JPH0357945A - Defect inspection instrument - Google Patents

Defect inspection instrument

Info

Publication number
JPH0357945A
JPH0357945A JP1193764A JP19376489A JPH0357945A JP H0357945 A JPH0357945 A JP H0357945A JP 1193764 A JP1193764 A JP 1193764A JP 19376489 A JP19376489 A JP 19376489A JP H0357945 A JPH0357945 A JP H0357945A
Authority
JP
Japan
Prior art keywords
light
pellicle
flat object
wavelength
photoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1193764A
Other languages
Japanese (ja)
Other versions
JP2814390B2 (en
Inventor
Fumitomo Hayano
史倫 早野
Sunao Murata
すなお 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP19376489A priority Critical patent/JP2814390B2/en
Priority to US07/554,839 priority patent/US5072128A/en
Publication of JPH0357945A publication Critical patent/JPH0357945A/en
Application granted granted Critical
Publication of JP2814390B2 publication Critical patent/JP2814390B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable judgment of whether a defect exists on the surface or back of a flat object by performing a photoelectric detection of scattered light individually at each specified wavelength area subjected to spectral analysis to compare sizes of photoelectric signals thus obtained. CONSTITUTION:A reticle with a pellicle is placed on a two-dimensional scanning stage 40 and moves in directions x and y with respect to an irradiation beam. A stage controller 46 controls a motor 48 using positional information from an encoder 42 as feedback input to move the stage 40 two-dimensionally. After amplified with amplifiers 60d-60f, output signal levels of optoelectro transducers 28d-28f are converted into digital values with A/D converters 62d-62f to be stored in a memory 52 through a processor 44. After the end of scanning of the stage 40, the processor 44 reads out an inspection data at each scanning position from the memory 52 to compute a required ratio and moreover, the results are compared in size with a reference ratio to discriminate an attached surface. Then, the results are shown on a displayer 54.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光透過性の平坦物体、例えばガラス、ニトロ
セルロース等の高分子薄膜等に付着した微粒子状の異物
を検査する装置に関し、 特に平坦物体の表裏面の異物欠陥を判別できる検査装置
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus for inspecting fine particulate foreign matter adhering to a light-transmitting flat object, such as glass or a thin polymer film such as nitrocellulose. The present invention relates to an inspection device capable of determining foreign matter defects on the front and back surfaces of a flat object.

〔従来の技術〕[Conventional technology]

従来、この種の装置は、一例として第3図に示すような
構造であった。第3図において、半導体素子製造用のレ
チクル(又はマスク)34の表面には、一定の間隔をあ
けてペリクル(高分子薄膜)33がフレーム35を介し
て張設されている.このペリクル33はレチクル34の
表面に異物が直接付着することを防止するためのもので
、ペリクル33の厚みは1μm程度で露光用照明光(波
長436ns、365nm等)に対して90%以上の透
過率を有している。またフレーム35の厚み(スタンド
オフ)は数閣程度であり、これは露光装置の投影光学系
のレチクル側での焦点深度との兼ね合いで決められる。
Conventionally, this type of device has had a structure as shown in FIG. 3 as an example. In FIG. 3, pellicles (polymer thin films) 33 are stretched across a frame 35 at regular intervals on the surface of a reticle (or mask) 34 for manufacturing semiconductor devices. This pellicle 33 is used to prevent foreign matter from directly adhering to the surface of the reticle 34. The thickness of the pellicle 33 is approximately 1 μm, and it transmits 90% or more of exposure illumination light (wavelength 436 ns, 365 nm, etc.). rate. The thickness (standoff) of the frame 35 is approximately a few inches thick, and this is determined in consideration of the depth of focus on the reticle side of the projection optical system of the exposure apparatus.

