【発明の詳細な説明】[Detailed description of the invention]
本発明は、ポリアミドの溶融成形に際し、溶融
し、かつ結晶化を促進し得る核剤を配合する高結
晶化ポリアミド成形物の製造法に関するものであ
る。
一般的にポリアミド成形物は、優れた力学的性
質を有し、繊維素材、一般成形材料や構造材料な
どの産業資材として広く用いられているが、繊維
では、弾性率が低く、熱収縮率が大きくて寸法安
定性が良好でないという欠点を有している。一般
成形物では、成形収縮率及び吸水寸法変化が大き
く、更に成形性、あるいは生産性という観点から
もポリアミド成形物の改良が望まれるところであ
る。
本発明者らは、かゝる欠点を改良すべく鋭意研
究した結果、本発明に到達した。
すなわち、本発明は、ナイロン46よりも低融点
のポリアミドを溶融成形するに際し、ナイロン46
の微粉末を0.01〜5重量%配合し、ナイロン46の
融点より高い温度で溶融成形することを特徴とす
る高結晶化ポリアミド成形物の製造法を要旨とす
るものである。
本発明においてナイロン46とは、ポリテトラメ
チレンアジパミド及びテトラメチレンアジパミド
単位を80モル%以上含有するコポリアミドであつ
て、融点295〜270℃のものをいう。
ナイロン46は分子の対称性がよく、従来結晶化
速度が速いポリアミドとされているナイロン66よ
りも結晶化速度が数倍速いという特長を有する。
本発明において、ナイロン46は核剤として働く
ものであり、微粉末状で配合することが必要であ
り、溶融成形はナイロン46の融点以上の温度で行
うことが必要である。ナイロン46は溶融成形時
に、成形に供されるポリアミド中に均一に溶融分
散された状態になるが、成形物の冷却過程でまず
結晶化し、結晶化速度が速い効果により、成形に
供されるポリアミド中に結晶核を有効に発生さ
せ、引き続く成形物の冷却過程で、成形物の結晶
化を促進させるものと考えられる。
従来、溶融成形法によりポリアミド成形物を製
造する際に、結晶核剤を添加する方法は良く知ら
れており、特公昭44−3509号公報にはナイロン66
又はナイロン68に対して、ナイロン6T、ナイロ
ン66/6Tなど、特公昭49−47261号公報には、ナ
イロン6に対して高融点の特異な球晶を含むナイ
ロン66を添加する方法が提案されている。そし
て、これら従来の方法はいずれも結晶核剤として
添加したポリマーの融点より低い温度で紡糸する
ことを要件とするものである。
上記の提案は、いずれも成形に供されるポリマ
ーの融点より高い融点の結晶核剤を溶液法、マス
ターチツプ法等で分散させて、その核剤を溶融す
ることなく成形し、核剤効果を発現させようとす
るものであり、核剤の効果としては、無機核剤
(鉄粉、ガラス粉、TiO2)等と本質的に同じもの
と言えよう。
核剤の融点より高い温度で成形する方法として
特開昭52−18919号の方法が挙げられる。この方
法は、ナイロン6にナイロン66/6Tの微粉末を
加えてその核剤ナイロン66/6Tの融点以上で紡
糸する方法であるが、効果はそれほど顕著でな
い。使用されているナイロン66/6Tの融点は270
〜330℃であるが、その核剤自身の溶融冷却下の
結晶化速度が遅いことに帰因するものと考えられ
る。
ポリマー核剤の有効性は、成形に供されるポリ
マーとの相溶性が優れていること、核剤の融点が
成形に供されるポリマーの融点より高いことだけ
では不十分であり、特に、ポリマー核剤が一旦溶
融した後でも、冷却過程で核剤効果を発現させ
る、いわゆる溶融核剤の場合、核剤自身の結晶化
速度が著しく速いものでなければならないのであ
り、本発明におけるナイロン46はこれらの要件を
すべて満たすものである。
本発明において溶融成形に供されるポリアミド
は融点が295℃より低く、270℃より高い温度で溶
融成形されるポリアミドであり、特に融点が200
〜290℃の高重合度ポリアミドが適当である。具
体例としては、ナイロン4、ナイロン6、ナイロ
ン66、ナイロン610、ナイロン410等及びこれらの
コポリアミドが挙げられる。コポリアミドの好ま
しい例として芳香族アミド単位を導入した剛性の
改良されたコポリアミド、例えばナイロン66にパ
ラフエニレンテレフタラミド単位を導入したもの
が挙げられる。
溶融成形温度は、成形に供されるポリアミドの
融点、分子量、溶融粘度等により決められるが、
核剤として配合されるナイロン46(コポリアミド)
の融点より高い270℃より高い温度としなければ
ならない。溶融成形温度の上限は特に限定されな
いが、あまり高温にするとポリアミドの熱分解の
ため、良好な成形品を得ることができないので、
一般に330℃以下とされる。
結晶化速度は、示差熱量計(DSC)から求め
られるポリマーの融点(Tm)と結晶化温度との
差ΔT(過冷却度)で示される。ΔTが小さいもの
程、融点以下に冷却される過程で、より速く結晶
化するものである。温度降下速度80℃/分にした
場合、ナイロン6(Tm=225℃)、ナイロン66
(Tm=265℃)、ナイロン46ホモポリマー(Tm=
295℃)のΔTは115℃、65℃、50℃の値となり、
更にプラスチツクス、フイルム、繊維等の成形物
製造時の温度降下速度に対応する、より速い降下
速度下でのDSC測定では、よりΔTの大きな差と
なつてあらわれる。ナイロン66/6Tはコポリア
ミドでも結晶化速度はナイロン66と同等或いは低
い。
本発明の目的は、結晶化速度の速いナイロン46
核剤を成形物全量に対して0.01重量%以上、好ま
しくは0.05重量%以上、5重量%以下添加するこ
とにより達せられる。0.01重量%未満では効果が
十分でなく、5重量%より多い添加量に於いて
は、製糸時の糸切れ等の幾分の増加、或いは成形
に供せられるポリアミドの変性がみられる。
本発明の方法によれば、ポリマー核剤の粒度
は、未延伸糸の直径の10分の1のオーダであつて
も微細構造的に均一な繊維が得られるし、またプ
ラスチツクスの場合には、繊維の場合より粒度が
粗くても、本発明の目的を達することができる。
本発明の溶融核剤による成形物への効果は、成形
物の強度アツプ、ヤング率の向上、熱水収縮率、
熱変形量の低下等、成形物の結晶化度の向上によ
つてもたらされるものである。
本発明の実施に当つて、繊維、プラスチツク
ス、フイルム等の溶融成形の条件は、核剤添加な
しの場合の条件をほぼ、そのまま採用することが
できる。なお、溶融成形に際し、耐熱、耐光、耐
酸化剤、顔料等の添加剤の併用については、種
