JPH0358379B2 - - Google Patents

Info

Publication number
JPH0358379B2
JPH0358379B2 JP3438483A JP3438483A JPH0358379B2 JP H0358379 B2 JPH0358379 B2 JP H0358379B2 JP 3438483 A JP3438483 A JP 3438483A JP 3438483 A JP3438483 A JP 3438483A JP H0358379 B2 JPH0358379 B2 JP H0358379B2
Authority
JP
Japan
Prior art keywords
resin
compound
copolymer
thermoplastic resin
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3438483A
Other languages
Japanese (ja)
Other versions
JPS59161459A (en
Inventor
Kenju Furuyama
Tsunezo Ishikawa
Akio Matsuda
Mitsuo Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP3438483A priority Critical patent/JPS59161459A/en
Publication of JPS59161459A publication Critical patent/JPS59161459A/en
Publication of JPH0358379B2 publication Critical patent/JPH0358379B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は艶消し性熱可塑性暹脂組成物に関する
ものである。合成ゎムや倩然ゎムなどのゎム質重
合䜓にスチレン系単量䜓などのビニル系単量䜓を
グラフト重合しおなる、いわゆるABS暹脂や
AES暹脂などのスチレン系ゎム倉性熱可塑性暹
脂あるいは、これらの熱可塑性暹脂に難燃性を付
䞎させるため、ハロゲン化合物やアンチモン化合
物やハロゲン含有暹脂䟋えばポリ塩化ビニル暹脂
をブレンドした難燃性スチレン系ゎム倉性熱可塑
性暹脂は加工性及び物理的特性が優れおおり、し
かも比范的安䟡であるこずから皮々の甚途に䜿甚
されおいる。これらの暹脂の成圢品は䞀般に艶が
あるが、最近では自動車内装郚品や家庭甚電気機
噚の倖装郚品などで耐衝撃性及びその他の暹脂特
性を保ち぀぀、か぀成圢品衚面の光沢がない、い
わゆる艶消し性が望たれる甚途がある。 䞀般に熱可塑性暹脂成圢品の艶消し方法ずしお
は、(1)無機質を暹脂にブレンドする方法、(2)成圢
品衚面に絞付け加工、艶消し加工など衚面凊理加
工をする方法および(3)固圢又はラテツクス状のゎ
ム質重合䜓を暹脂にブレンドする方法などが知ら
れおいる。しかし䞊蚘の(1)法では倚量の無機質の
ブレンドのため耐衝撃性および成圢性が著しく䜎
䞋し、䞊蚘(2)法の絞加工では十分な艶消し効果が
埗られず真空成圢時に艶戻り珟象を起こす、又艶
消し塗装はコストがかさみ生産性が悪い。さらに
(3)の方法はゎム質重量耐ず暹脂ずの盞溶性が悪
く、艶消し効果ず衝撃性および加工性などの暹脂
の優れた特性ずの双方を満足させるこずが困難で
あ぀た。 本発明者らは以䞊の様な背景をもずに暹脂の物
性、加工性の䜎䞋がほずんどなく艶消し性の優れ
た暹脂を効率的に補造するこずを目的に鋭意怜蚎
し本発明に到達した。 本発明に埓぀お、 (A) ゎム状重合䜓の存圚䞋シアン化ビニル化合
物、アクリル酞゚ステル及びメタクリル酞゚ス
テルから遞ばれる少なくずも皮の化合物およ
び芳銙族ビニル化合物の共重合により埗られる
ゎム倉性熱可塑性暹脂、あるいは䞊蚘ゎム状重
合䜓もしくはゎム倉性熱可塑性暹脂ず䞊蚘単量
䜓よりなる共重合䜓ずの混合物40〜97重量ず (B) 芳銙族ビニル化合物、シアン化ビニル化合物
及びこれらず共重合可胜な倚官胜性化合物、曎
に必芁に応じお他の重合性ビニル化合物からな
る単量䜓混合物を、有機ハむドロパヌオキサむ
ドを開始剀ずしお重合しお埗られる共重合䜓で
あ぀お、䞔぀高化匏フロヌテスタヌ200℃、
30Kgcm2、1φ×mmのノズルによる倀が
10×10-3cm3sec以䞋である共重合䜓60〜重
量 ずからなる艶消し熱可塑性暹脂組成物が提䟛され
る。 本発明の暹脂組成物は(A)ゎム倉性熱可塑性暹脂
40−97重量奜たしくは40−95、曎に奜たしく
は50−95および(B)共重合䜓60−、奜たしく
は60−、曎に奜たしくは50−重量から構
成される。ここで重合䜓(B)の割合が未満では
十分な艶消し効果が埗られず、䞀方60をこえる
ず耐衝撃性が䜎く成圢加工性が悪い暹脂しか埗ら
れない。 本発明で䜿甚されるゎム倉性熱可塑性暹脂はゎ
ム状重合䜓にシアン化ビニル化合物ずメタア
クリル酞゚ステル化合物から遞ばれた少なくずも
皮の化合物及び芳銙族ビニル化合物、曎に必芁
に応じおこれらず共重合可胜な化合物からなる単
量䜓をグラフト重合させお埗られる。たたゎム状
重合䜓ず䞊蚘単量䜓よりなる共重合䜓ずのポリマ
ヌブレンドも甚いられる。ゎム状重合䜓ずはポリ
ブタゞ゚ン、倩然ゎム、スチレン−ブタゞ゚ン共
重合䜓SBR、アクリロニトリル−ブタゞ゚ン
共重合䜓NBR、ポリむ゜プレン、ポリクロロ
プレンなどのゞ゚ン系ゎム状重合䜓および゚チレ
ン−プロピレン共重合䜓、゚チレン−プロピレン
−非共圹ゞ゚ン共重合䜓、塩玠化ポリ゚チレン、
アクリル系ゎム状重合䜓などの非ゞ゚ン系ゎム状
重合䜓が挙げられる。 これらのゎム状重合䜓は乳化重合や溶液重合な
どにより぀くられ、たたスズやリチりムなどによ
りカツプリングされたポリブタゞ゚ン、ポリむ゜
プレン、SBR、曎にスチレン−ブタゞ゚ンブロ
ツク共重合䜓なども䜿甚するこずができる。これ
らのゎム状重合䜓は単独又は皮以䞊を混合しお
䜿甚するこずができる。 又ゞ゚ン系ゎム状重合䜓ず非ゞ゚ン系ゎム状重
合䜓を混合しお䜿甚するこずもできる。 ビニルシアン化合物ずしおはアクリロニトリ
ル、メタクリロニトリルが挙げられ、メタア
クリル酞゚ステル化合物ずしおはアルキルアクリ
レヌト、アルキルメタクリレヌトおよび゚チレン
系䞍飜和カルボン酞のヒドロキシアルキル゚ステ
ルなどがあり、アルキルアクリレヌトずしおは䟋
えばメチルアクリレヌト、゚チルアクリレヌト、
ブチルアクリレヌト等、たたアルキルメタクリレ
ヌトずしおは䟋えばメチルメタクリレヌト、゚チ
ルメタクリレヌトなどが挙げられる。その䞭で奜
たしいのはメチルメタクリレヌトである。 芳銙族ビニル化合物ずしおはスチレン、α−メ
チルスチレン、−メチルスチレン、栞ハロゲン
玠貎家スチレン等があり、この䞭で奜たしいもの
ずしおスチレンが挙げられる。 䞊蚘単量䜓の党量に察しお芳銙族ビニル化合物
ビニル化合物の含有量ほ20−95が望たしく、奜
たしくは25−90、曎に奜たしくは30−85重量
である。 代衚的なゎム倉性熱可塑性暹脂ずしおはアクリ
ロニトリル−ブタゞ゚ン−スチレン暹脂所謂
ABS暹脂、アクリロニトリル−゚チレン・プロ
ピレン−スチレン暹脂所謂AES暹脂、メタク
リル酞メチル−ブタゞ゚ン−スチレン暹脂
MBS暹脂、アクリロニトリル−ブタゞ゚ン−
メタクリル酞アクリロニトリル−ブチルアクリレ
ヌト−ブタゞ゚ン−スチレン暹脂AAS暹脂
などが挙げられる。䞊述のゎム倉性熱可塑性暹脂