このようなペリクル付きレチクルを用いてICパターン
をウエハ上に投影露光する際、投影光学系の縮小倍率に
応してレチクル表面上の異物像は縮小されてウエハ上に
転写され得るが、ペリクル33に付着した同一サイズの
異物の像は、ウエハ上では大きくデフオーカスしてしま
い、解像しないことになる。ところがペリクル33上の
異物でも、あまりにもサイズが大きい(数+μm以上)
と、それはデフォーカスした影となって現われてしまう
. そのため、第3図のように、ペリクル33に付着した異
物についても検査する必要がある。光源31から射出し
た照明光(コヒーレント光、又は準単色光等)は集光レ
ンズ32を介してペリクル33を垂直に照射する。
When projecting and exposing an IC pattern onto a wafer using such a reticle with a pellicle, a foreign object image on the reticle surface may be reduced in size and transferred onto the wafer according to the reduction magnification of the projection optical system, but the pellicle 33 Images of foreign matter of the same size attached to the wafer will be largely defocused on the wafer and will not be resolved. However, the size of the foreign object on the pellicle 33 is too large (several + μm or more).
Then, it appears as a defocused shadow. Therefore, as shown in FIG. 3, it is necessary to also inspect foreign matter attached to the pellicle 33. Illumination light (coherent light, quasi-monochromatic light, etc.) emitted from the light source 31 vertically illuminates the pellicle 33 via the condenser lens 32 .

ペリクル33の照射領域内(スポット照射域)に異物が
存在すると、その異物からは比較的指向性の弱い散乱光
が生しる。
If a foreign object exists within the irradiation area (spot irradiation area) of the pellicle 33, scattered light with relatively weak directionality is generated from the foreign object.

この散乱光は、集光レンズ35で光電変換器(フォトマ
ルチプライヤ等)36の受光面に集光される。
This scattered light is focused by a condensing lens 35 onto the light receiving surface of a photoelectric converter (photomultiplier, etc.) 36 .

そして光電信号のレベルの大小で異物か否かを判定して
いる. このときペリクル33の全面について検査を行なう必要
があるので、照明光を一次元(又は二次元)に走査した
り、ペリクル33を一次元に移動させたりする機構が設
けられる. また、その他のペリクル検査装置として、特公昭63−
52696号公報に開示されているように、被検面にす
れすれの角度でレーザビームを照射して被検査上に帯状
の照射領域を形戒するとともに、照射領域からの散乱光
のうち側方散乱光を受ける位置に一次元のアレイセンサ
ーを配置して異物検査するものも知られている. 〔発明が解決しようとする課題〕 しかしながら第3図のような従来の技術においては、ペ
リクルに付着した異物がペリクルに関してレチクル側(
以下裏面側とする)に付着しているのか、光源側(以下
表面側とする)に付着しているのかを判別できなかった
.また特公昭63−52696号公報の方法は専ら平坦
物体の表側のみの異物検出しかできない.尚、ガラス基
+1i(レチクル、マスク等)の表裏面のいずれに異物
が付着しているのかを判別する手法として、特開昭58
−62544号公報に開示された技術も知られているが
、そこでは基板の表面側の空間に生しる散乱光を受光す
る光電素子と、基板の裏面側の空間に生じる散乱光を検
出する光電素子との一対が必要である。
Then, it is determined whether or not it is a foreign object based on the level of the photoelectric signal. At this time, it is necessary to inspect the entire surface of the pellicle 33, so a mechanism is provided to scan the illumination light one-dimensionally (or two-dimensionally) and to move the pellicle 33 one-dimensionally. In addition, as other pellicle inspection equipment,
As disclosed in Japanese Patent No. 52696, a laser beam is irradiated onto the surface to be inspected at a grazing angle to form a band-shaped irradiation area on the surface of the inspection object, and side scattering of the scattered light from the irradiation area is detected. It is also known to detect foreign objects by placing a one-dimensional array sensor in a position that receives light. [Problems to be Solved by the Invention] However, in the conventional technique as shown in FIG.
It was not possible to determine whether it was attached to the back side (hereinafter referred to as the back side) or the light source side (hereinafter referred to as the front side). Furthermore, the method disclosed in Japanese Patent Publication No. 63-52696 can only detect foreign matter only on the front side of a flat object. In addition, as a method for determining whether foreign matter is attached to the front or back surface of the glass base +1i (reticle, mask, etc.), Japanese Patent Laid-Open No. 58
A technique disclosed in Japanese Patent No. 62544 is also known, which uses a photoelectric element that receives scattered light generated in the space on the front side of the substrate and detects scattered light generated in the space on the back side of the substrate. A pair with a photoelectric element is required.

