JPH0358672A - Method and apparatus for coding picture signal - Google Patents

Method and apparatus for coding picture signal

Info

Publication number
JPH0358672A
JPH0358672A JP19519389A JP19519389A JPH0358672A JP H0358672 A JPH0358672 A JP H0358672A JP 19519389 A JP19519389 A JP 19519389A JP 19519389 A JP19519389 A JP 19519389A JP H0358672 A JPH0358672 A JP H0358672A
Authority
JP
Japan
Prior art keywords
quantization
prediction
prediction error
block
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19519389A
Other languages
Japanese (ja)
Inventor
Katsuya Oshima
勝也 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP19519389A priority Critical patent/JPH0358672A/en
Publication of JPH0358672A publication Critical patent/JPH0358672A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/004Predictors, e.g. intraframe, interframe coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)

Abstract

PURPOSE:To obtain a decoded picture with high quality by applying prediction coding completed in a block and varying the quantization characteristic for each block. CONSTITUTION:A prediction error calculation processing section 1 calculates a prediction error signal outputted from an in-block prediction processing unit 5 to an original picture signal. On the other hand, a prediction error dynamic range calculation processing section 6 obtains the dynamic range of the prediction error for each block from an original picture signal. Then a quantization mode discrimination processing section 7 selects one quantization characteristic expected to be most proper for quantization for the prediction error signal caused in the block from the dynamic range among plural quantization characteristics possessed by the quantization processing section 2. The signal quantized and coded by the quantization processing section 2 and the signal representing the quantization mode specifying the quantization characteristic by the quantization mode discrimination processing section 7 are outputted as a coded signal and a mode signal respectively. Thus, the coding with less picture quality deterioration is attained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は伝送路誤9に強く、筐た効率の良い、予測符号
化を用いた画像信号符号化方式及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an image signal encoding system and apparatus using predictive encoding that is resistant to transmission path errors 9 and highly efficient.

〔従来の技術〕[Conventional technology]

従来の予測符号化の例を第9図に示す。入力された画像
信号は減算手段45で予測信号との差分を取られ予測誤
差信号とされる。その予測誤差信号は量子化手段46で
量子化処理される。一例として5ビット等長符号化する
場合、32レベルの値に量子化されることになる。一般
的に予測誤差信号は、第10図に示すように0付近に集
中して発生することから例えば第3図に示すように予測
誤差がOに近い場合には細かく量子化され、予測誤差が
Oから離れている場合には粗く量子化される。量子化手
段46で量子化された信号は、符号化信号として出力さ
れる一方、逆量子化千段47にも入力される。逆量子化
千段47では、量子化されたレベル値を代表値に変換し
、加算処理48に入力される。加算処理48では、予測
信号と加算処理され局部復号信号になる。局部復号信号
は予測手段49に入力され、予測演算及び遅延がなされ
、減算手段45及び加算手段48にフィードバックされ
る。予測手段49で1サンプル遅延するものを前値予測
と呼び、1ライン遅延するものを前ライン予測、1た、
1フレーム遅延するものをフレーム間予測と呼ぶ。1た
、前値と前ラインの平均値を予測信号にするような、2
次元予測もある。
An example of conventional predictive coding is shown in FIG. The input image signal is subtracted from the predicted signal by a subtracting means 45 to obtain a predicted error signal. The prediction error signal is quantized by quantization means 46. As an example, in the case of 5-bit equal-length encoding, the data will be quantized into 32 levels of values. Generally, the prediction error signal is generated concentrated around 0 as shown in Figure 10, so if the prediction error is close to 0 as shown in Figure 3, it is finely quantized and the prediction error is reduced. If it is far from O, it is coarsely quantized. The signal quantized by the quantization means 46 is output as a coded signal, and is also input to the inverse quantization stage 47. In the inverse quantization stage 47, the quantized level value is converted into a representative value, which is input to the addition process 48. In the addition process 48, the signal is added to the predicted signal to become a locally decoded signal. The locally decoded signal is input to the prediction means 49, subjected to prediction calculation and delay, and fed back to the subtraction means 45 and addition means 48. What is delayed by one sample in the prediction means 49 is called a previous value prediction, and what is delayed by one line is called a previous line prediction.
Prediction that is delayed by one frame is called interframe prediction. 1.2, which uses the previous value and the average value of the previous line as a prediction signal.
There is also dimensional prediction.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来の予測符号化では、出力された符号
化信号に伝送路にわいてビッ1・誤りが生じると、復号
側でそれ以後復元されるデータに誤りが波及し、画質を
劣化させるという欠点があった。また、一例とし7て5
ビット等長符号化を行う場合、エッジ部分などで大きな
予測誤差が発生すると、第3図に示すようにダイナミッ
クレンジを超える予測誤差はすべて同じ代表1直にされ
るため、大きな量子化誤差を発生することになシ、勾配
過負荷雑音等による画質劣化となる。本発明は、伝送路
に公いてビット誤シを生じてもその影饗を小さなブロッ
ク内にとどめることによシ画質劣化を目立たないように
し、かつ、量子化特性をブロック単位で変えることによ
シ、画像のエッジ、平担などの性質に応じた量子化特性
を与え、画質劣化の少ない画像信号符号化方式及び構成
が簡単な装置を提供することを目的とする。
However, conventional predictive coding has the disadvantage that if a bit error occurs in the output encoded signal on the transmission path, the error spreads to the data that is subsequently restored on the decoding side, degrading the image quality. was there. Also, as an example, 7 and 5
When performing bit equal length encoding, if a large prediction error occurs at an edge, etc., as shown in Figure 3, all prediction errors that exceed the dynamic range are converted to the same representative number, resulting in a large quantization error. Unfortunately, image quality deteriorates due to gradient overload noise and the like. The present invention makes image quality deterioration less noticeable by confining the effect of bit errors in small blocks even if bit errors occur in the transmission path, and by changing the quantization characteristics on a block-by-block basis. It is an object of the present invention to provide an image signal encoding system that provides quantization characteristics according to the characteristics of edges, edges, flat areas, etc., and that causes less deterioration in image quality and an apparatus that has a simple configuration.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の画像信号符号化方式は、画面を定められた大き
さの複数のブロックに分割し、前記の各ブロック内に1
9−いて同ブロック内の画素から予測した値と原画素の
値との予測誤差を算出し、前記予測誤差を量子化する際
の量子化特性を特定する複数の量子化モードを用意して
於き、原画像信号から求めた、ブロック毎の予測誤差の
ダイナミックレンジから量子化特性を推定し、その推定
結果から前記複数の量子化モードのいずれかをブロック
毎に選択し、前記選択された量子化モードの量子化特性
を使って前記予測誤差を量子化及び符号化し、前記符号
化された信号と、前記選択された量子化モードを表すモ
ード信号とを出力するものである。筐た、本発明の(向
像信号符号化装置は、原画像信号からブロック毎の予測
誤差のダイナミックレンジを求め、前記ダイナミックレ
ンジから量子化特性を推定するための量子化器選択制御
手段と、現在符号化中の画素の位置を検出するための画
素位置検出手段と、予測誤差を算出するための減算手段
と、前記予測誤差を量子化するための複数の量子化手段
と、前記複数の量子化手段が持つ量子化特性の逆特性を
それぞれ持つ複数の逆量子化手段と、加算手段と、複数
の予測手段と、複数の選択手段から構威されることを特
徴とする画像信号符号化装置。
The image signal encoding method of the present invention divides the screen into a plurality of blocks of a predetermined size, and each block has one
9- Calculate the prediction error between the value predicted from the pixel in the same block and the value of the original pixel, and prepare a plurality of quantization modes to specify the quantization characteristics when quantizing the prediction error. quantization characteristics are estimated from the dynamic range of prediction error for each block obtained from the original image signal, one of the plurality of quantization modes is selected for each block from the estimation result, and the selected quantization mode is The prediction error is quantized and encoded using the quantization characteristics of the quantization mode, and the encoded signal and a mode signal representing the selected quantization mode are output. The forward image signal encoding device (of the present invention) includes a quantizer selection control means for determining a dynamic range of a prediction error for each block from an original image signal and estimating a quantization characteristic from the dynamic range; a pixel position detection means for detecting the position of a pixel currently being encoded, a subtraction means for calculating a prediction error, a plurality of quantization means for quantizing the prediction error, and a plurality of quantization means for quantizing the prediction error. An image signal encoding device comprising a plurality of inverse quantization means, each having a characteristic opposite to the quantization characteristic of the quantization means, an addition means, a plurality of prediction means, and a plurality of selection means. .