のゎム含有量は〜70重量の範囲が物性䞊奜た
しい。 たた本発明のゎム倉性熱可塑性暹脂(A)には(A)の
モノマヌ成分よりなる共重合䜓ずゎム倉性熱可塑
性暹脂ずのブレンド型熱可塑性暹脂も含たれる。 次に、共重合䜓(B)を構成する単量䜓のうち芳銙
族ビニル化合物、シアン化ビニル化合物ずしおは
前蚘のゎム倉性暹脂(A)におけるモノマヌ成分に䟋
瀺される芳銙族ビニル化合物及びシアン化ビニル
化合物が甚いられる。 たた官胜性化合物ずしおはゞビニルベンれンに
代衚される非共圹ゞビニル化合物あるいはトリメ
チロヌルプロパントリメタクリレヌト、トリメチ
ロヌルプロパントリアクリレヌトなど個以䞊、
奜たしくは個の共重合性重結合を有する化合
物を甚いるこずができる。本発明に䜿甚できる倚
䟡アクリレヌト化合物ずしおは次の化合物があげ
られる。 ゞアクリレヌト化合物ずしおはポリ゚チレング
リコヌルゞアクリレヌト、−ブチレングリ
コヌルゞアクリレヌト、−ヘキサングリコ
ヌルゞアクリレヌト、ネオペンチルグリコヌルゞ
アクリレヌト、ポリプロピレングリコヌルゞアク
リレヌト、2′−ビス−アクリロキシ、プ
ロピロキシプニルプロパン、2′−ビス
−アクリロキシ、ゞ゚トキシプニルプロ
パン、 トリアクリレヌト化合物ずしおはトリメチロヌ
ルプロパントリアクリレヌト、トリメチロヌル゚
タントリアクリレヌト、テトラメチロヌルメタン
トリアクリレヌト、 テトラアクリレヌト化合物ずしおはテトラメチ
ロヌルメタンテトラアクリレヌト、 ゞメタクリレヌト化合物ずしおぱチレングリ
コヌルゞメタクリレヌト、ゞ゚チレングリコヌル
ゞメタクリレヌト、トリ゚チレングリコヌルゞメ
タクリレヌト、ポリ゚チレングリコヌルゞメタク
リレヌト、−ブチレングリコヌルゞメタク
リレヌト、−ブチレングリコヌルゞメタク
リレヌト、−ヘキサングリコヌルゞメタク
リレヌト、ネオペンチルグリコヌルゞメタクリレ
ヌト、ゞプロピレングリコヌルゞメタクリレヌ
ト、ポリプロピレングリコヌルゞメタクリレヌ
ト、2′−ビス−メタクリロキシゞ゚トキ
シプニルプロパントリメタクリレヌト化合物
ずしおはトリメチロヌルプロパントリメタクリレ
ヌト、トリメチロヌル゚タントリメタクリレヌト 倚官胜性モノマヌの添加方法ずしおは次のよう
な方法がある。 (1) ビニル芳銙族化合物ずビニルシアン化合物ず
共に反応系に床又は数床に分けおバツチ的に
添加する方法。 (2) ビニル芳銙族化合物ずビニルシアン化合物ず
共に反応系に床以䞊バツチ的に添加するこず
ず、連続的に添加するこずを䜵甚しお添加する
方法。 (3) ビニル芳銙族化合物ずビニルシアン化合物ず
共に反応系に連続的に添加する方法。 (4) ビニル芳銙族化合物ずビニルシアン化合物ず
が重合転化率50〜90に達した時点で官胜性モ
ノマヌを添加する方法。 架橋共重合䜓(B)暹脂䞭の倚官胜性モノマヌの奜
たしい含有量は0.006〜1.5モル曎に奜たしくは
0.01〜1.2モルである。この範囲で䜿甚するず、
艶消し効果ず加工性のバランスのずれた性質を付
䞎する架橋暹脂が埗られる。 しかし倚官胜性モノマヌの䜿甚量が少ない領域
で分子量調節剀を倚量に甚いた堎合、アセトン化
溶透明な架橋構造を有しない暹脂が埗られる
堎合がある。この様な暹脂を甚いた堎合には十分
な艶消し効果が埗られない。 たた必芁に応じお甚いられる他の共重合性可胜
なビニル化合物ずしおはアルキルアクリレヌト、
アルキルメタクリレヌト、゚チレン系䞍飜和カル
ボン酞のヒドロキシアルキル゚ステルなどが挙げ
られる。 共重合䜓(B)は有機ハむドロパヌオキサむドを開
始剀ずしお乳化重合により埗られる。有機ハむド
ロパヌオキサむド以倖の開始剀を甚いた堎合には
十分な艶消し効果が達成されない。乳化重合法を
甚いるこずにより品質の安定した重合䜓が工業的
に容易に埗られ、たた艶消し効果がすぐれおい
る。 有機ハむドロパヌオキサむドずしおは䟋えばク
メンハむドロパヌオキサむド、ゞむ゜プロピルベ
ンれンハむドロパヌオキサむド、−ブチルハむ
ドロパヌオキサむド、パラメンタンハむドロパヌ
オキサむド、ゞ−−ブチルハむドロパヌオキサ
むドなどが奜たしく、これらの有機ハむドロパヌ
オキサむドは皮又は皮以䞊䜿甚するこずがで
きる。 本発明の架橋された共重合䜓(B)暹脂ずは、アセ
トンに完党に溶解しない暹脂が奜たしい。ここで
完党に溶解しないず状態ずは垞枩でアセトンに
郚たたは党郚が溶けない状態をいう。アセトンの
暹脂の郚又は党郚が溶解しない状態はアセトン
暹脂溶液が癜濁するので、䟋えばそのアセト
ン溶液の癜濁をも぀お、暹脂が架橋されおいるか
吊かを刀断するこずができる。アセトンに溶解す
る共重合䜓を甚いおは本発明の目的ずする艶消し
効果が充分に達成されない。たた共重合䜓(B)は高
化匏フロヌテスタヌによる倀が200℃、30Kg
cm2、1φ×mmのノズル条件䞋で10×10-3cm3sec
以䞋、奜たしくは×10-3cm3sec以䞋である。
ここで倀ずは暹脂の流動性の指暙であり、䞊蚘
倀が10×10-3cm3secをこえるず十分な艶消し
効果が埗られない。 本発明の組成物は難燃化剀ずしお䟋えば有機ハ
ロゲン化合物、難燃盞乗効果剀、ハロゲン含有暹
脂などを皮又は皮以䞊を配合するこずができ
る。 有機ハロゲン化合物ずしおは具䜓的には、䟋え
ばテトラブロモビスプノヌルあるいはテトラ
ブロモビスプノヌル−ビス−ヒドロキシ
゚チル゚ヌテル、テトラブロモビスプノヌル
−ビス−ゞブロモプロピル゚ヌテル
などのテトラブロモビスプノヌル誘導䜓、ヘ
キサブロモゞプニル゚ヌテル、オクタブロモゞ
プニル゚ヌテル、デカブロモゞプニル゚ヌテ
ル、ビストリブロモプノキシ゚タン、ヘキ
サブロモシクロドデカンなどが䜿甚できる。 さらにたずえばモノブロモプノヌル、トリブ
ロモプノヌル、ペンタブロモプノヌル、トリ
ブロモクレゟヌル、ゞブロモプロピルプノヌ
ル、テトラブロモビスプノヌル、塩化シアヌ
ルなどを重合によりあるいはこれらず䞊蚘ハロゲ
ン化合物の矀から遞ばれた皮以䞊のハロゲン化
合物ずの共重合により埗られたオリゎマヌ型ハロ
ゲン化合物が䜿甚できる。難燃盞乗効果剀ずしお
は䞉酞化アンチモン、ほう砂、メタホワ酞バリり
ム、酞化ゞルコニりム等を皮又は皮以䞊甚い
るこずができる。これらの難燃化剀類は暹脂や難
燃化剀類の皮類により適圓な量で添加されるが、
充分な難燃性をうるためにはアンダヌラむタヌ
ズ・ラオラトリヌズ芏栌UL−94で−以䞊に
する劂き量を甚いるこずが奜たしい。難燃化剀類
は予じめ成分(A)および又は成分(B)に添加しおも
よく、たた成分(A)ず(B)の混合物に添加しおもよ
い。 本発明のお熱可塑性組成物の䜿甚に際しおはそ
の他通垞添加される酞化防止剀、玫倖線吞収剀、
滑剀、垯電防止剀、充填剀等を配合するこずがで
きる。 たた本発明の組成物には合成ゎム、䟋えば
NBR、SBR、BR、−ポリブタゞ゚ンな
どのゞ゚ン系共重合䜓や無機充填剀などを配
合するこずができ、より優れた本発明の効果を埗
るこずができる。たた他のスチレン系暹脂を配合
するこずも可胜である。 本発明の組成物は射出成圢、抌出成圢等で家電
郚品、自動車郚品等の各皮成圢品を成圢するこず
が可胜である。 次に本発明を実斜䟋によ぀おさらに具䜓的に説
明するが本発明はその芁旚を超えない限りこれら
の実斜䟋に制玄されるものではない。実斜䟋での
郚は重量郚である。 実斜䟋、比范䟋で甚いられる枬定及び評䟡方法
を以䞋に瀺す。 (1) アセトンの溶解性 詊料ずアセトン20c.c.を24時間振ずう機で