このためペリクル単体については同様の原理で異物付着
の表裏判別が可能であるかもしれないが、ベリクルがレ
チクルに貼付けられた状態では散乱光がレチクルのパタ
ーン(クロム層)に遮光されてしまい、検査が不可能で
ある. ペリクルに付着した異物が表面側と裏面側のどちらに存
在するのかを知ることは、フォトリソグラフィ工程上、
極めて重要な意味をもつ。異物がペリクルの裏面側に付
着していると、最悪の場合、その異物がペリクルから離
れてレチクルへ再付着することが起り、そのレチクルを
用いた露光ウエハのショットに欠陥が生じることになる
。そのため、このようなレチクルについては、ベリクル
をフレームごとレチクルから取りはずし、レチクル単体
の異物除去作業を行なって新しいペリクルに交換する必
要がある。
For this reason, it may be possible to distinguish between the front and back sides of a pellicle with foreign matter attached using the same principle, but when the pellicle is attached to a reticle, scattered light is blocked by the reticle pattern (chrome layer), and inspection is impossible. Knowing whether the foreign matter attached to the pellicle exists on the front side or the back side is important in the photolithography process.
It has extremely important meaning. If foreign matter adheres to the back side of the pellicle, in the worst case, the foreign matter will separate from the pellicle and re-adhere to the reticle, resulting in defects in shots of exposed wafers using the reticle. Therefore, for such a reticle, it is necessary to remove the pellicle together with the frame, remove foreign matter from the reticle, and replace it with a new pellicle.