また、前記複数の量子化手段と前記複数の逆量子化手段
は、前記複数の予測手段にそれぞれ対応し、かつ、それ
ぞれ複数の量子化特性で量子化及び符号化するための複
数の量子化手段と、前記複数の量子化手段が持つ量子化
特性の逆特性を持つ複数の逆量子化手段に置き換えて構
成可能である。
The plurality of quantization means and the plurality of inverse quantization means each correspond to the plurality of prediction means, and each of the plurality of quantization means is a plurality of quantization means for quantizing and encoding with a plurality of quantization characteristics. It is possible to replace the quantization means with a plurality of inverse quantization means having characteristics opposite to the quantization characteristics of the plurality of quantization means.

また、前記量子化器選択制御手段は、予測誤差を算出す
るための減算手段と、複数の予測手段と、選択手段と、
前記予測誤差の絶対値を計算するための絶対値計算手段
と、前記複数の予測手段に対応したそれぞれの予測領域
の前記予測誤差の絶対値の最大値を算出するための領域
最大値算出手段と、前記それぞれの予測領域の予測誤差
の絶対値の最大値により量子化モードをそれぞれ分類す
るための複数のしきい値判定手段と、前記それぞれの予
測領域で分類された量子化モードから、プロソク毎の量
子化モードを決定するための総合判定手段とから構成す
ることが可能である。
Further, the quantizer selection control means includes a subtraction means for calculating a prediction error, a plurality of prediction means, a selection means,
Absolute value calculation means for calculating the absolute value of the prediction error; Area maximum value calculation means for calculating the maximum value of the absolute value of the prediction error of each prediction area corresponding to the plurality of prediction means; , a plurality of threshold determination means for classifying the quantization modes according to the maximum absolute value of the prediction error in each of the prediction regions; and a comprehensive determination means for determining the quantization mode of the quantization mode.

?作 用〕 本発明の画像信号符号化方式では、画面を定められた適
当な大きさのブロノクに分割し、その各ブロック内にお
いて1画素ぱPCM信号のーま1出力し、残りの画j’
.ri同ブロッン内の画素または局部復号信号から予測
した値と原画素の値との差を量子化及び符号化して出力
するが、そのうち、量子化及び符号化を行う際の量子化
特性は、複数の量子化モードが特定するそれぞれの量子
化特性のうちの1つをブロック毎に選択する。その選択
方法は原画鐵信号から予測誤差のダイナ■ツクレンジを
求め、そのダイナミ,クレンジから前述の複数の量子化
モードが持つ量子化特注のうち、最も適合する量子化特
性を推定し、その推定結果から選択する。そして、量子
化及び符号化された符号化信号と、選択された量子化モ
ードを表すモード信号を出力する。
? [Operation] In the image signal encoding method of the present invention, the screen is divided into blocks of a predetermined appropriate size, one pixel in each block is outputted as one PCM signal, and the remaining picture j'
.. ri The difference between the value predicted from the pixel in the same block or the locally decoded signal and the original pixel value is quantized and encoded and output, but the quantization characteristics when quantizing and encoding are One of the respective quantization characteristics specified by the quantization mode of is selected for each block. The selection method is to find the dynamic range of the prediction error from the original image signal, and from that dynamic range, estimate the most suitable quantization characteristic among the custom quantization characteristics of the multiple quantization modes mentioned above, and the estimation result Choose from. Then, a quantized and encoded encoded signal and a mode signal representing the selected quantization mode are output.