類、量について特な限定されるものではない。
次に実施例により本発明をさらに詳細に説明す
る。
なお、DSCの測定方法、試験片の成形、溶融
紡糸、・延伸及び評価方法は以下の方法によつた。
(1) DSCの測定
成形品資料8mgを秤量し、測定装置にはパー
キン・エルマー(Perkin−Elmer)社製のDSC
−型を用いた。
測定は窒素雰囲気中で行い、10℃/分の昇温
速度で295℃まで昇温し、5分間保持した後、
10℃/分の定速で冷却を行い、融解による吸熱
ピーク温度(Tms)及び結晶化に基づく発熱
ピーク温度(Tcs)を求めた。ΔTs=Tms−
Tcsで、ΔTsが小さい程成形品の結晶化速度が
高いことを示す。
(2) 試験片の成形
ポリアミドペレツトと各種濃度の所定量の微
粉末(50メツシユ通過)を配合後、成型機(日
精樹脂社製TS−150)を使い、温度プロフイル
250℃−270℃−280℃で成形した。金型温度を
80℃に設定し、射出時間を15秒とし、冷却時間
を種々変更して成形した。
(3) 離型性、変形
離型性は成型の際のキヤビテイーからの型離
れ及びスプールの抜けで判定した。
良好:○ やや不良:△ 不良:×
押し出し時(ノツクアウト)の試験片の変形
は定盤上でダイヤルゲージを用い、試験片を移
動させ、試験片の変形による厚みの最大値と、
良好な試験片の厚みとの差を変形量として表示
する。但し試験片寸法は1/2″×1/2″×5″矩
形片で行つた。
(4) 引張強度の測定
(3)の方法でASTM−1/8″ダンベル試験片
成形し、これを用いてASTM−D638に従つて
引張強度を測定した。
(5) 溶融紡糸・延伸
スピンドロー法により紡糸・延伸し、
1260d/210fのヤーンを得たが詳細は各実施例
に記す。
(6) 相対粘度:JIS K6810 4.2.1
(7) ヤング率:JIS L1073−1965 5.10
(8) 熱収縮率(熱収):JIS L1073−1965 5.12(イ)
B
実施例 1
相対粘度3.0のナイロン66ペレツトに、ポリ
(テトラメチレンアジパミド/ヘキサメチレンア
ジパミド)(モル比80/20、Tm=272℃)を粉砕
した微粉末(50メツシユ通過)を表の割合に良
く混合し、前記の方法により射出成形を行つた。
結果を表に示す。
The present invention relates to a method for producing a highly crystallized polyamide molded article, which includes blending a nucleating agent that can melt and promote crystallization during melt molding of polyamide. Generally, polyamide molded products have excellent mechanical properties and are widely used as industrial materials such as fiber materials, general molding materials, and structural materials.However, fibers have a low elastic modulus and a low heat shrinkage rate. It has the disadvantage of being large and having poor dimensional stability. In general molded products, mold shrinkage and water absorption dimensional changes are large, and improvements in polyamide molded products are desired from the viewpoint of moldability and productivity. The present inventors conducted intensive research to improve these drawbacks, and as a result, they arrived at the present invention. That is, in the present invention, when melt-molding polyamide having a lower melting point than nylon 46, nylon 46
The gist of this invention is a method for producing a highly crystallized polyamide molded article, which is characterized by blending 0.01 to 5% by weight of a fine powder of nylon 46 and melt-molding it at a temperature higher than the melting point of nylon 46. In the present invention, nylon 46 refers to a copolyamide containing 80 mol% or more of polytetramethylene adipamide and tetramethylene adipamide units, and having a melting point of 295 to 270°C. Nylon 46 has good molecular symmetry and has the advantage of crystallizing several times faster than nylon 66, which is conventionally considered to be a polyamide with a fast crystallization rate. In the present invention, nylon 46 acts as a nucleating agent and must be blended in the form of fine powder, and melt molding must be performed at a