従って、新たなペリクルの貼り替えが必要か否かを実デ
バイスへの露光作業前に確実に知ることが重要である. 本発明では、ペリクル等の薄膜、あるいは薄いガラス板
等に付着した異物の有無を検出するとともに、その表裏
面の判別(付着面判別)を容易にしかも確実に実効でき
る欠陥検査装置を得ることを目的とする. 〔課題を解決する為の手段〕 上記目的を達威するために、本発明では被検物としての
平坦物体を照明する光を、所定の波長帯域を持たせた多
色光、もしくは白色(ブロードバンド)光にし、異物等
の欠陥からの散乱光の受光系には波長選択性のある光学
素子(グイクロインクミラー、コールドミラー、プリズ
ム等)を設け、分光された特定波長域毎の散乱光を個別
に光電検出し、それら光電信号の大小関係を比較するこ
とによって、欠陥が平坦物体の表裏面のどちらに存在す
るのかを判別するように構威した.〔作用〕 第1図は、本発明の原理を説明する図で、ペリクル11
の裏面側に異物12が付着している状態で、ペリクル1
1の表面側から垂直に多色光(又は白色光)S1を照射
した場合を示す.結論から求めると、第1図のように異
物からの散乱光のべリクル1lを介して光電検出する場
合は、光電検出器に向う散乱光の波長分布が多色光S1
の波長分布と異なったものとなる.一方、異物がペリク
ル11の表面側に付着している場合、異物からの散乱光
は多色光S1とほぼ同じ波長分布を保って光電検出器に
向う.従って受光系に入射する散乱光の波長分布の相違
を検知することで、異物の付着面判別が可能となる. 以上のことを、さらに第1図を参照して詳しく説明する
.第1図の状態で、異物l2から発生する散乱光のうち
、多色光S1に対して角度θ1で表面側に戻る散乱光S
2に着目する. 散乱光Stはさらにペリクル11の表面から射出して受
光系への向う光S,と、内面反射によって裏面側へ進む
光S4とに別れる.光S,の射出角θ2はペリクルl1
の屈折率をnとすると、次式のようになる. θ! =sin −’ (n −sin θ. )−・
・−−−−−− ( 1)一方、光S.ベリクル11の
裏面で再び屈折、反射する光SS、S6に分けられ、内
面反射した光S,はべりクル11の表面で再び屈折、反
射する.光S,の・うち、ペリクル11の表面で屈折し
て射出した光S,は、光S,とほぼ平行に受光系に向う
.従って光S,の射出角もθ2である。
Therefore, it is important to know for sure whether or not a new pellicle needs to be replaced before exposing the actual device. The present invention aims to provide a defect inspection device that can detect the presence or absence of foreign matter attached to a thin film such as a pellicle, or a thin glass plate, etc., and can easily and reliably discriminate between the front and back surfaces (adhered surface discrimination). Purpose. [Means for Solving the Problems] In order to achieve the above object, the present invention uses polychromatic light having a predetermined wavelength band or white (broadband) light to illuminate a flat object as a test object. A wavelength-selective optical element (microink mirror, cold mirror, prism, etc.) is installed in the receiving system for the scattered light from defects such as foreign objects, and the scattered light for each specific wavelength range is individually detected. By photoelectrically detecting and comparing the magnitude of these photoelectric signals, we were able to determine whether a defect exists on the front or back surface of a flat object. [Operation] FIG. 1 is a diagram explaining the principle of the present invention, in which the pellicle 11
Pellicle 1 with foreign matter 12 attached to the back side of pellicle 1
The case where polychromatic light (or white light) S1 is irradiated perpendicularly from the surface side of 1 is shown. From the conclusion, when photoelectrically detecting the scattered light from a foreign object through the bericle 1l as shown in Fig. 1, the wavelength distribution of the scattered light toward the photoelectric detector is the polychromatic light S1.
The wavelength distribution is different from that of . On the other hand, when a foreign object is attached to the surface side of the pellicle 11, the scattered light from the foreign object heads toward the photoelectric detector while maintaining almost the same wavelength distribution as the polychromatic light S1. Therefore, by detecting the difference in the wavelength distribution of the scattered light incident on the light receiving system, it is possible to identify the surface on which foreign matter has adhered. The above will be further explained in detail with reference to Figure 1. In the state shown in Fig. 1, among the scattered light generated from the foreign object l2, the scattered light S returns to the surface side at an angle θ1 with respect to the polychromatic light S1.
Let's focus on 2. The scattered light St is further divided into light S, which is emitted from the surface of the pellicle 11 and heads toward the light receiving system, and light S4, which travels toward the back surface by internal reflection. The emission angle θ2 of the light S is the pellicle l1
If the refractive index of is n, then the following equation is obtained. θ! =sin −' (n −sin θ. )−・
------- (1) On the other hand, optical S. The light is refracted and reflected on the back surface of the velicle 11 and is divided into light SS and S6, and the light S reflected on the inside is refracted and reflected on the surface of the velicle 11. Of the light S, the light S that is refracted and emitted from the surface of the pellicle 11 heads toward the light receiving system almost parallel to the light S. Therefore, the exit angle of the light S is also θ2.

ここで光S,とS,の位相差δは、ペリクルl1の厚さ
をdとすると、次式で表わされる。
Here, the phase difference δ between the lights S and S is expressed by the following equation, where d is the thickness of the pellicle l1.

λ そこで位相差δが丁度360”となる条件、すなわちδ
=2mπ(ただしmは任意の整数)となる波長λmは次
式の通りである. 2 ° n 0 d 0COS θ1 λmカ ・・・・・・・・・・・・ (3) また、式(1) より角度θ1 は、 なので、 これを式(3)に代入すると、 特定波 長λmは となる. 従って散乱光受光系の光軸とペリクル11の法線との威
す角度をθ2にした場合、散乱光受光系に入射する光S
.、S?の分光特性は、波長λmでピークを持ち、その
両側の波長域では減衰する。
λ Therefore, the condition that the phase difference δ is exactly 360'', that is, δ
The wavelength λm at which = 2mπ (where m is an arbitrary integer) is as follows. 2 ° n 0 d 0 COS θ1 λm (3) Also, from equation (1), the angle θ1 is, so by substituting this into equation (3), the specific wavelength λm Hato becomes. Therefore, when the angle between the optical axis of the scattered light receiving system and the normal to the pellicle 11 is set to θ2, the light S incident on the scattered light receiving system
.. ,S? The spectral characteristics of have a peak at wavelength λm, and are attenuated in wavelength ranges on both sides of the peak.