〔実施例〕〔Example〕

本発明の画像信号符号化方式の実施例について、第1図
を用いて説明する。第1図に耘いて、1ず?測誤差計算
処理1で原画像信号に対するブロック内予測処理5から
出力される予測信号の誤差、すなわち予測誤差信号を計
算する。そして量子化処理2にかいて量子化及び符号化
が行われるが、その量子化の際の量子化特性は、複数用
意されている量子化モードが特定する量子化特性のうち
の、いずれか1つを選択して行われる。一例として、第
3図及び第4図に示す2種類の特性が用意されていると
する。一方、予測誤差のダイナミックレンジ算出処理6
では、原画像信号からブロック毎の予測誤差のダイナミ
ックレンジ、すなわちそのブロソク内で発生する予測誤
差信号の最大振幅を求める。そして、量子化モード判定
処理7で、前述のダイナミックレンジから、そのブロッ
クで発生する予測誤差信号を量子化するのに最も適当と
思われる量子化特性を、量子化処理2が持つ複数の量子
化特性のうちから1つ選択することで判定を行う。例え
ば、第3図の量子化特性ではダイナ■ツクレンジがDA
であシ、第4図の量子化特性ではダイナ■ツクレンジが
DBであり、DA<DBなる?係があるとする。すなわ
ち、第3図の量子化特性は、量子化特性が細かいのでダ
イナミックレンジが小さく、1た、第4図の量子化・特
性は、量子化が粗いのでダ・fナミ,ノクレンジが犬1
@.いということになる。そこで、予測誤差のダイナ■
ツクレンジ算出処理6で計算されたダイナミックレンジ
が、第3図に於けるAより小さいなら、量子化が細かい
第3図の量子化特性の方が適合することにな9、第3図
におけるAより大きいなら、量子化は粗くなるがダイナ
ミックレンジが広い第4図の量子化特性の方が適合する
。量子化処理2では、その適合する方の量子化特性を用
いて量子化及び符号化する。量子化処理2で量子化及び
符号化された信号と、量子化モード判定処理7で選択し
た量子化特性を特定している量子化モードを表す信号は
、それぞれ符号化信号、モード信号として出力される。
An embodiment of the image signal encoding method of the present invention will be described with reference to FIG. Looking at Figure 1, is it 1? In the measurement error calculation process 1, the error of the prediction signal output from the intra-block prediction process 5 for the original image signal, that is, the prediction error signal, is calculated. Then, quantization and encoding are performed in quantization processing 2, but the quantization characteristic during quantization is one of the quantization characteristics specified by the plurality of quantization modes. This is done by selecting one. As an example, assume that two types of characteristics shown in FIGS. 3 and 4 are prepared. On the other hand, prediction error dynamic range calculation process 6
Now, the dynamic range of the prediction error for each block, that is, the maximum amplitude of the prediction error signal occurring within that block, is determined from the original image signal. Then, in the quantization mode determination process 7, from the above-mentioned dynamic range, the quantization process 2 selects a plurality of quantization characteristics that are considered to be most suitable for quantizing the prediction error signal generated in that block. Judgment is made by selecting one of the characteristics. For example, in the quantization characteristics shown in Figure 3, the dynamic range is DA
So, in the quantization characteristics shown in Figure 4, the dynamic range is DB, so DA<DB? Suppose there is a relationship. In other words, the quantization characteristic in Figure 3 has a fine quantization characteristic, so the dynamic range is small;
@. That means no. Therefore, the prediction error dyna
If the dynamic range calculated in the range calculation process 6 is smaller than A in Fig. 3, then the quantization characteristic in Fig. 3, which has finer quantization, is more suitable9, than A in Fig. 3. If it is large, the quantization characteristic shown in FIG. 4, which has a wide dynamic range although the quantization becomes coarse, is more suitable. In quantization processing 2, quantization and encoding are performed using the appropriate quantization characteristic. The signal quantized and coded in quantization process 2 and the signal representing the quantization mode specifying the quantization characteristic selected in quantization mode determination process 7 are output as a coded signal and a mode signal, respectively. Ru.

!f.た、逆量子化処理3では、量子化処理2で選択さ
れた量子化モードの逆量子化特性を用いて、代表値に変
換する。そして、その代表値と、ブロック内予測処理5
から出力される予測信号を用いて局部復号化処理4で局
部復号化が行われ、その局部復号信号はブロック内予測
処理5でブロック内予測が行われ、予測信号は予測誤差
計算処理1及び局部復号化処理4で使われる。ブロック
内予測処理5における予測方法の例について第2図を用
いて説明する。第2図は、画面を4画素×4ラインの複
数のブロックに分割し、そのうちの1つのブロックにつ
いて記載したものである。
! f. In addition, in the dequantization process 3, the inverse quantization characteristic of the quantization mode selected in the quantization process 2 is used to convert into a representative value. Then, the representative value and intra-block prediction processing 5
Local decoding is performed in local decoding processing 4 using the predicted signal output from , intra-block prediction is performed on the locally decoded signal in intra-block prediction processing 5 , and the predicted signal is subjected to prediction error calculation processing 1 and local Used in decoding process 4. An example of a prediction method in the intra-block prediction process 5 will be explained using FIG. 2. In FIG. 2, the screen is divided into a plurality of blocks of 4 pixels x 4 lines, and one of the blocks is described.

第2図にかけるブロック内の領域202の画素の符号化
では原画素をそのま筐出力するので予測は行わず、領域
203に含まれる画素の符号化では前値予測を行い、領
域204に含まれる画素の符号化では前ライン予測を行
い、領域205に含1れる画素の符号化では前値と前ラ
インの平均値による予測を行う。以上述べた本発明の画
像信号符号化方式では、小さなブロソク内で完結した予
測符号化を行うことができ、1た、プロソク毎に適応的
に量子化特性を選択できるので、高品質な復号画像を得
ることができる。
In the encoding of pixels in area 202 in the block shown in FIG. 2, the original pixels are output as they are, so no prediction is performed. In encoding the pixels included in the area 205, prediction is performed on the previous line, and in encoding pixels included in the area 205, prediction is performed using the previous value and the average value of the previous line. In the image signal encoding method of the present invention described above, predictive coding can be completed within a small block, and quantization characteristics can be adaptively selected for each block, so high-quality decoded images can be obtained. can be obtained.

壕た、本発明のうち、第2の発明の画像信号符号化装置
について第5図を用いて説明する。
Next, an image signal encoding device according to a second aspect of the present invention will be explained using FIG. 5.

第5図において、入力された画像信号は、量子化器選択
制御手段11、減算処理12、選択処理17に入力され
る。一方、画素位置検出千段28では、現在符号化中の
画素の位置を検出して、その画素位置情報を表す信号を
、量子化器選択制御千段]1、選択手段17,22.2
7に入力する。減算手段]2では、入力された画像信号
と、選択処理27から出力される予測信号とから予測誤
差を計算し、量子化手段13,14,・・・,15に入
力される。量子化手段13,1.4,・・・,15はあ
らかじめ定めた量子化モード1〜nが特定する量子化特
性をそれぞれ持って耘シ、その量子化特性に従って、そ
れぞれ量子化及び符号化処理を行い、それぞれ選択手段
l6に入力される。量子化器選択制御手段11では、入
力画像信号と画素位置検出手段28から出力される画素
位置情報とから、ブロック毎の予測誤差のグイナミノク
レンジを求め、そのダ・rナミックレンジからそのブロ
ックで発生する予測誤差を量子化するのに最も適当と思
われる量子化特性を、量子化手段13,14.,・・・
,15が持つ量子化特性から1つを選び、その選ばれた
量子化特性を特定している量子化モードを表す信号を出
力する。量子化器選択制御手段11の出力は、モード信
号として出力されるとともに、選択手段16 . 21
に入力される。
In FIG. 5, the input image signal is input to a quantizer selection control means 11, a subtraction process 12, and a selection process 17. On the other hand, the pixel position detection stage 28 detects the position of the pixel currently being encoded, and sends a signal representing the pixel position information to the quantizer selection control stage]1, selection means 17, 22.2
Enter 7. The subtraction means] 2 calculates a prediction error from the input image signal and the prediction signal output from the selection process 27, and inputs it to the quantization means 13, 14, . . . , 15. The quantization means 13, 1.4, . . . , 15 each have a quantization characteristic specified by predetermined quantization modes 1 to n, and perform quantization and encoding processing, respectively, according to the quantization characteristic. are input into the selection means 16. The quantizer selection control means 11 calculates the Guinami range of prediction error for each block from the input image signal and the pixel position information output from the pixel position detection means 28, and calculates the prediction error generated in that block from the dynamic range. The quantization means 13, 14 . ,...
, 15 is selected, and a signal representing a quantization mode specifying the selected quantization characteristic is output. The output of the quantizer selection control means 11 is output as a mode signal, and is also outputted to the selection means 16 . 21
is input.