temperature equal to or higher than the melting point of nylon 46. During melt molding, nylon 46 becomes uniformly melted and dispersed in the polyamide used for molding, but it first crystallizes during the cooling process of the molded product, and due to the effect of a fast crystallization rate, the polyamide used for molding It is thought that this effectively generates crystal nuclei inside the molded material and promotes crystallization of the molded material during the subsequent cooling process of the molded material. Conventionally, the method of adding a crystal nucleating agent when manufacturing a polyamide molded product by the melt molding method is well known, and Japanese Patent Publication No. 44-3509 discloses that nylon 66
Alternatively, for nylon 68, nylon 6T, nylon 66/6T, etc., and Japanese Patent Publication No. 49-47261 proposes a method of adding nylon 66, which contains a unique spherulite with a high melting point, to nylon 6. There is. All of these conventional methods require spinning at a temperature lower than the melting point of the polymer added as a crystal nucleating agent. In all of the above proposals, a crystal nucleating agent with a melting point higher than that of the polymer to be molded is dispersed by a solution method, a master chip method, etc., and the nucleating agent is molded without melting, thereby enhancing the nucleating agent effect. The effect of the nucleating agent can be said to be essentially the same as that of inorganic nucleating agents (iron powder, glass powder, TiO 2 ), etc. As a method of molding at a temperature higher than the melting point of the nucleating agent, there is a method disclosed in JP-A-52-18919. This method involves adding fine powder of nylon 66/6T to nylon 6 and spinning the mixture at a temperature higher than the melting point of the nucleating agent nylon 66/6T, but the effect is not so significant. The melting point of the nylon 66/6T used is 270.
~330°C, which is thought to be due to the slow crystallization rate of the nucleating agent itself during melt cooling. For the effectiveness of a polymer nucleating agent, it is not sufficient that it has excellent compatibility with the polymer used for molding and that the melting point of the nucleating agent is higher than the melting point of the polymer used for molding. In the case of a so-called molten nucleating agent that exhibits a nucleating agent effect during the cooling process even after the nucleating agent is once melted, the crystallization rate of the nucleating agent itself must be extremely fast. It satisfies all of these requirements. The polyamide to be melt-molded in the present invention has a melting point lower than 295°C and is melt-molded at a temperature higher than 270°C, and particularly has a melting point of 200°C.
