter of approximately 6 cm in 10 days. (3) Malt agar medium showed the best growth, with 10
It reached a diameter of about 7 cm within days, but the back side of the colony took on a dull pale yellow color, which was different from the others. (4) Based on the results of optimum pH 4.0 to 8.0 and optimum temperature 12℃ to 35℃, identify the isolated bacterial strain with reference to the following literature, and identify Penicillium janthinellum.
It was confirmed to be Biourge. ΓK.B.Raper, C., Thom and DIFennell, A.
Manual of the Penicillia, 1949 ΓCarlos Ramirez and ATMartinez,
Manual and Atlas of the Penicillia 1982 ΓS.Abe, J.Gen.Appl.Microbiol.Tokyo, 2.76
(1956) Examples of the present invention will be described below. Example 1 KH 2 PO 4 0.8g/, K 2 HPO 4 1.2g/,
NH 4 NO 3 1.0g/, NaCl 1.0g, MgSO 4
7H 2 O 0.05g/, CaCl 2・2H 2 O 0.05g/,
100mg/humic acid (manufactured by Wako Pure Chemical Industries), 40mg/bile powder (Wako) as chromaticity components in a basal medium of PH6.7.
mg/, glucose and glycerin as carbon sources,
Decolorization experiments were attempted using a total of nine types of systems, each with 5 g of acetic acid added. Put 100ml of the above medium into a 500ml Erlenmeyer flask,
After inoculating Penicillium yantinerum spores at 2.1 × 10 6 cells/ml of the medium, the cells were incubated at 28°C and rotated at 60 rpm for 4 hours.
Cultured for 1 day. The results are shown in Table-2.

【表】 つて求めた。
表−2の結果から明らかなように、色度成分と
しては胆汁末、炭素源としては酢酸の系が他と比
較して若干劣るものの、全ての系において70%以
上という高い脱色率を示した。 実施例 2 実施例1で示した基礎培地にアルカリリグニン
100mg/、グルコース5g/を添加した培地
を用いて、PH、グルコース濃度、菌体重量および
色度の変化を経時的に測定した。他の条件は実施
例1に準じる。結果を第1図に示す。 第1図から明らかなように、培養液の色度は菌
体の生育に伴なつて減少し、120時間の培養で90
%以上が除去され、色度の減少と生育菌体量の間
には密接な定量関係が存在するものと考える。 なお、第1図は△はPHの変化を、〓はグルコー
ス濃度の変化を、○は色度の変化を、●は菌体重
量の変化を示す。 実施例 3 実施例1と同様な基礎培地に色度成分としてア
ルカリリグニン100mg/を添加し、種々の炭素
源(0.5%)での生育、および脱色率を調べた。
胞子接種量は1.6×106ケ/ml培地で4日間培養し
た。他の条件は実施例1に準じる。結果を表−3
に示す。
[Table]
As is clear from the results in Table 2, although the system using bile powder as a chromaticity component and the acetic acid system as a carbon source was slightly inferior to the others, all systems showed a high decolorization rate of over 70%. . Example 2 Alkaline lignin was added to the basal medium shown in Example 1.
Using a medium to which 100 mg/g of glucose was added and 5 g/g of glucose was added, changes in PH, glucose concentration, bacterial weight, and color were measured over time. Other conditions were the same as in Example 1. The results are shown in Figure 1. As is clear from Figure 1, the chromaticity of the culture solution decreases with the growth of the bacterial cells, and after 120 hours of culture, the chromaticity of the culture solution decreases.
It is considered that there is a close quantitative relationship between the decrease in chromaticity and the amount of grown bacterial cells. In Fig. 1, △ indicates a change in PH, 〓 indicates a change in glucose concentration, ◯ indicates a change in chromaticity, and ● indicates a change in bacterial weight. Example 3 100 mg/alkaline lignin was added as a color component to the same basal medium as in Example 1, and growth on various carbon sources (0.5%) and decolorization rate were investigated.
The spore inoculation amount was 1.6×10 6 spores/ml medium and cultured for 4 days. Other conditions were the same as in Example 1. Table 3 shows the results.
Shown below.

【表】 メタノール、ギ酸のようなC1化合物および乳
酸は、炭素源として利用できないが、その他の多
くの炭素源では生育し、それに伴ない色度成分が
除去された。このように本菌株は多くの炭素源を
利用して生育できること、また生育可能なPHも2
〜9と広いことから、実用面においても、広範な
適用が可能である。 実施例 4 表−4に示す培地において、菌体の生育および
脱色におよぼす、硫酸ナトリウムの影響を調べ
た。結果を第2図、第3図に示す。
[Table] C 1 compounds such as methanol, formic acid, and lactic acid cannot be used as carbon sources, but they grow on many other carbon sources, and the chromaticity components are removed accordingly. In this way, this strain can grow using many carbon sources, and the pH at which it can grow is 2.
Since it has a wide range of 9 to 9, it can be widely applied in practical terms. Example 4 In the medium shown in Table 4, the influence of sodium sulfate on the growth and decolorization of bacterial cells was investigated. The results are shown in FIGS. 2 and 3.