選択手段16では、モード信号が示す量子化モードの量
子化及び符号化処理された信号を選択し、選択千段17
に入力する。選択手段17では、画素位置検出手段28
から出力される画素位置情報に従って、現在符号化中の
画素の位置が、第2図に訟ける領域202に含1れるな
ら入力された画像信号を選択し、領域203 , 20
4 , 205のいずれかに含1れるなら選択手段16
の出力を選択する。選択千段17の出力は、符号化信号
として出力されるとともに、選択千段22、逆量子化手
段18,19,・・・20に入力される。逆量子化手段
18,19,・・・,20は、あらかじめ定めた量子化
モード1〜nが特定する逆量子化特性をそれぞれ持って
おシ、選択手段17の出力をそれぞれ逆量子化して代表
値に変換する。
The selection means 16 selects the quantized and encoded signal of the quantization mode indicated by the mode signal, and selects the quantized and encoded signal in the selection stage 17.
Enter. In the selection means 17, the pixel position detection means 28
According to the pixel position information output from the pixel position information output from the pixel position information, if the position of the pixel currently being encoded is included in the area 202 shown in FIG.
4, if it is included in either of 205, select means 16
Select the output of The output of the 1,000 selection stages 17 is output as an encoded signal, and is also input to the 1,000 selection stages 22 and the dequantization means 18, 19, . . . 20. The dequantization means 18, 19, . Convert to value.

逆量子化手段18,19,・・・,20の出力は、それ
ぞれ選択千段21に入力される。選択千段21では、量
子化器選択制御手段11の出力信号が示す量子化モード
の逆量子化処理された信号を選択し、選択千段22に入
力される。選択手段22では選択千段17と同様にして
画素位置検出手段28から出力される画素位置情報に従
って、現在符号化中の画素の位置が、第2図にトける領
域202に含渣れるなら選択手段17の出力を選択し、
領域203,204.,205のいずれかに含1れるな
ら選択手段21の出力を選択する。選択千段22の出力
は、加算手段23に入力される。加算手段23では、選
択手段22の出力と、選択手段27の出力の予測信号と
を加算し、局部復号信号として予測手段24,25.2
6に入力される。予測手段24 , 25 . 26は
、例えば、予測手段24は前値予測を行い、予測手段2
5は前ライン予測を行い、予測手段26は前値と前ライ
ンの平均値による予測を行う。予測手段24,25.2
6の出力は選択手段27にそれぞれ入力される。選択千
段27には「0」の値も入力されておシ、画素位置検出
手段28の出力に従って、現在符号化中の画素の位置が
、第2図における領域202に含1れるならrOJの値
を選択し、領域203に含1れるなら予測千段24の出
力を選択し、領域204に含豊れるなら予測千段25の
出力を選択し、領域205に含まれるなら予測手段26
の出力を選択する。選択千段27の出力は、予測信号と
して減算千段12と加算手段23に入力される。以上述
べた画像信号符号化装置を構成するこどにより、前述の
画像信号符号化方式を実現することができる。
The outputs of the inverse quantization means 18, 19, . . . , 20 are input to a selection stage 21, respectively. The selection stage 21 selects the dequantized signal of the quantization mode indicated by the output signal of the quantizer selection control means 11, and inputs it to the selection stage 22. In the selection means 22, in accordance with the pixel position information outputted from the pixel position detection means 28 in the same manner as the selection step 17, if the position of the pixel currently being encoded is included in the area 202 shown in FIG. selecting the output of means 17;
Areas 203, 204. , 205, the output of the selection means 21 is selected. The output of the selection stage 22 is input to the addition means 23. The addition means 23 adds the output of the selection means 22 and the predicted signal of the output of the selection means 27, and outputs the result as a locally decoded signal to the prediction means 24, 25.2.
6 is input. Prediction means 24, 25. 26, for example, the prediction means 24 performs previous value prediction, and the prediction means 2
5 performs previous line prediction, and prediction means 26 performs prediction based on the previous value and the average value of the previous line. Prediction means 24, 25.2
The outputs of 6 are respectively input to the selection means 27. A value of "0" is also input to the selection stage 27, and according to the output of the pixel position detection means 28, if the position of the pixel currently being encoded is included in the area 202 in FIG. Select a value, and if it is included in the area 203, select the output of 1,000 predicted steps 24, if it is included in the area 204, select the output of 1,000 predicted steps 25, and if it is included in the area 205, select the output of 1,000 predicted steps 26.
Select the output of The output of the selection stage 27 is input to the subtraction stage 12 and the addition means 23 as a prediction signal. By configuring the image signal encoding device described above, the above-described image signal encoding method can be realized.

1た、以」二述べた画像信号符号化装置にかける複数の
量子化手段及び逆量子化手段を、複数の予測の方法にそ
れぞれ対応し、かつ、各予測方法毎に複数の量子化モー
ドを使って量子化及び符号化を行う量子化手段、及びそ
の量子化手段にそれぞれ対応した逆量子化手段を用いる
ことにより、復号画像の品質をさらに高めることができ
る第3の発明の画像信号符号化装置について第6図を用
いて以下説明する。
1. The plurality of quantization means and inverse quantization means applied to the image signal encoding device described below correspond to the plurality of prediction methods, and each prediction method has a plurality of quantization modes. Image signal encoding according to the third invention, in which the quality of a decoded image can be further improved by using a quantization means that performs quantization and encoding using the quantization means, and an inverse quantization means corresponding to the quantization means, respectively. The apparatus will be explained below with reference to FIG.