High polymerization degree polyamides of ~290°C are suitable. Specific examples include nylon 4, nylon 6, nylon 66, nylon 610, nylon 410, and copolyamides thereof. Preferred examples of copolyamides include copolyamides with improved stiffness in which aromatic amide units are introduced, such as those in which paraphenylene terephthalamide units are introduced into nylon 66. The melt molding temperature is determined by the melting point, molecular weight, melt viscosity, etc. of the polyamide used for molding.
Nylon 46 (copolyamide) blended as a nucleating agent
The temperature shall be higher than 270°C, which is higher than the melting point of. The upper limit of the melt molding temperature is not particularly limited, but if the temperature is too high, the polyamide will thermally decompose, making it impossible to obtain a good molded product.
Generally considered to be below 330℃. The crystallization rate is indicated by the difference ΔT (degree of supercooling) between the melting point (Tm) of the polymer and the crystallization temperature determined by a differential calorimeter (DSC). The smaller the ΔT, the faster the crystallization occurs during the process of cooling below the melting point. Nylon 6 (Tm=225°C), Nylon 66 when the temperature drop rate is 80°C/min.
(Tm=265℃), nylon 46 homopolymer (Tm=
295℃), ΔT is the value of 115℃, 65℃, 50℃,
Furthermore, when DSC measurements are performed at a faster temperature drop rate, which corresponds to the temperature drop rate during the production of molded products such as plastics, films, and fibers, a larger difference in ΔT appears. Even though nylon 66/6T is a copolyamide, its crystallization rate is the same or lower than that of nylon 66. The object of the present invention is to use nylon 46, which has a fast crystallization rate.
This can be achieved by adding the nucleating agent in an amount of 0.01% by weight or more, preferably 0.05% by weight or more and 5% by weight or less, based on the total amount of the molded product. If the amount is less than 0.01% by weight, the effect will not be sufficient, and if the amount is more than 5% by weight, some increase in thread breakage during spinning or modification of the polyamide used for molding will be observed. According to the method of the present invention, even if the particle size of the polymer nucleating agent is on the order of one-tenth of the diameter of the undrawn yarn, fibers with uniform microstructure can be obtained. Even if the particle size is coarser than that of fibers, the object of the present invention can be achieved.
The effects of the melt nucleating agent of the present invention on molded products include increased strength of molded products, improvement in Young's modulus, hot water shrinkage rate,
This is brought about by improving the crystallinity of the molded product, such as reducing the amount of thermal deformation. In carrying out the present invention, the conditions for melt molding fibers, plastics, films, etc. can be almost the same as those without the addition of a nucleating agent. In addition, there are no particular limitations on the types and amounts of additives such as heat resistance, light resistance, oxidation resistance, pigments, etc. that may be used in combination during melt molding. Next, the present invention will be explained in more detail with reference to Examples. The DSC measurement method, test piece molding, melt spinning, stretching, and evaluation method were as follows. (1) DSC measurement Weigh 8 mg of the molded product material, and use the Perkin-Elmer DSC as the measuring device.
-Used a mold. The measurement was performed in a nitrogen atmosphere, and the temperature was raised to 295°C at a rate of 10°C/min, held for 5 minutes, and then
Cooling was performed at a constant rate of 10° C./min, and the endothermic peak temperature (Tms) due to melting and the exothermic peak temperature (Tcs) due to crystallization were determined. ΔTs=Tms−
In Tcs, the smaller ΔTs is, the higher the crystallization rate of the molded product is. (2) Molding of test piece After blending polyamide pellets with a predetermined amount of fine powder at various concentrations (passed through 50 meshes), the temperature profile was
Molding was carried out at 250°C-270°C-280°C. mold temperature
The molding temperature was set at 80°C, the injection time was 15 seconds, and the cooling time was variously changed. (3) Mold releasability, deformation Mold releasability was determined by separation from the mold from the cavity during molding and from the spool coming off. Good: ○ Slightly poor: △ Bad: × To measure the deformation of the test piece during extrusion (knock-out), move the test piece using a dial gauge on the surface plate, and measure the maximum thickness due to the deformation of the test piece,
The difference from the thickness of a good test piece is displayed as the amount of deformation. However, the test piece dimensions were 1/2″ x 1/2″ x 5″ rectangular pieces. (4) Measurement of tensile strength An ASTM-1/8″ dumbbell test piece was formed using the method in (3), and this was The tensile strength was measured according to ASTM-D638. (5) Melt spinning/drawing Spinning and drawing using the spin draw method,
1260d/210f yarns were obtained, details of which are given in each example. (6) Relative viscosity: JIS K6810 4.2.1 (7) Young's modulus: JIS L1073−1965 5.10 (8) Heat shrinkage rate (heat yield): JIS L1073−1965 5.12 (a)
B Example 1 Fine powder (passed through 50 meshes) of poly(tetramethylene adipamide/hexamethylene adipamide) (mole ratio 80/20, Tm = 272°C) was added to nylon 66 pellets with a relative viscosity of 3.0. The ingredients were mixed well according to the proportions shown in the table, and injection molding was performed by the method described above. The results are shown in the table.