本発明では、ペリクルに付着した異物からの散乱光の分
光特性を調べることによって、異物の付着面判別を行な
うのである. 上記原理から明らかなように、散乱光受光系の光軸とペ
リクル面との角度(90゜一θ2)を適宜調整すると、
同一照明条件のもとでも、散乱光の分光特性上でピーク
とな・る特定波長λmが変化することがわかる。
In the present invention, by examining the spectral characteristics of the scattered light from the foreign matter adhering to the pellicle, the surface to which the foreign matter has adhered is determined. As is clear from the above principle, if the angle (90° - θ2) between the optical axis of the scattered light receiving system and the pellicle surface is adjusted appropriately,
It can be seen that even under the same illumination conditions, the specific wavelength λm that is the peak in the spectral characteristics of the scattered light changes.

同様に、多色光SIの照射光軸をペリクルに対して垂直
から傾けることによっても、特定波長λmは変化するが
、照射光軸の傾きを大きくしていくと、ペリクル表面上
の異物を照射するビーム強度とペリクル裏面上の異物を
照射するビーム強度とに差が生し、しかも裏面に貫けた
照射ビームの分光特性が変わることがある。そのため多
色光(白色光)S1の照射軸は被検面に対して垂直に近
い方が望ましい。
Similarly, by tilting the irradiation optical axis of the polychromatic light SI from perpendicular to the pellicle, the specific wavelength λm changes, but as the inclination of the irradiation optical axis increases, foreign matter on the pellicle surface is irradiated. There is a difference between the beam intensity and the beam intensity that irradiates the foreign matter on the back surface of the pellicle, and furthermore, the spectral characteristics of the irradiation beam that penetrates the back surface may change. Therefore, it is desirable that the irradiation axis of the polychromatic light (white light) S1 be close to perpendicular to the surface to be inspected.

ここで一例をあげてみると、ペリクルの厚さdを1μm
、屈折率nを1.5として散乱光受光角θ2を80゜と
すると、先の式(4)よりピークとなる特定波長λmは
、 λm″.2.26/m(ただしmは整数)となる.ピー
ク波長λmが可視域に現われるものとすると、m=4と
してλ4ξ565n一になる。
To give an example here, the thickness d of the pellicle is 1 μm.
, when the refractive index n is 1.5 and the scattered light acceptance angle θ2 is 80°, the specific wavelength λm that becomes the peak from the above equation (4) is λm″.2.26/m (where m is an integer). If it is assumed that the peak wavelength λm appears in the visible range, then λ4ξ565n is equal to m=4.

尚、この可視域のピーク波長の隣りのピーク波長はm−
3、m=5のときで、それぞれλ3ξ753 r+a+
,  λ5!=i452nw+である.また散乱光の検
出にあたっては、受光系が隣りのピーク波長λ3よりも
長波長とλ5よりも短波長に感度をもたないようにする
か、又は照明光の波長帯域を波長λ3とλ5の間に制限
するようにした方がよい. 〔実施例〕 第2図は本発明の第lの実施例による検査装置の構戒を
示し、光源21はタングステンランプ、ハロゲンランプ
等の白色光源であり、本実施例では分光特性が連続した
広帯域波長の照明光を使うものとする. 光B21からの照明光(白色光)は、ビームスブリッタ
26を介して集光レンズ22に入射する。
The peak wavelength next to this peak wavelength in the visible range is m-
3, when m=5, respectively λ3ξ753 r+a+
, λ5! =i452nw+. In addition, when detecting scattered light, make sure that the light receiving system is not sensitive to wavelengths longer than the adjacent peak wavelength λ3 and shorter than λ5, or change the wavelength band of the illumination light between wavelengths λ3 and λ5. It is better to limit it to [Embodiment] FIG. 2 shows the configuration of an inspection apparatus according to a first embodiment of the present invention. The light source 21 is a white light source such as a tungsten lamp or a halogen lamp. In this embodiment, a wide-band light source with continuous spectral characteristics is used. Assume that illumination light of wavelength is used. The illumination light (white light) from the light B21 enters the condenser lens 22 via the beam splitter 26.