第6図において量子化器選択制御手段51と減算十段5
2と画素位置検出手段95の構成及び動作は、第5図に
トける量子化器選択制御千段11、減算手段12、画素
位置検出千段28とそれぞれ同じであるのでここでは説
明は省略する。減算千段52から出力された予測誤差信
号は、量子化手段53 , 54 ,・・, 55 ,
 56 , 57 ,・・・,58,59,60,・・
・,61にそれぞれ入力される。各量子化手段は後述の
複数の予測手段の予測方法のしずれか一つに対応してお
り、量子化手段53,54.,・・・,55は予測手段
91が持つ予測方法に、量子化手段56 1 57 H
・・・,58ば予測手段92が持つ予測方法に、量子化
手段59,60,・・・,61は予測手段93が持つ予
測方法に対応している。1た、量子化手段53,56.
59は量子化モード1の量子化特性を持ち、量子化手段
54 , 57 . 60は量子化モード2の量子化特
性を持ち、量子化手段55, 58. 61は量子化モ
ードnの量子化特性を持っている。各量子化手段ではそ
れぞれが持つ量子化特性に従って量子化及び符号化され
、量子化手段53,54,・・・,55の出力は選択手
段62に入力され、量子化手段56,57,・・・,5
8の出力は選択手段63に入力され、量子化手段59,
60,・・・,61の出力は選択千段64に入力される
。選択手段62 , 63 .64では量子化器選択制
御手段51から出力されるモード信号に従って該当する
量子化モードが特定する量子化特性で量子化及び符号化
された信号をそれぞれ選択し、各出力は選択手段65に
入力される。選択手段65では画素位置検出手段95の
出力に従って、現在符号化中の画素の位置が第2図に釦
ける領域202に含1れるなら入力された画像信号を選
択し、領域203に含1れるなら選択手段62の出力を
選択し、領域204に含咬れるなら選択手段63の出力
を選択し、領域205に含まれるなら選択手段64の出
力を選択する。選択手段65の出力は、符号化信号とし
て出力されるとともに、選択手段78及び、逆量子化手
段66,67,  ・,68,69 , 70 ,・・
・,71.,72,73,・・・,74にそれぞれ入力
される。逆量子化手段66 , 67 ,・・・,68
,69,70,・・・,71,72 , 73 ,・・
・,74は、それぞれ量子化手段53,54,・・・5
5,56,57,・・・,58,59,60,・・・,
61の量子化特性に対応した逆特性を持っている。各逆
量子化手段では、入力されたレベル信号を代表値に変換
し、逆量子化手段66,67,・,68の出力は選択千
段75に、逆量子化手段69,70,・・・ 71の出
力は選択手段76に、逆量子化手段72,73,・・・
,74の出力は選択手段77にそれぞれ入力される。選
択千段75,76 . 77では、選択手段62,63
.64と同様にして、量子化器選択制御手段51から出
力されるモード信号に従って、該当する量子化モードが
特定する逆量子化特性で代表値に変換された信号をそれ
ぞれ選択し、選択手段78に入力される。選択手段78
では、選択手段65と同様にして、画像位置検出手段9
5の出力に従って、現在符号化中の画素の位置が第2図
にふ・ける領域202に含1れるなら選択手段65の出
力を選択し、領域203に含1れるなら選択手段75の
出力を選択し、領域204に含1れるなら選択手段76
の出力を選択し、領域205に含1れるなら選択千段7
7の出力を選択する。選択手段78の出力は加算手段7
9に入力される。以下、加算手段79、予測手段91,
92,93、選択手段94の構成及び動作については、
第5図で説明した加算千段23、予測手段24,25,
26、選択千段27とそれぞれ同じであるのでここでは
説明は省略する。以上述べた第3の発明の画像信号符号
化装置を構成することによシ前述の画像信号符号化方式
を実現することができ、1た、それぞれの予測方法に適
した量子化特性で処理できるので復号画像の品質をさら
に高めることが可能どなる。
In FIG. 6, the quantizer selection control means 51 and the ten subtraction stages 5
2 and the pixel position detection means 95 are the same as those of the quantizer selection control stage 11, the subtraction means 12, and the pixel position detection stage 28 shown in FIG. 5, so a description thereof will be omitted here. . The prediction error signal output from the thousand subtraction stages 52 is quantized by quantization means 53 , 54 , . . . , 55 ,
56, 57,..., 58, 59, 60,...
. , 61, respectively. Each quantization means corresponds to one of the prediction methods of a plurality of prediction means described later, and the quantization means 53, 54 . ,..., 55 is the prediction method of the prediction means 91, and the quantization means 56 1 57 H
, 58 correspond to the prediction method possessed by the prediction means 92, and the quantization means 59, 60, . . . , 61 correspond to the prediction method possessed by the prediction means 93. 1, quantization means 53, 56.
59 has a quantization characteristic of quantization mode 1, and the quantization means 54, 57 . 60 has quantization characteristics of quantization mode 2, and quantization means 55, 58. 61 has a quantization characteristic of quantization mode n. Each quantization means quantizes and encodes according to its own quantization characteristics, and the outputs of the quantization means 53, 54, . . . , 55 are input to the selection means 62, and the quantization means 56, 57, .・,5
The output of 8 is input to the selection means 63, and the quantization means 59,
The outputs of 60, . . . , 61 are input to a selection stage 64. Selection means 62, 63. At 64, signals quantized and encoded with the quantization characteristics specified by the corresponding quantization mode are selected according to the mode signal output from the quantizer selection control means 51, and each output is input to the selection means 65. Ru. In accordance with the output of the pixel position detection means 95, the selection means 65 selects the input image signal if the position of the pixel currently being encoded is included in the button area 202 in FIG. If so, the output of the selection means 62 is selected, if it is included in the area 204, the output of the selection means 63 is selected, and if it is included in the area 205, the output of the selection means 64 is selected. The output of the selection means 65 is outputted as an encoded signal, and is also sent to the selection means 78 and the dequantization means 66, 67, . . . , 68, 69, 70, .
・,71. , 72, 73, . . . , 74, respectively. Inverse quantization means 66, 67,..., 68
,69,70,...,71,72,73,...
, 74 are quantization means 53, 54, . . . 5, respectively.
5, 56, 57,..., 58, 59, 60,...,
It has an inverse characteristic corresponding to the quantization characteristic of 61. Each inverse quantization means converts the input level signal into a representative value, and the outputs of the inverse quantization means 66, 67, . The output of 71 is sent to the selection means 76, and the inverse quantization means 72, 73, . . .
, 74 are input to selection means 77, respectively. Selection 1,000 steps 75, 76. 77, the selection means 62, 63
.. Similarly to 64, according to the mode signal output from the quantizer selection control means 51, signals converted to representative values with the inverse quantization characteristic specified by the corresponding quantization mode are selected, and the signals are sent to the selection means 78. is input. Selection means 78
Now, in the same way as the selection means 65, the image position detection means 9
According to the output of 5, if the position of the pixel currently being encoded is included in the area 202 shown in FIG. If it is selected and included in the area 204, the selection means 76
Select the output of , and if it is included in the area 205, select 1,000 steps 7
Select output 7. The output of the selection means 78 is added to the addition means 7
9 is input. Hereinafter, the addition means 79, the prediction means 91,
92, 93, and the configuration and operation of the selection means 94.
The addition stage 23, prediction means 24, 25,
26 and 1,000 selection steps 27, so the explanation will be omitted here. By configuring the image signal encoding device of the third invention described above, the aforementioned image signal encoding method can be realized, and processing can be performed with quantization characteristics suitable for each prediction method. Therefore, it is possible to further improve the quality of the decoded image.