【表】【table】

【表】 P.janthinellum NF−1株は、硫酸ナトリウム
の濃度にはほとんど影響を受けず、生育量(約
6.0g/乾物重量)およびリギニンスルフオン
酸除去率(約70%)ともにはとんど一定であつ
た。 これに対して、特開昭59−46194号公報で使用
しているカビ(ペニシリウムSP−7)は硫酸ナ
トリウムの量に大きく影響され、添加量が増える
にしたがい、生育量およびリグニンスルフオン酸
除去量も減少する。 以上の実験結果から、本願発明で使用するカビ
と特開昭59−46194号公報で示されたカビは生理
的特質も異なることが確認された。
[Table] P. janthinellum NF-1 strain is hardly affected by the concentration of sodium sulfate, and the growth amount (approx.
6.0 g/dry weight) and liginine sulfonic acid removal rate (approximately 70%) were almost constant. On the other hand, the mold (Penicillium SP-7) used in JP-A No. 59-46194 is greatly affected by the amount of sodium sulfate, and as the amount added increases, the amount of growth and removal of lignin sulfonic acid The amount also decreases. From the above experimental results, it was confirmed that the physiological characteristics of the mold used in the present invention and the mold disclosed in JP-A-59-46194 are also different.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はPH、グルコース濃度、菌体重量及び色
度の経時的変化を示す図、第2図及び第3図はリ
グニンスルホン酸除去率(脱色率)及び菌体の生
育におよぼす硫酸ナトリウムの影響を示す図であ
る。
Figure 1 shows the changes in pH, glucose concentration, bacterial weight, and color over time. Figures 2 and 3 show the lignin sulfonic acid removal rate (decolorization rate) and the effects of sodium sulfate on bacterial growth. It is a figure showing an influence.

Claims (1)

【特許請求の範囲】[Claims] 1 クラフトパルプ廃水、し尿、下水、ゴミ汁廃
水などの難生物分解性の色度成分を含有する廃水
に、ペニシリウム・ヤンチネラム(Penicillium
janthinellum)を接種して、廃水中の色度成分を
吸着もしくは分解せしめることを特徴とする難生
物分解性色度成分の除去方法。
1 Penicillium yancinerum (Penicillium
janthinellum) to adsorb or decompose the chromatic components in wastewater.
JP17495687A 1987-07-15 1987-07-15 Method for removing chromatic component from liquid Granted JPS6418498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17495687A JPS6418498A (en) 1987-07-15 1987-07-15 Method for removing chromatic component from liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17495687A JPS6418498A (en) 1987-07-15 1987-07-15 Method for removing chromatic component from liquid

Publications (2)

Publication Number Publication Date
JPS6418498A JPS6418498A (en) 1989-01-23
JPH035878B2 true JPH035878B2 (en) 1991-01-28

Family

ID=15987679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17495687A Granted JPS6418498A (en) 1987-07-15 1987-07-15 Method for removing chromatic component from liquid

Country Status (1)

Country Link
JP (1) JPS6418498A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993007333A1 (en) * 1991-10-11 1993-04-15 Kabushiki Kaisha Kobe Seiko Sho Method of treating wastewater in pulp bleaching

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4613262B2 (en) * 2001-02-21 2011-01-12 独立行政法人科学技術振興機構 NOVEL MICROORGANISM DECOMPOSING POLYPHENOL AND METHOD OF TREATING POLYPHENOL-CONTAINING WASTEWATER USING THE MICROBIOLOGY
CN100337942C (en) * 2003-05-20 2007-09-19 中国科学院生态环境研究中心 Method of utilizing microbe to eliminate and recover dye
JP5061315B2 (en) * 2007-09-04 2012-10-31 独立行政法人酒類総合研究所 Microorganisms that decolorize molasses pigment and decolorization treatment method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993007333A1 (en) * 1991-10-11 1993-04-15 Kabushiki Kaisha Kobe Seiko Sho Method of treating wastewater in pulp bleaching

Also Published As

Publication number Publication date
JPS6418498A (en) 1989-01-23

Similar Documents

Publication Publication Date Title
Arikan et al. Investigation of immobilized filamentous fungi for treatment of real textile industry wastewater using up flow packed bed bioreactor
BRADOO et al. Screening of extracellular tannase-producing fungi: Development of a rapid and simple plate assay
Raghukumar et al. Decolorization of molasses spent wash by the white-rot fungus Flavodon flavus, isolated from a marine habitat
Daâssi et al. Decolorization of the metal textile dye Lanaset Grey G by immobilized white-rot fungi
EP2698353B1 (en) Wastewater treatment using microbial strains
Ragunathan et al. Biological treatment of a pulp and paper industry effluent by Pleurotus spp.
EP0055074B1 (en) A method of treating waste liquors containing phenol
WO2015119100A1 (en) Wastewater treatment process
JPH035878B2 (en)
Moturi et al. Influence of physical and chemical mutagens on dye decolourising Mucor mucedo
Pazouki et al. Screening of microorganisms for decolorization of treated distillery wastewater
JPH08197086A (en) Treatment of waste water containing normalhexane extract
RU2476385C1 (en) Method of sewage water purification from phenol compounds
AU604676B2 (en) Production of cyanide hydratase
JP2002301494A (en) Activated sludge and wastewater disposal method
Chamier et al. Effect of calcium-ion concentration on leaf maceration by Tetrachaetum elegans
Pavitra et al. Optimization of Conditions (Influence of Shaking, Static and pH) for Biodecolourization of Reactive Azo-based Textile Dye by Micromonospora sp
KR0183318B1 (en) Wastewater treatment method using bacillus sp. micro organism
JP3691102B2 (en) Wastewater treatment method
JPH0228395B2 (en) PENISHIRIUMUZOKUSHIJOKINNYORURIGUNINSURUFUONSANGANJUEKINODATSUSHOKUHOHO
Bamigboye et al. Purification and characterization of laccase from Pleurotus tuber-regium and its application in dye decolourization
Gupta et al. Decolorization of molasses melanoidin by Candida Sp
Lamia et al. Aspergillus niger is able to decolourize sepia ink contained in saline industrial wastewaters
Tlou Characterization of selected microbial species for bioflocculant producing potential and comparison with traditional flocculants in industrial waste water treatment
Perumal et al. Influence of culture parameters on paper mill effluent decolourization by a white rot fungus Ganoderma lucidum