集光レンズ22の光軸は、レチクル24に張設されたベ
リクル23の面と垂直に設定され、照明光をベリクル2
3上の局所領域(例えば1鵬角)内に集光する.この際
、照明光学系内のベリクル23と共役な位置に照明視野
絞り(開口)を設けて、ペリクル23上の照明局所領域
をきれいな矩形、微小スリット状、又は円形にするとよ
い。
The optical axis of the condensing lens 22 is set perpendicular to the surface of the vericle 23 stretched over the reticle 24, and the illumination light is directed to the vericle 23.
The light is focused within a local area (for example, 1 Peng angle) on 3. At this time, it is preferable to provide an illumination field stop (aperture) at a position conjugate with the pellicle 23 in the illumination optical system, so that the illumination local area on the pellicle 23 is shaped into a clean rectangle, a minute slit, or a circle.

一方、散乱光受光系はべりクル23の法線に対して角度
θだけ傾いた光軸を有する集光レンズ25を含み、ベリ
クル23の照明領域を見込んでいる。ここで角度θは、
先に説明したように散乱光の分光特性上でピークとなる
特定波長λmが十分に識別できるように定められるが、
実際上は45〜85゜の範囲に設定される。
On the other hand, the scattered light receiving system includes a condenser lens 25 having an optical axis inclined at an angle θ with respect to the normal line of the vericle 23, and looks into the illumination area of the vericle 23. Here, the angle θ is
As explained earlier, the specific wavelength λm that is the peak on the spectral characteristics of the scattered light is determined so that it can be sufficiently identified.
In practice, the angle is set in the range of 45 to 85 degrees.

さて、異物からの散乱光の一部はレンズ25を介してグ
イクロイックミラ−27cで2つの波長域の光に分割さ
れ、グイクロイックミラ−27cで反射する波長域の光
は光電変換器28dに受光される。そしてグイクロイッ
クミラ−27cを透過する波長域の光は、グイクロイッ
クミラ−27dでさらに2つの波長域の光に分割される
。グイクロイックミラ−27dで反射する波長域の光は
光電変喚器28eで受光され、グイクロイックミラ−2
7dを透過する波長域の光は光電変換器28fで受光さ
れる。
Now, a part of the scattered light from the foreign object passes through the lens 25 and is split into light in two wavelength ranges by the microchroic mirror 27c, and the light in the wavelength range reflected by the microchroic mirror 27c is transmitted to the photoelectric converter. The light is received at 28d. The light in the wavelength range that passes through the guichroic mirror 27c is further divided into light in two wavelength ranges by the guichroic mirror 27d. The light in the wavelength range reflected by the guichroic mirror 27d is received by the photoelectric converter 28e, and is then reflected by the guichroic mirror 27d.
The light in the wavelength range that passes through 7d is received by the photoelectric converter 28f.

一例としてグイクロイックミラ−27cを境界波長が5
00n−のコールド壽ラー(短波長側を反射して長波長
側を透過)とし、グイクロイックミラ−27dを境界波
長が600nmのコールドミラーとすると、 光電変換器27dの出力信号の大きさVdは、異物(ペ
リクル照射領域)からの散乱光のうち、波長500n■
よりも短い波長域に分布する光の総量に応したものとな
る。さらに光電変換器28eの出力信号の大きさVeは
、5 0 0nm〜6 0 0r+n+の波長域に分布
する光の総量に応じたものとなり、光電変換器28fの
出力信号の大きさVfは、600rv+よりも長い波長
域に分布する光の総量に応じたものとなる。
As an example, the boundary wavelength of Gikroic Mirror 27c is 5.
00n- cold mirror (reflects the short wavelength side and transmits the long wavelength side), and if the guichroic mirror 27d is a cold mirror with a boundary wavelength of 600 nm, then the magnitude of the output signal of the photoelectric converter 27d is Vd. is the wavelength of 500n of the scattered light from the foreign object (pellicle irradiation area).
It corresponds to the total amount of light distributed in a shorter wavelength range. Further, the magnitude Ve of the output signal of the photoelectric converter 28e corresponds to the total amount of light distributed in the wavelength range of 500 nm to 600 r+n+, and the magnitude Vf of the output signal of the photoelectric converter 28f corresponds to 600 rv+ It depends on the total amount of light distributed in a longer wavelength range.