1た、第2、第3の発明の画像信号符号化装置における
量子化器選択制御手段を具体的にし、構成した第4の発
明の画像信号化装置について以下説明する。第5図及び
第6図において、量子化器選択制御手段1.].,51
以外の部分については前述の構成及び動作と同じである
ので、ここでは説明は省略する。その、量子化器選択制
御手段11.51の構成を、第7図に示す。第7図にお
いて入力された画像信号は、減算手段105、予測手段
101,102,1.03に入力される。予測手段10
1 , 1.02, 103は、それぞれ第5図におけ
る予測手段24,25.26や、第6図における予測手
段91 , 92. 93と同じものである。すなわち
、例えば予測千段101は前値予測を行い、予測千段1
0 2ぱ前ライン予測を行い、予測千段103は前値と
前ラインの平均値予測を行う。
An image signal encoding apparatus according to a fourth invention in which the quantizer selection control means in the image signal encoding apparatuses according to the first, second, and third inventions is specifically constructed will be described below. 5 and 6, quantizer selection control means 1. ]. ,51
The configuration and operation of the other parts are the same as those described above, so the explanation will be omitted here. The configuration of the quantizer selection control means 11.51 is shown in FIG. The input image signal in FIG. 7 is input to subtraction means 105 and prediction means 101, 102, 1.03. Prediction means 10
1, 1.02, and 103 are the prediction means 24, 25.26 in FIG. 5, and the prediction means 91, 92. in FIG. 6, respectively. It is the same as 93. That is, for example, the 1,000-stage prediction 101 performs previous value prediction, and the 1,000-stage prediction 1
0 2 predicts the previous line, and the prediction stage 103 predicts the previous value and the average value of the previous line.

予め定めた方法により予測手段ion , 102 ,
 103で予測された信号はそれぞれ選択手段104に
入力される。選択手段104は、第5図における選択千
段27や第6図に釦ける選択千段94と同じであり、同
じ動作をする。すなわち、入力された画像信号の画素の
位置が第2図に訟ける領域202に含まれるなら「0」
の値を選択し、領域203に含1れるなら予測手段10
]の出力を選択し、領域204に含はれるなら予測手段
102の出力を選択し、領域205に含1れるなら予測
手段103の出力を選択する。
The prediction means ion, 102, according to a predetermined method.
The signals predicted at 103 are each input to selection means 104. The selection means 104 is the same as the selection stage 27 in FIG. 5 and the selection stage 94 buttoned in FIG. 6, and performs the same operation. That is, if the position of the pixel of the input image signal is included in the area 202 shown in FIG.
If the value is included in the area 203, the prediction means 10
] is included in the area 204, the output of the prediction means 102 is selected, and if it is included in the area 205, the output of the prediction means 103 is selected.

選択手段104の出力は減算手段1. 0 5に入力さ
れ、入力画像信号との差分を取り、量子化処理を含まな
い予測誤差を求める。減算手段]. 0 5から出力さ
れた予測誤差は、絶対値計算手段106に入力されて絶
対値が計算され、絶対値計算手段1. 0 6の出力は
領域最大値算出手段107, 1.08, 109にそ
れぞれ入力される。領域最大値算出手段107,1.0
8,1.09は各予測方法の領域毎に予測誤差の絶対値
の最大値、すなわちダイナミックレンジを算出する。つ
甘り、領域最大値算出手段107は、第2図に釦ける領
域203(前値予測領域)の予測誤差のダイナミックレ
ンジを求め、領域最大値算出手段108は、領域204
(前ライン予測領域)の予測誤差のダイナミックレンジ
を求め、領域最大値算出手段109は、領域205(前
値と前ラインの平均値予測領域)の予測誤差のダイナミ
ックレンジを求める。領域最大値算出手段1.07 ,
 108 , 109でそれぞれ求められた予測誤差の
ダイナミックレンジは、しきい値判定手段110,11
1,1.12にそれぞれ入力される。
The output of the selection means 104 is subtracted by the subtraction means 1. 05, and the difference with the input image signal is taken to obtain a prediction error that does not include quantization processing. Subtraction means]. The prediction error outputted from 05 is input to the absolute value calculation means 106 to calculate the absolute value, and the absolute value calculation means 1. The outputs of 06 are input to area maximum value calculation means 107, 1.08, and 109, respectively. Area maximum value calculation means 107, 1.0
8.1.09 calculates the maximum absolute value of the prediction error, that is, the dynamic range, for each region of each prediction method. Specifically, the region maximum value calculation means 107 calculates the dynamic range of the prediction error in the region 203 (previous value prediction region) shown in FIG.
The dynamic range of the prediction error in the (previous line prediction area) is determined, and the area maximum value calculation means 109 determines the dynamic range of the prediction error in the area 205 (previous value and average value prediction area of the previous line). Area maximum value calculation means 1.07,
The dynamic ranges of the prediction errors obtained in steps 108 and 109 are determined by threshold determination means 110 and 11.
1, 1, and 12, respectively.

しきい値判定手段110,1.11,112の動作につ
いて第8図を用いて説明する。第8図において、入力さ
れたダイナミックレンジがO〜しきい値1 (以下11
〕1とする)のときは、量子化が細かくダイナミックレ
ンジがth1なる量子化特性を特定する量子化モード1
を、ダイナミックレンジがthl〜t1〕2のときは、
量子化は量子化モード1の特性よ9は粗いがダイナミッ
クレンジがth2なる量子化特性を特定する量子化モー
ド2を、以下同様にしてダ?ナミノクレンジから量子化
モードを選定する。
The operation of the threshold value determination means 110, 1.11, and 112 will be explained using FIG. In Fig. 8, the input dynamic range is O to threshold 1 (hereinafter 11
] 1), quantization mode 1 specifies a quantization characteristic with fine quantization and a dynamic range of th1.
, when the dynamic range is thl~t1]2,
The quantization is based on the characteristics of quantization mode 1. Quantization mode 2 specifies the quantization characteristics where 9 is coarse but the dynamic range is th2. Select quantization mode from Namino Cleanse.

しきい値判定手段110,].1].,112では、そ
れぞれ異なるしきい値で判定がなされ、各予測方法に適
したしきい値判定が行われる。各しきい値判定結果は総
合判定千段1]3にそれぞれ入力され、例えばしきい値
判定手段11.0,1.11での判定結果がモード1、
しきい値判定千段112での判定結果がモード2であっ
たとすると、ダイチ■ックレンジによる判定が最も大き
くなったしきい値判定千段112の判定結果、すなわち
モード2をそのブロック内に釦ける判定結果とする、と
いうような、ブロック内の総合判定を行い、ブロック毎
にモード信号として出力する。以上述べた量子化器選択
制御手段を構成することによジ、前述の画像信号符号化
方式を実現する、第4の発明の画像信号符号化装置を構
成できる。
Threshold determination means 110,]. 1]. , 112, determinations are made using different threshold values, and a threshold determination suitable for each prediction method is performed. Each threshold judgment result is input to the comprehensive judgment stage 1]3, and for example, the judgment result in the threshold judgment means 11.0 and 1.11 is mode 1,
If the judgment result in the 1,000-stage threshold judgment 112 is mode 2, then the judgment result of the 1,000-stage threshold judgment 112, in which the judgment by the Daiichi check range is the largest, that is, mode 2, is pressed in that block. A comprehensive judgment is made within the block, and the result is output as a mode signal for each block. By configuring the quantizer selection control means described above, it is possible to configure an image signal encoding device according to the fourth aspect of the invention, which realizes the above-described image signal encoding method.