振ずうした埌、癜濁状態を目芖芳察した。 (2) 衝撃匷床 ASTM D256 詊隓片 1/2″×1/4″×5/2″ ノツチ片 (3) 熱倉圢枩床 ASTM −648 詊隓片 1/2″×1/2″×5″ 荷重 18.6Kgcm2 (4) 流動性 容量50zの射出成圢機を甚いお蚭定枩床240℃
実斜䟋のみ220℃にお成圢した時の暹脂の
流動長を枬定した。 成圢品厚みmm 射出圧力70Kgcm2ゲヌゞ圧力 金型枩床50℃ (5) 衚面光沢 詊隓片55×80×1.6mm 金型枩床50℃ 光沢蚈自動枬定色差蚈AV−CH−スガ詊
éš“æ©Ÿ(æ ª)補 入射角、反射角45° (6) 衚面倖芳性 55×80×1.6mmの平板成圢䜓にお目芖評䟡に
よる成圢䜓衚面の倖芳性をテストした。 ○光沢ムラもフロヌマヌクもなく良奜 △光沢ムラあるいはフロヌマヌクがいくらか
認められる ×光沢ムラあるいはフロヌマヌクが著るしい (7) 難燃性 UL94 テスト 詊隓片 1/8″×1/2″×5″ (8) 高化匏フロヌ 枬定枩床200℃ ノズルmmφ×mm 荷重30Kgcm2 実斜䟋、比范䟋で甚いられる暹脂の補造方法 ゎム倉性熱可塑性暹脂(A)の補造方法 (1) −(1)〜−(6)の暹脂の補造 衚−に瀺したゎム成分、モノマヌ成分を
甚いお䞋蚘の方法で暹脂を補造した。 窒玠で眮換された反応噚に ポリブタゞ゚ンラテツクス 衚−参照 ロゞン酞カリりム 2.0郚 ゚チレンゞアミン四酢酞゜ヌダ 0.045〃 ナトリりムホルムアルデヒドスルホキシレヌ
ト 0.03〃 硫酞第鉄 0.05〃 むオン亀換氎 150〃 を仕蟌み撹拌䞋、重合枩床60℃で、 モノマヌ混合物 衚−参照 −ドデシルメルカプタン 0.3郚 クメンハむドロパヌオキサむド 0.4郚 の混合物を時間にわた぀お滎䞋し、グラフ
ト重合を行な぀た。 モノマヌの転化率は95以䞊であ぀た。埗
られたラテツクスは硫酞により、凝固し、暹
脂分を過、氎掗、脱氎、也燥しお粉末状の
ゎム倉性熱可塑性暹脂−(1)〜−(6)を埗
た。
The present invention relates to a matte thermoplastic resin composition. So-called ABS resins are made by graft polymerizing vinyl monomers such as styrene monomers to rubbery polymers such as synthetic rubber and natural rubber.
Styrenic rubber-modified thermoplastic resins such as AES resins, or flame-retardant styrenic rubbers blended with halogen compounds, antimony compounds, and halogen-containing resins such as polyvinyl chloride resins to impart flame retardancy to these thermoplastic resins. Modified thermoplastic resins have excellent processability and physical properties, and are relatively inexpensive, so they are used for various purposes. Molded products made of these resins are generally glossy, but recently, so-called so-called molded products that maintain impact resistance and other resin properties and have a non-glossy surface are being used for automobile interior parts and exterior parts of household electrical equipment. There are applications where matte properties are desired. In general, methods for matting thermoplastic resin molded products include (1) blending inorganic materials with the resin, (2) surface treatment such as squeezing or matting on the surface of the molded product, and (3) solid Alternatively, a method of blending a latex-like rubbery polymer with a resin is known. However, in method (1) above, the impact resistance and formability are significantly reduced due to the blending of a large amount of inorganic materials, and in method (2) above, a sufficient matting effect cannot be obtained and matting occurs during vacuum forming. In addition, matte coating is costly and has poor productivity. moreover
In method (3), the weight resistance of the rubber and the compatibility with the resin were poor, and it was difficult to satisfy both the matte effect and the excellent properties of the resin such as impact resistance and processability. Based on the above background, the present inventors conducted intensive studies and arrived at the present invention with the aim of efficiently producing a resin with excellent matte properties with almost no deterioration in the physical properties and processability of the resin. . According to the present invention, (A) rubber modification heat obtained by copolymerization of at least one compound selected from vinyl cyanide compounds, acrylic esters and methacrylic esters and an