従って、2つのダイクロイック゜ミラー27C127d
は散乱光の波長分布を3つの波長域に分割する分光手段
として機能する。
Therefore, two dichroic mirrors 27C127d
functions as a spectroscopic means that divides the wavelength distribution of scattered light into three wavelength ranges.

ところで第2図中、照明光路中にはビームスプリンタ2
6が配置され、照明光の一部を参照系の向へ導びいてい
るが、この参照系については後で詳しく説明する。
By the way, in Fig. 2, there is a beam splinter 2 in the illumination optical path.
6 is arranged to guide a part of the illumination light toward a reference system, which will be explained in detail later.

さて、第4図は光電変換器28d、28e、28fの各
出力信号を評価する処理回路の一例を示す。本実施例で
は説明を簡単にするため、ベリクル付きレチクル24が
2次元走査ステージ4oに載置され、照射ビームに対し
てx.,y方向に移動するものとする。また走査ステー
ジ40の移動は座標位置測定器(エンコーダ等)42に
よって、照明局所領域のサイズよりも細かい分解能で計
測される。
Now, FIG. 4 shows an example of a processing circuit for evaluating each output signal of the photoelectric converters 28d, 28e, and 28f. In this embodiment, in order to simplify the explanation, the reticle 24 with a velicle is placed on a two-dimensional scanning stage 4o, and the x. , y direction. Further, the movement of the scanning stage 40 is measured by a coordinate position measuring device (such as an encoder) 42 with a resolution finer than the size of the local illumination area.

第4図において、プロセッサー44は、ステージコント
ローラ46に移動指令を出力する.ステージコントロー
ラ46はエンコーダ42からの位置情報をフィードバッ
ク入力として、モータ48を制御してステージ40を2
次元移動する.エンコーダ42の位置情報は、異物の存
在位置をLm角、又は5一角のマップ上で表示できるよ
うに変換するマンプ座標作威回路50に入力する。
In FIG. 4, a processor 44 outputs a movement command to a stage controller 46. The stage controller 46 uses the position information from the encoder 42 as feedback input to control the motor 48 to move the stage 40 to the second position.
Move dimensionally. The position information of the encoder 42 is input to a manipulating coordinate generation circuit 50 that converts the position of the foreign object so that it can be displayed on an Lm-square or 5-square map.

各光電変換器28d、28e、28fの出力信号レベル
は、アンブ60d,60e、60fで増幅された後、ア
ナログーデジタル変換器(A/D)62d、62e,6
2fによってデジタル値に変換され、プロセッサー44
を介してメモリ52に格納される。
The output signal level of each photoelectric converter 28d, 28e, 28f is amplified by amplifiers 60d, 60e, 60f, and then analog-to-digital converter (A/D) 62d, 62e, 6
2f into a digital value, and the processor 44
The data is stored in the memory 52 via.