な訟、本実施例において、ブロックザイズを4画素×4
ラインとして説明したが、さらに大きな、あるいは小さ
なブロックを用いても良い。号た、予測方法について、
ここでは前値予測、前ライン予測、前値と前ラインの平
均値予測を組み合わせた例について説明したが、ブロッ
ク内で完結した予測処理が行えるなら他の組み合わせを
用いても良い。1た、第7図における総合判定手段で、
ここではダイナミノクレンジによる判定が最も大きくな
ったモードを選択する方法を用いたが、他の方法を用い
ても良い。
However, in this example, the block size is 4 pixels x 4.
Although it has been described as a line, larger or smaller blocks may also be used. Regarding the prediction method,
Here, an example in which previous value prediction, previous line prediction, and average value prediction of previous value and previous line are combined has been described, but other combinations may be used as long as prediction processing can be completed within a block. 1. In the comprehensive judgment means in Fig. 7,
Here, a method of selecting the mode with the largest determination by Dynamino Cleanse was used, but other methods may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によればブロック内で完結
した予測符号化を行うため伝送路に釦いてビット誤シが
発生してもその影響を小さなブロック内にとどめ、画質
劣化を目立たないようにすることができ、1た、ブロッ
ク毎に画像の精細、平担というような特性に適合した量
子化特性を与えることができるため、高品質な復号画像
を得ることができ、さらに、そのブロック毎の量子化モ
ード判定を原画像信号から推定して行うため、符号化処
理時にその判定結果を使って量子化モード選択処理を行
うだけで済み、ハードウェア構成を簡単にできるなど、
実用上極めて有用な画像信号符号化方式及び装置を提供
できる。
As explained above, according to the present invention, predictive coding is completed within a block, so even if a bit error occurs due to a button on the transmission path, the effect is confined to a small block, and image quality deterioration is not noticeable. 1. Since it is possible to give each block a quantization characteristic suitable for characteristics such as image fineness and flatness, it is possible to obtain a high-quality decoded image. Since the quantization mode judgment for each image is estimated from the original image signal, it is only necessary to perform the quantization mode selection process using the judgment result during encoding processing, which simplifies the hardware configuration.
It is possible to provide an image signal encoding method and device that are extremely useful in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の画像信号符号化方式の流れを示す図、
第2図はブロック内予測符号化の説明図、第3図、第4
図は量子化特性の例の説明図、第5図は第2の発明の画
像信号符号化装置の構成図、第6図は第3の発明の画像
信号符号化装置の構成図、第7図は量子化器選択制御手
段の構成図、第8図はしきい値判定の説明図、第9図は
従来の予測符号化の構成図、第10図は予測誤差発生分
布の説明図である。 図中で、1は予測誤差計算処理、2は量子化処理、3は
逆量子化処理、4は局部復号化処理、5はブロック内予
測処理、6は予測誤差のダイナミックレンジ算出処理、
7は量子化モード判定処理、11.51は量子化器選択
制御手段、28.95は画素位置検出手段、12,52
,45,105は減算手段、23,79.48は加算手
段、13,14.,1.5,53,54,55,56,
57,58,59,60,6].,46は量子化手段、
18,19,20,66,67,68,69,70,7
1,72,73.74−,47は逆量子化手段、24.
,25,26,91.,92,93,49,1.01,
102,103は予測手段、16,17,21,22,
27,62,63,64,65,75,76,77,7
8,94,104は選択手段、106は絶対値計算手段
、107, 108, 109は領域最大値算出手段、
11.0,111,112はしきい値判定手段、113
は総合判定手段、201はブロック、202,203,
204.,205は同じ予測方法の領域、81.82は
量子化特性、83は予測誤差分布、84は予測誤差のダ
イナミックレンジ軸である。
FIG. 1 is a diagram showing the flow of the image signal encoding method of the present invention,
Figure 2 is an explanatory diagram of intra-block predictive coding, Figures 3 and 4.
The figure is an explanatory diagram of an example of quantization characteristics, FIG. 5 is a configuration diagram of an image signal encoding device of the second invention, FIG. 6 is a configuration diagram of an image signal encoding device of the third invention, and FIG. 8 is an explanatory diagram of threshold value determination, FIG. 9 is a diagram of conventional predictive coding, and FIG. 10 is an explanatory diagram of prediction error occurrence distribution. In the figure, 1 is a prediction error calculation process, 2 is a quantization process, 3 is an inverse quantization process, 4 is a local decoding process, 5 is an intra-block prediction process, 6 is a prediction error dynamic range calculation process,
7 is a quantization mode determination process, 11.51 is a quantizer selection control means, 28.95 is a pixel position detection means, 12, 52
, 45, 105 are subtraction means, 23, 79.48 are addition means, 13, 14. ,1.5,53,54,55,56,
57, 58, 59, 60, 6]. , 46 is a quantization means,
18, 19, 20, 66, 67, 68, 69, 70, 7
1, 72, 73. 74-, 47 are inverse quantization means; 24.
, 25, 26, 91. ,92,93,49,1.01,
102, 103 are prediction means, 16, 17, 21, 22,
27, 62, 63, 64, 65, 75, 76, 77, 7
8, 94, 104 are selection means, 106 is an absolute value calculation means, 107, 108, 109 are area maximum value calculation means,
11.0, 111, 112 are threshold determination means, 113
is a comprehensive judgment means, 201 is a block, 202, 203,
204. , 205 is the area of the same prediction method, 81.82 is the quantization characteristic, 83 is the prediction error distribution, and 84 is the dynamic range axis of the prediction error.