aromatic vinyl compound in the presence of a rubbery polymer; A mixture of 40 to 97% by weight of a copolymer consisting of a plastic resin, or the above-mentioned rubbery polymer or rubber-modified thermoplastic resin and the above-mentioned monomer, and (B) an aromatic vinyl compound, a vinyl cyanide compound, and a copolymer thereof. A copolymer obtained by polymerizing a monomer mixture consisting of a polymerizable polyfunctional compound and, if necessary, another polymerizable vinyl compound, using an organic hydroperoxide as an initiator. Type flow tester (200℃,
30Kg/cm 2 , 1φ x 2mm nozzle)
A matte thermoplastic resin composition comprising 60 to 3% by weight of a copolymer having a copolymer of 10×10 -3 cm 3 /sec or less is provided. The resin composition of the present invention is (A) a rubber-modified thermoplastic resin.
Consisting of 40-97% by weight, preferably 40-95%, more preferably 50-95% and (B) copolymer 60-3%, preferably 60-5%, more preferably 50-5% by weight . If the proportion of the polymer (B) is less than 3%, a sufficient matting effect cannot be obtained, while if it exceeds 60%, only a resin with low impact resistance and poor moldability is obtained. The rubber-modified thermoplastic resin used in the present invention contains at least one compound selected from a vinyl cyanide compound and a (meth)acrylic acid ester compound and an aromatic vinyl compound as a rubber-like polymer, and if necessary, these compounds. It is obtained by graft polymerizing a monomer consisting of a compound copolymerizable with. Polymer blends of rubbery polymers and copolymers of the above monomers may also be used. Rubber polymers include diene rubber polymers such as polybutadiene, natural rubber, styrene-butadiene copolymer (SBR), acrylonitrile-butadiene copolymer (NBR), polyisoprene, polychloroprene, and ethylene-propylene copolymer. combination, ethylene-propylene-nonconjugated diene copolymer, chlorinated polyethylene,
Examples include non-diene rubbery polymers such as acrylic rubbery polymers. These rubbery polymers are produced by emulsion polymerization or solution polymerization, and polybutadiene, polyisoprene, SBR coupled with tin or lithium, and styrene-butadiene block copolymers can also be used. These rubbery polymers can be used alone or in combination of two or more. It is also possible to use a mixture of a diene rubbery polymer and a non-diene rubbery polymer. Examples of vinyl cyanide compounds include acrylonitrile and methacrylonitrile; examples of (meth)acrylic acid ester compounds include alkyl acrylates, alkyl methacrylates, and hydroxyalkyl esters of ethylenically unsaturated carboxylic acids; examples of alkyl acrylates include methyl acrylate; , ethyl acrylate,
Examples of the alkyl methacrylate include butyl acrylate and the like, and examples of the alkyl methacrylate include methyl methacrylate and ethyl methacrylate. Among them, methyl methacrylate is preferred. Examples of the aromatic vinyl compound include styrene, α-methylstyrene, p-methylstyrene, and halogenated styrene, among which styrene is preferred. The content of the aromatic vinyl compound is preferably 20-95%, preferably 25-90%, and more preferably 30-85% by weight based on the total amount of the above monomers.