【表】
実施例 2
相対粘度3.3のナイロン6チツプに、ポリ(テ
トラメチレンアジパミド/ヘキサメチレンアジパ
ミド)(モル比90/10、Tm=283℃)を粉砕した
微粉末(100メツシユ通過)を表に示した添加
量で添加し、良く混合後、紡糸温度292℃で溶融
紡糸し、水性エマルジヨン油剤を付与後、温度70
℃、周速450m/分のローラで引取り、該ローラ
と温度140℃の第1延伸ローラとの間で3.5倍に第
1段延伸し、第1延伸ローラと温度150℃の第2
延伸ローラとの間で200℃の熱板に接触させなが
ら1.5倍に第2段延伸し、1260d/210fの延伸糸を
製造した。
結果を表に示す。表中No.5はナイロン66/
6T(モル比80/20、Tm=273℃)の核剤を使用
した比較例である。[Table] Example 2 Fine powder of poly(tetramethylene adipamide/hexamethylene adipamide) (molar ratio 90/10, Tm = 283°C) ground into nylon 6 chips with relative viscosity 3.3 (100 meshes passed) ) was added in the amount shown in the table, mixed well, and melt-spun at a spinning temperature of 292°C. After applying an aqueous emulsion oil agent, the spinning temperature was 70°C.
℃ and a peripheral speed of 450 m/min, first stage stretching is carried out to 3.5 times between this roller and a first stretching roller at a temperature of 140℃, and a second stage stretching is performed between the first stretching roller and a second stretching roller at a temperature of 150℃.
A second step of drawing was carried out to 1.5 times while contacting a hot plate at 200° C. between a drawing roller and a drawn yarn of 1260d/210f was produced. The results are shown in the table. No. 5 in the table is nylon 66/
This is a comparative example using a nucleating agent of 6T (molar ratio 80/20, Tm = 273°C).
【表】
実施例 3
相対粘度3.1のナイロン66チツプに、ポリテト
ラメチレンアジパミド(Tm=295℃)を粉砕し
た微粉末(100メツシユ通過)を表に示した添
加量で添加し、良く混合後、紡糸温度300℃で溶
融紡糸し、水性エマルジヨン油剤を付与後、温度
80℃、周速400m/分のローラで引取り、該ロー
ラと温度150℃の第1延伸ローラとの間で3.0倍に
第1段延伸し、第1延伸ローラと温度170℃の第
2延伸ローラとの間で220℃の熱板に接触させな
がら1.7倍に第2段延伸し、1260d/210fの延伸糸
を製造した。
結果を表に示す。表中No.5は、ナイロン66/
6T(モル比65/35、Tm=290℃)の核剤を使用
した比較例である。[Table] Example 3 Fine powder of polytetramethylene adipamide (Tm = 295°C) (passed through 100 meshes) was added to nylon 66 chips with a relative viscosity of 3.1 in the amount shown in the table, and mixed well. After that, melt spinning is carried out at a spinning temperature of 300℃, and after applying an aqueous emulsion oil agent, the temperature is
It is taken up by a roller at 80°C and a circumferential speed of 400 m/min, and the first drawing is carried out at 3.0 times between this roller and a first drawing roller at a temperature of 150°C, and the second drawing is carried out between the first drawing roller and a first drawing roller at a temperature of 170°C. The yarn was drawn in a second stage to 1.7 times while being in contact with a hot plate at 220° C. between rollers to produce a drawn yarn of 1260d/210f. The results are shown in the table. No. 5 in the table is nylon 66/
This is a comparative example using a nucleating agent of 6T (molar ratio 65/35, Tm = 290°C).
【表】【table】