Claims (4)

【特許請求の範囲】[Claims] (1)画面を定められた大きさの複数のブロックに分割
し、前記の各ブロック内において同ブロック内の画素か
ら予測した値と原画素の値との予測誤差を算出し、前記
予測誤差を量子化する際の量子化特性を特定する複数の
量子化モードを用意しておき、原画像信号から求めたブ
ロック毎の予測誤差のダイナミックレンジから量子化特
定を推定し、その推定結果から前記複数の量子化モード
のいずれかをブロック毎に選択し、前記選択された量子
化モードの量子化特性を使って前記予測誤差を量子化及
び符号化し、前記符号化された信号と、前記選択された
量子化モードを表すモード信号とを出力することを特徴
とする画像信号符号化方式。
(1) Divide the screen into multiple blocks of a predetermined size, calculate the prediction error between the value predicted from the pixels in the same block and the value of the original pixel in each block, and calculate the prediction error. Prepare multiple quantization modes that specify the quantization characteristics during quantization, estimate the quantization characteristics from the dynamic range of the prediction error for each block obtained from the original image signal, and use the estimation results to determine the quantization characteristics. quantization mode is selected for each block, the prediction error is quantized and encoded using the quantization characteristics of the selected quantization mode, and the encoded signal and the selected quantization mode are quantized and encoded. An image signal encoding method characterized by outputting a mode signal representing a quantization mode.
(2)原画像信号からブロック毎の予測誤差のダイナミ
ックレンジを求め、前記ダイナミックレンジから量子化
特定を推定するための量子化器選択制御手段と、現在符
号化中の画素の位置を検出するための画素位置検出手段
と、予測誤差を算出するための減算手段と、前記予測誤
差を量子化するための複数の量子化手段と、前記複数の
量子化手段が持つ量子化特性の逆特性をそれぞれ持つ複
数の逆量子化手段と、加算手段と、複数の予測手段と、
複数の選択手段から構成されることを特徴とする画像信
号符号化装置。
(2) Quantizer selection control means for determining the dynamic range of prediction error for each block from the original image signal and estimating quantization specificity from the dynamic range, and for detecting the position of the pixel currently being encoded. a pixel position detection means, a subtraction means for calculating a prediction error, a plurality of quantization means for quantizing the prediction error, and an inverse characteristic of the quantization characteristic of the plurality of quantization means, respectively. a plurality of inverse quantization means, an addition means, a plurality of prediction means,
An image signal encoding device comprising a plurality of selection means.
(3)前記複数の量子化手段と前記複数の逆量子化手段
を、前記複数の予測手段にそれぞれ対応し、かつ、それ
ぞれ複数の量子化特性で量子化及び符号化するための複
数の量子化手段と、前記複数の量子化手段が持つ量子化
特性の逆特性を持つ複数の逆量子化手段に置き換えて構
成される、請求項第2項の画像信号符号化装置。
(3) A plurality of quantizations for quantizing and encoding the plurality of quantization means and the plurality of inverse quantization means respectively corresponding to the plurality of prediction means and each with a plurality of quantization characteristics. 3. The image signal encoding apparatus according to claim 2, wherein said means is replaced with a plurality of inverse quantization means having a characteristic opposite to the quantization characteristic of said plurality of quantization means.
(4)前記量子化器選択制御手段が、予測誤差を算出す
るための減算手段と、複数の予測手段と、選択手段と、
前記予測誤差の絶対値を計算するための絶対値計算手段
と、前記複数の予測手段に対応したそれぞれの予測領域
の前記予測誤差の絶対値の最大値を算出するための領域
最大値算出手段と、前記それぞれの予測領域の予測誤差
の絶対値の最大値により量子化モードをそれぞれ分類す
るための複数のしきい値判定手段と、前記それぞれの予
測領域で分類された量子化モードから、ブロック毎の量
子化モードを決定するための総合判定手段とから構成さ
れる、請求項第2項の画像信号符号化装置。
(4) The quantizer selection control means includes a subtraction means for calculating a prediction error, a plurality of prediction means, and a selection means,
Absolute value calculation means for calculating the absolute value of the prediction error; Area maximum value calculation means for calculating the maximum value of the absolute value of the prediction error of each prediction area corresponding to the plurality of prediction means; , a plurality of threshold determination means for classifying the quantization modes according to the maximum absolute value of the prediction error in each of the prediction regions; 3. The image signal encoding apparatus according to claim 2, further comprising comprehensive determination means for determining the quantization mode of the image signal.
JP19519389A 1989-07-27 1989-07-27 Method and apparatus for coding picture signal Pending JPH0358672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19519389A JPH0358672A (en) 1989-07-27 1989-07-27 Method and apparatus for coding picture signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19519389A JPH0358672A (en) 1989-07-27 1989-07-27 Method and apparatus for coding picture signal

Publications (1)

Publication Number Publication Date
JPH0358672A true JPH0358672A (en) 1991-03-13

Family

ID=16337000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19519389A Pending JPH0358672A (en) 1989-07-27 1989-07-27 Method and apparatus for coding picture signal

Country Status (1)

Country Link
JP (1) JPH0358672A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112273A (en) * 1989-09-26 1991-05-13 Pioneer Electron Corp Picture coding system
JPH05316370A (en) * 1992-05-14 1993-11-26 Fuji Xerox Co Ltd Data compressor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62154875A (en) * 1985-12-26 1987-07-09 Konishiroku Photo Ind Co Ltd Multilevel image compressing system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62154875A (en) * 1985-12-26 1987-07-09 Konishiroku Photo Ind Co Ltd Multilevel image compressing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112273A (en) * 1989-09-26 1991-05-13 Pioneer Electron Corp Picture coding system
JPH05316370A (en) * 1992-05-14 1993-11-26 Fuji Xerox Co Ltd Data compressor

Similar Documents

Publication Publication Date Title
JP3190002B2 (en) Quantization method and circuit
US8498335B2 (en) Adaptive deadzone size adjustment in quantization
KR101437182B1 (en) Quantization adjustments for dc shift artifacts
KR0184905B1 (en) Code amount control device and encoding apparatus using the same
US7327786B2 (en) Method for improving rate-distortion performance of a video compression system through parallel coefficient cancellation in the transform
KR101323066B1 (en) Quantization adjustment based on texture level
US8189933B2 (en) Classifying and controlling encoding quality for textured, dark smooth and smooth video content
JP3431331B2 (en) Video encoding device, video transmission device, and video conference device
JP2000506687A (en) Apparatus and method for optimizing encoding using perceptual amount and performing automatically operable image compression
KR20060072070A (en) Method and apparatus for generating a quantisation matrix that can be used for encoding an image or a picture sequence
US20090097546A1 (en) System and method for enhanced video communication using real-time scene-change detection for control of moving-picture encoding data rate
JP2004032718A (en) System and method for processing video frame by fading estimation/compensation
US20050152450A1 (en) Coding apparatus and method, program, and recording medium
JP2003018599A (en) Method and apparatus for encoding image
WO2019194109A1 (en) Prediction image correcting device, image encoding device, image decoding device, and program
JPH08275156A (en) Video signal encoding device
JPH0468988A (en) High efficient coder for moving picture signal
JP4231565B2 (en) Image information encoding system
JP2000059782A (en) Compression method for spatial area digital image
KR20060127159A (en) System and method for global indication of mpeg impairments in compressed digital video
JPH1066079A (en) Adaptive quantization control device
JP4081727B2 (en) Image encoding apparatus, image encoding method, recording apparatus, and recording method
KR20050035040A (en) Decoding method of digital image data
JPH0358672A (en) Method and apparatus for coding picture signal
JP3812808B2 (en) Skip region detection type moving image encoding apparatus and recording medium