It is. A typical rubber-modified thermoplastic resin is acrylonitrile-butadiene-styrene resin (so-called
ABS resin), acrylonitrile-ethylene propylene-styrene resin (so-called AES resin), methyl methacrylate-butadiene-styrene resin (MBS resin), acrylonitrile-butadiene-
Acrylonitrile methacrylate-butyl acrylate-butadiene-styrene resin (AAS resin)
Examples include. The rubber content of the above-mentioned rubber-modified thermoplastic resin is preferably in the range of 5 to 70% by weight in terms of physical properties. Further, the rubber-modified thermoplastic resin (A) of the present invention also includes a blend-type thermoplastic resin of a copolymer composed of the monomer component of (A) and a rubber-modified thermoplastic resin. Next, among the monomers constituting the copolymer (B), aromatic vinyl compounds and cyanide vinyl compounds are exemplified as monomer components in the rubber modified resin (A). Vinyl compounds are used. In addition, as a functional compound, two or more non-conjugated divinyl compounds represented by divinylbenzene, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, etc.
Preferably, a compound having two copolymerizable double bonds can be used. Examples of polyvalent acrylate compounds that can be used in the present invention include the following compounds. Examples of diacrylate compounds include polyethylene glycol diacrylate, 1,3-butylene glycol diacrylate, 1,6-hexane glycol diacrylate, neopentyl glycol diacrylate, polypropylene glycol diacrylate, 2,2'-bis(4-acryloxy, propyloxyphenyl)propane, 2,2'-bis(4-acryloxy, diethoxyphenyl)propane, and triacrylate compounds include trimethylolpropane triacrylate, trimethylolethane triacrylate, tetramethylolmethane triacrylate, and tetraacrylate. The compound is tetramethylolmethanetetraacrylate, and the dimethacrylate compound is ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate. Methacrylate, 1,6-hexane glycol dimethacrylate, neopentyl glycol dimethacrylate, dipropylene glycol dimethacrylate, polypropylene glycol dimethacrylate, 2,2'-bis(4-methacryloxydiethoxyphenyl)propane trimethacrylate compounds Trimethylolpropane trimethacrylate, trimethylolethane trimethacrylate The following methods can be used to add the polyfunctional monomer. (1) A method in which it is added to the reaction system together with a vinyl aromatic compound and a vinyl cyanide compound, either once or in batches. (2) A method of adding it to the reaction system together with a vinyl aromatic compound and a vinyl cyanide compound by adding it in batches at least once and adding it continuously. (3) A method in which a vinyl aromatic compound and a vinyl cyanide compound are added continuously to the reaction system. (4) A method in which a functional monomer is added when the vinyl aromatic compound and vinyl cyanide compound reach a polymerization conversion rate of 50 to 90%. The preferred content of the polyfunctional monomer in the crosslinked copolymer (B) resin is 0.006 to 1.5 mol%, more preferably
It is 0.01-1.2 mol%. When used within this range,
A crosslinked resin is obtained that provides a balance between matte effect and processability. However, if a large amount of the molecular weight regulator is used in a region where the amount of polyfunctional monomer used is small, a resin that does not have an acetonation-soluble (transparent) crosslinked structure may be obtained. When such a resin is used, a sufficient matting effect cannot be obtained. Other copolymerizable vinyl compounds that may be used as needed include alkyl acrylate,
Examples include alkyl methacrylates and hydroxyalkyl esters of ethylenically unsaturated carboxylic acids. The copolymer (B) is obtained by emulsion polymerization using an organic hydroperoxide as an initiator. A sufficient matting effect is not achieved when initiators other than organic hydroperoxides are used. By using the emulsion polymerization method, a polymer with stable quality can be easily obtained industrially and has an excellent matting effect. Preferred examples of the organic hydroperoxide include cumene hydroperoxide, diisopropylbenzene hydroperoxide, t-butyl hydroperoxide, paramenthane hydroperoxide, and di-t-butyl hydroperoxide. One type or two or more types can be used. The crosslinked copolymer (B) resin of the present invention is preferably a resin that does not completely dissolve in acetone. If it is not completely dissolved, the state is 1 in acetone at room temperature.
A state in which some or all of the liquid does not dissolve. When part or all of the resin in acetone is not dissolved, the acetone resin solution becomes cloudy, so it can be determined, for example, whether the resin is crosslinked or not based on the cloudiness of the 5% acetone solution. If a copolymer that is soluble in acetone is used, the matting effect aimed at by the present invention cannot be sufficiently achieved. In addition, the copolymer (B) has a Q value of 200℃ and 30Kg/
cm 2 , 10×10 -3 cm 3 /sec under 1φ×2mm nozzle conditions
It is preferably 5×10 −3 cm 3 /sec or less.
Here, the Q value is an index of the fluidity of the resin, and if the Q value exceeds 10×10 -3 cm 3 /sec, a sufficient matting effect cannot be obtained. The composition of the present invention may contain one or more flame retardants such as organic halogen compounds, flame retardant synergistic agents, and halogen-containing resins. Specifically, the organic halogen compounds include, for example, tetrabromobisphenol A, tetrabromobisphenol A-bis(2-hydroxyethyl ether), and tetrabromobisphenol A-bis(2,3-dibromopropyl ether).
Tetrabromobisphenol A derivatives such as, hexabromodiphenyl ether, octabromodiphenyl ether, decabromodiphenyl ether, bis(tribromophenoxy)ethane, hexabromocyclododecane, etc. can be used. Further, for example, monobromophenol, tribromophenol, pentabromophenol, tribromocresol, dibromopropylphenol, tetrabromobisphenol S, cyanuric chloride, etc. can be polymerized or combined with one or more selected from the group of the above-mentioned halogen compounds. Oligomeric halogen compounds obtained by copolymerization with halogen compounds can be used. As the flame retardant synergistic agent, one or more of antimony trioxide, borax, barium metaphosate, zirconium oxide, etc. can be used. These flame retardants are added in appropriate amounts depending on the type of resin and flame retardant.
In order to obtain sufficient flame retardancy, it is preferable to use an amount such that the amount is V- or higher according to Underwriters Laboratories Standard UL-94. Flame retardants may be added to component (A) and/or component (B) in advance, or may be added to a mixture of components (A) and (B). When using the thermoplastic composition of the present invention, other commonly added antioxidants, ultraviolet absorbers,
A lubricant, an antistatic agent, a filler, etc. can be added. The compositions of the present invention may also include synthetic rubbers, e.g.
Diene-based (co)polymers such as NBR, SBR, BR, 1,2-polybutadiene, inorganic fillers, etc. can be blended, and even better effects of the present invention can be obtained. It is also possible to blend other styrene resins. The composition of the present invention can be molded into various molded products such as home appliance parts and automobile parts by injection molding, extrusion molding, etc. Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples as long as the gist thereof is not exceeded. Parts in the examples are parts by weight. The measurement and evaluation methods used in Examples and Comparative Examples are shown below. (1) Solubility of acetone: After shaking 1 g of sample and 20 c.c. of acetone in a shaker for 24 hours, the cloudy state was visually observed. (2) Impact strength: ASTM D256 test piece 1/2″ x 1/4″ x 5/2″ notched piece (3) Heat distortion temperature: ASTM D-648 test piece 1/2″ x 1/2″ x 5 ″ Load 18.6Kg/cm 2 (4) Fluidity: Temperature set at 240℃ using an injection molding machine with a capacity of 50z
The flow length of the resin was measured when molded at 220°C (Example 9 only). Molded product thickness: 2mm Injection pressure: 70Kg/cm 2 (gauge pressure) Mold temperature: 50℃ (5) Surface gloss: Test piece: 55 x 80 x 1.6mm Mold temperature: 50℃ Gloss meter: Automatic measurement color difference meter AV-CH-G (manufactured by Suga Test Instruments Co., Ltd.) Incident angle, reflection angle: 45° (6) Surface appearance: Visual evaluation of the surface appearance of a 55 x 80 x 1.6 mm flat plate molded product was tested. ○: Good with no uneven gloss or flow marks △: Some uneven gloss or flow marks ×: Significant uneven gloss or flow marks (7) Flame retardancy: UL94 V test test piece 1/8″×1 /2″×5″ (8) Koka type flow: Measurement temperature: 200℃ Nozzle: 1mmφ×2mm Load: 30Kg/cm 2 Manufacturing method of resin used in Examples and Comparative Examples Rubber-modified thermoplastic resin (A) (1) Production of resins A-(1) to A-(6) Resins were produced by the following method using the rubber components and monomer components shown in Table 1. Nitrogen-substituted reaction In a container, add polybutadiene latex (see Table 1) 2.0 parts of potassium rosinate Sodium ethylenediaminetetraacetate 0.045 (〃) Sodium formaldehyde sulfoxylate 0.03 (〃) Ferrous sulfate 0.05 (〃) Ion exchange water 150 (〃) and stir. At a polymerization temperature of 60°C, a monomer mixture of 0.3 (parts) of t-dodecyl mercaptan and 0.4 (parts) of cumene hydroperoxide (see Table 1) was added dropwise over 3 hours to carry out graft polymerization. Conversion of monomers The obtained latex was coagulated with sulfuric acid, the resin content was filtered, washed with water, dehydrated, and dried to form powdered rubber-modified thermoplastic resins A-(1) to A-(6). ) was obtained.

【衚】 (2) −(7)の暹脂の補造 パドル型撹拌翌を備えたステンレス補反応
噚内を窒玠眮換した埌ペり玠䟡15、ムヌニヌ
粘床65、プロピレン含有率43重量、ゞ゚ン
成分ずしお−゚チリデン−−ノルボルネ
ンを含むEPDM日本むヌピヌラバヌ瀟補
JSR EP−2418郚、スチレン57郚、アクリ
ロニトリル25郚、トル゚ン110郚を仕蟌み50
℃におゎムが完党に溶解するたで撹拌し−
ドデシルメルカプタン0.1郚、ゞベンゟむル
パヌオキサむド0.2郚、−ブチルパヌオキ
シ−−プロピルカヌボネヌト0.2郚、ゞク
ミルパヌオキサむド0.1郚を加えた埌、撹拌
回転数100rpmにお昇枩し、80℃で時間、
曎に100℃で時間、125℃で時間蚈時間
重合した。氎蒞気蒞留により未反応単量䜓ず
溶媒を留去した埌、粉砕、也燥しお−
を埗た。 熱可塑性暹脂(B)の補造方法 (1) −(1)〜(7)の熱可塑性暹脂の補造 衚−に瀺したモノマヌ成分、倚官胜性モ
ノマヌ、分子量調節剀を甚いお䞋蚘の条件で
暹脂の補造を行な぀た。 たづ、反応噚に オレむン酞カリりム 1.0郚 むオン亀換氎 180郚 を仕蟌み窒玠眮換埌、60℃に昇枩した。 昇枩埌觊媒掻性付䞎成分ずしお、 ナトリりムホルムアルデヒドスルホキシレヌ
ト 0.045郚 硫酞鉄 0.006〃 ゚チレンゞアミン四酢酞ナトリりム
0.07〃 むオン亀換氎 10〃 を加え、曎に衚−に瀺した開始剀を添加し
た埌、衚−に瀺されたモノマヌ成分、倚官
胜性モノマヌ成分、分子量調節剀成分の混合
物を重合枩床60℃で時間にわた぀お滎䞋
し、滎䞋終了埌曎に時間撹拌した。重合転
化率は94以䞊であ぀た。 埗られたラテツクスをうすい硫酞で凝固
し、暹脂分を過、氎掗、脱氎、也燥を行な
い−(1)〜(7)の暹脂を埗た。なお−(1)の衚
面光沢は15であ぀た。 (2) −(8)の熱可塑性暹脂の補造方法 −(1)に斌いお、觊媒掻性付䞎成分を甚い
ないこずず、開始剀のクメンハむドロパヌオ
キサむドにかえお、過硫酞カリ1.0郚を䜿甚
した以倖は、−(1)ず同䞀条件で−(8)を補
造した。 (3) −(9)の熱可塑性暹脂の補造方法 −(1)のク゚ンハむドロパヌオキサむドに
かえおベンゟむルパヌオキサむド0.1郚を䜿
甚した。他は−(1)ず党く同䞀条件で−(9)
を補造した。
[Table] (2) Production of resin A-(7) After purging the interior of a stainless steel reactor equipped with a paddle-type stirring blade with nitrogen, the iodine value was 15, the Mooney viscosity was 65, the propylene content was 43% by weight, and the diene component was EPDM containing 5-ethylidene-2-norbornene (manufactured by Japan EP Rubber Co., Ltd.)
JSR EP-24) 18 parts, 57 parts of styrene, 25 parts of acrylonitrile, and 110 parts of toluene were prepared.
Stir at ℃ until the rubber is completely dissolved.
After adding 0.1 part of dodecyl mercaptan, 0.2 part of dibenzoyl peroxide, 0.2 part of t-butylperoxy-1-propyl carbonate, and 0.1 part of dicumyl peroxide, the temperature was raised at a stirring speed of 100 rpm, and the temperature was raised to 80°C. time,
Polymerization was further carried out at 100°C for 3 hours and at 125°C for 3 hours, totaling 9 hours. After distilling off unreacted monomers and solvent by steam distillation, it is pulverized and dried (A-
7) was obtained. Method for producing thermoplastic resin (B) (1) Production of thermoplastic resins B-(1) to (7) Using the monomer components, polyfunctional monomer, and molecular weight modifier shown in Table 2, the following conditions were used. The company produced resin. First, 1.0 (parts) of potassium oleate and 180 (parts) of ion-exchanged water were charged into a reactor, the atmosphere was purged with nitrogen, and the temperature was raised to 60°C. As components for imparting catalyst activity after heating up: Sodium formaldehyde sulfoxylate 0.045 (parts) Iron sulfate 0.006 (〃) Sodium ethylenediaminetetraacetate
After adding 0.07 (〃) 10 (〃) of ion-exchanged water and further adding the initiator shown in Table-2, a mixture of monomer components, polyfunctional monomer components, and molecular weight modifier components shown in Table-2 was prepared. was added dropwise over 2 hours at a polymerization temperature of 60°C, and after the addition was completed, the mixture was further stirred for 1 hour. The polymerization conversion rate was 94% or more. The obtained latex was coagulated with dilute sulfuric acid, and the resin content was filtered, washed with water, dehydrated, and dried to obtain resins B-(1) to (7). Note that the surface gloss of B-(1) was 15%. (2) Method for producing thermoplastic resin B-(8) In B-(1), no catalyst activation component is used, and 1.0 part of potassium persulfate is used instead of cumene hydroperoxide as an initiator. B-(8) was produced under the same conditions as B-(1) except that B-(8) was used. (3) Method for producing thermoplastic resin B-(9) 0.1 part of benzoyl peroxide was used in place of citric hydroperoxide in B-(1). B-(9) under exactly the same conditions as B-(1) except for
was manufactured.

【衚】 実斜䟋比范䟋 衚−に瀺す配合組成物を50ベント付き
抌出機におペレツト化した埌、射出成圢を行ない
衚−に瀺す結果を行た。 実斜䟋では本発明の各皮のゎム倉性熱可塑性暹
脂ず各皮の熱可塑性暹脂(B)からの組成物であり、
本発明の目的ずする物性の組成物が埗られおい
る。 䞀方比范䟋は熱可塑性暹脂(B)の倀が本発明
の範囲であ぀おも、倚官胜性モノマヌを䜿甚しな
い、アセトンに可溶な本発明の範囲倖の暹脂であ
り艶消し効果が埗られない。比范䟋は本発明の
構成芁件のうち倀が範囲倖である熱可塑性暹脂
を甚いた䟋であるが艶消しが十分でない。 比范䟋は熱可塑性暹脂(B)の重合に斌いお、倚
官胜性モノマヌを䜿甚しおも架橋構造を有せずア
セトン可溶性の暹脂であるため艶消し効果が埗ら
れない。 比范䟋は熱可塑性暹脂(B)の重合に斌ける開始
剀ずしお本発明の範囲倖の過硫酞カリを䜿甚した
䟋である。十分な艶消し効果が埗られない。 比范䟋は熱可塑性暹脂(B)の配合割合を本発明
の範囲倖ずした䟋であるが、衝撃匷床ず流動性ず
䜎䞋が倧きく、成圢品衚面が荒れおおり実甚に適
さない。 比范䟋は、熱可塑性暹脂(B)の配合割合が本発
明の範囲の䞋限より小さい堎合を瀺す。艶消し効
果が充分に埗られない。 比范䟋は本発明のハむドロパヌオキサむド以
倖の構造をも぀おいる有機過酞化物であるベンゟ
むルパヌオキサむドを甚いお重合された架橋AS
を甚いたものであるがハむドロパヌオキサむドを
䜿甚したものほどの艶消し効果は埗られなか぀
た。
[Table] Examples and Comparative Examples The blended compositions shown in Table 3 were pelletized using a 50 m/m vented extruder, and then injection molded with the results shown in Table 3. Examples are compositions made of various rubber-modified thermoplastic resins of the present invention and various thermoplastic resins (B),
A composition having the physical properties targeted by the present invention has been obtained. On the other hand, in Comparative Example 1, even though the Q value of the thermoplastic resin (B) is within the range of the present invention, the resin does not use a polyfunctional monomer and is soluble in acetone, which is outside the range of the present invention, and the matting effect is not achieved. I can't get it. Comparative Example 2 is an example using a thermoplastic resin whose Q value is outside the range of the constituent requirements of the present invention, but the matteness is not sufficient. In Comparative Example 3, even if a polyfunctional monomer is used in the polymerization of the thermoplastic resin (B), a matting effect cannot be obtained because the resin does not have a crosslinked structure and is soluble in acetone. Comparative Example 4 is an example in which potassium persulfate, which is outside the scope of the present invention, was used as an initiator in the polymerization of the thermoplastic resin (B). A sufficient matting effect cannot be obtained. Comparative Example 5 is an example in which the blending ratio of the thermoplastic resin (B) was outside the range of the present invention, but the impact strength and fluidity were greatly reduced, and the surface of the molded product was rough, making it unsuitable for practical use. Comparative Example 6 shows a case where the blending ratio of the thermoplastic resin (B) is smaller than the lower limit of the range of the present invention. A sufficient matting effect cannot be obtained. Comparative Example 7 is a crosslinked AS polymerized using benzoyl peroxide, which is an organic peroxide having a structure other than the hydroperoxide of the present invention.
However, it did not have the same matting effect as the one using hydroperoxide.

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】  (A) ゎム状重合䜓の存圚䞋シアン化ビニル化
合物、アクリル酞゚ステル及びメタクリル酞゚
ステルから遞ばれる少なくずも皮の化合物お
よび芳銙族ビニル化合物の共重合により埗られ
るゎム倉性熱可塑性暹脂、あるいは䞊蚘ゎム倉
性熱可塑性暹脂ず䞊蚘単量䜓よりなる共重合䜓
ずの混合物40〜97重量ず (B) 芳銙族ビニル化合物、シアン化ビニル化合物
及びこれらず共重合可胜な倚官胜性化合物、曎
に必芁に応じお他の重合性ビニル化合物からな
る単量䜓混合物を、有機ハむドロパヌオキサむ
ドを開始剀ずしお重合しお埗られる架橋構造を
有する共重合䜓であ぀お、䞔぀高化匏フロヌテ
スタヌ200℃、30Kgcm2、1φ×mmのノズ
ルによる倀が10×10-3cm3sec以䞋である
共重合䜓60〜重量 ずからなる艶消し熱可塑性暹脂組成物。
[Scope of Claims] 1 (A) Rubber modification obtained by copolymerization of at least one compound selected from vinyl cyanide compounds, acrylic esters, and methacrylic esters and an aromatic vinyl compound in the presence of a rubbery polymer. 40 to 97% by weight of a thermoplastic resin, or a mixture of the above-mentioned rubber-modified thermoplastic resin and a copolymer consisting of the above-mentioned monomers, and (B) an aromatic vinyl compound, a vinyl cyanide compound, and a polymer copolymerizable with these. A copolymer having a crosslinked structure obtained by polymerizing a monomer mixture consisting of a functional compound and, if necessary, another polymerizable vinyl compound, using an organic hydroperoxide as an initiator, and A matte thermoplastic resin consisting of 60 to 3% by weight of a copolymer with a Q value of 10 x 10 -3 cm 3 /sec or less as measured by a flow tester (200°C, 30Kg/cm 2 , 1φ x 2mm nozzle) Composition.
JP3438483A 1983-03-04 1983-03-04 Matte thermoplastic resin composition Granted JPS59161459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3438483A JPS59161459A (en) 1983-03-04 1983-03-04 Matte thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3438483A JPS59161459A (en) 1983-03-04 1983-03-04 Matte thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JPS59161459A JPS59161459A (en) 1984-09-12
JPH0358379B2 true JPH0358379B2 (en) 1991-09-05

Family

ID=12412669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3438483A Granted JPS59161459A (en) 1983-03-04 1983-03-04 Matte thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS59161459A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101225559B1 (en) 2007-08-21 2013-01-24 유엠지 에읎비에슀 가부시킀가읎샀 Method for producing enlarged rubber, graft copolymer, thermoplastic resin composition and molded article

Also Published As

Publication number Publication date
JPS59161459A (en) 1984-09-12

Similar Documents

Publication Publication Date Title
JPS63264658A (en) Thermoplastic resin composition
KR101409599B1 (en) Light resistant thermoplastic resin composition with excellent scratch and heat resistance
KR100626955B1 (en) Styrene-based Thermoplastic Resin Compositions with Very Low Gloss and High Impact Strength
EP1312641B1 (en) Transparent impact-resistant thermoplastic resin composition
US4886857A (en) Styrene based resin composition
JP3080217B2 (en) Thermoplastic copolymer and thermoplastic resin composition using the same
JPH0358379B2 (en)
JP3850504B2 (en) Thermoplastic resin composition
JP2012136644A (en) Rubber-reinforced thermoplastic resin composition
JPH047347A (en) Flame-retarding resin composition
JP2003020377A (en) Composite resin composition
JP2000086848A (en) Thermoplastic resin composition for extrusion molding and molding made therefrom
JPH0359939B2 (en)
JPH0442420B2 (en)
JPH10330425A (en) Processing auxiliary for styrene-based resin and styrene-based resin composition using the same
JPS61143459A (en) Flame-retardant thermoplastic resin composition with high heat and impact resistance
JPH0629356B2 (en) Thermoplastic resin composition
JPH04145151A (en) Flame-retardant resin composition
JP3388855B2 (en) Flame retardant resin composition
JP2003064231A (en) Weatherable impact-resistant styrene-based resin composition
JP2000204222A (en) Thermoplastic resin composition and molded product thereof
JPH08165391A (en) Thermoplastic resin composition
JPH0971702A (en) Heat-resistant thermoplastic resin composition
JPS59217747A (en) Vinyl chloride resin composition
KR20100126949A (en) Thermoplastic resin composition with good scratch resistance and black color tone