ディスプレイ54はカラーブラウン管を用いて検査結果
を表示するもので、ペリクル23の全面を1閣角、又は
5mo+角の格子マップで表わし、検出した異物が表面
側なら、その存在位置に対応したIIII1角又は5!
IIIl角の領域を例えば緑色にぬりつぶし、裏面側な
ら赤色にぬりつぶす.また検出した異物の大きさを、 3ランク程度に分類して、例えばAランク、Bランク、
Cランクの文字表示も同時に行なう。ランク表示は緑色
、又は赤色にぬりつぶすときの階ffl(g度)で表わ
してもよいし、わずかずつ色調を変えて表わしてもよい
. さて実際の検査にあたっては、ステージ40をX方向に
一次元に移動させた後、y方向に照明局所領域のサイズ
分だけステッピングさせて、再びX方向に移動させるこ
とを順次くりかえす.メモリ52には、各光電信号の大
きさの相互の標準的な比に関する情報が予め記憶されて
いる.この標準的な比は、例えば異物が表面側に付着し
ているときに得られた光電信号Vd、Ve、■『の比、
V d / V e、又はVf/Veとほぼ等しく定め
られている.本実施例では光電変換器28eが受光する
波長域において分光特性上のピーク波長λmが表われる
ように設定されている。従って異物が表面側のときの比
Vd/Ve(又はVf/Ve)は、標準的な比とほぼ等
しくなり、異物が裏面側のときの比Vd/Ve(又はV
 f / V e )は標準的な比と大きく異なったも
の(例えば大きな値)になる。
The display 54 displays the inspection results using a color cathode ray tube, and displays the entire surface of the pellicle 23 in a grid map of 1 square or 5 mo + square, and if the detected foreign object is on the surface side, a grid map of 3 squares corresponding to the location of the foreign object is displayed. Or 5!
For example, fill the corner area in green, and the back side in red. In addition, the size of detected foreign objects is classified into three ranks, such as A rank, B rank,
Characters of C rank are also displayed at the same time. The rank display may be expressed by the grade ffl (g degrees) when filled in green or red, or may be expressed by slightly changing the tone. Now, in the actual inspection, the stage 40 is moved one-dimensionally in the X direction, then stepped in the Y direction by the size of the local illumination area, and then moved again in the X direction, which is repeated in sequence. Information regarding the mutual standard ratio of the magnitude of each photoelectric signal is stored in the memory 52 in advance. This standard ratio is, for example, the ratio of the photoelectric signals Vd, Ve,
It is determined to be approximately equal to Vd/Ve or Vf/Ve. In this embodiment, settings are made such that the peak wavelength λm on the spectral characteristics appears in the wavelength range that the photoelectric converter 28e receives. Therefore, the ratio Vd/Ve (or Vf/Ve) when the foreign object is on the front side is almost equal to the standard ratio, and the ratio Vd/Ve (or Vf/Ve) when the foreign object is on the back side is almost equal to the standard ratio.
f/Ve) will be significantly different from the standard ratio (eg, a large value).

プロセッサー44は、例えば1鴫だけステージ42が移
動するたびに、マップ座標作戒回路50から出力される
サンプリング指令に応答して、A/D62d、62e、
62fの各出力値をメ−E− +J52に記憶していく
The processor 44 responds to a sampling command output from the map coordinate control circuit 50 each time the stage 42 moves by one position, for example, and controls the A/Ds 62d, 62e,
Each output value of 62f is stored in Me-E-+J52.

ステージ40の走査終了後、プロセッサー44はメモリ
52から各走査位W(サンプリング位W)毎の検査デー
タ(Vd,Ve,Vf)を読み出し、比V d / V
 e、(又はV f / V e )を演算し、さらに
その結果と標準的な比との大小関係を比較して、付着面
の判別を行ない、その結果をディスプレイ54に表示す
る. またプロセッサー52は、光電信号レベルの大きさに基
づいて、異吻サイプのランク分けを行ない、その結果も
表示する. 本実施例では光電変換器28eが受ける光は、第l図で
説明したように位相差が2mπだけずれて強め合ったも
のであるため、必ずしも異物サイズに応じた光量レベル
とはならない。
After the stage 40 scans, the processor 44 reads out the inspection data (Vd, Ve, Vf) for each scanning position W (sampling position W) from the memory 52, and calculates the ratio V d /V.
e (or V f /V e ), and further compares the magnitude relationship between the result and a standard ratio to determine the adhesion surface, and displays the result on the display 54. The processor 52 also ranks the different proboscis sipes based on the magnitude of the photoelectric signal level and displays the results. In this embodiment, the light received by the photoelectric converter 28e is reinforced with a phase difference of 2 mπ as explained in FIG. 1, so the light intensity level does not necessarily correspond to the size of the foreign object.

そこで異物サイズを判定するためには、その他の光電変
換器28d,28fからの信号レベル(Ve、Vf)を
評価するようにするとよい。
Therefore, in order to determine the size of the foreign object, it is preferable to evaluate the signal levels (Ve, Vf) from the other photoelectric converters 28d and 28f.

次に本発明の第2の実施例を、第2図を参照して説明す
る.第2の実施例では照明光(白色光)そのものを、散
乱光受光系中の分光手段と同一の特性で分光して各波長
域毎の参照信号を作り、この参照信号で規格化を計るも
のである。第2図において、ビームスプリンタ26で分
岐された照明光はグイクロインクミラ−27aで2つの
波長域に分割され、ここを透過した光はダイクロインク
ミラー27bでさらに2つの波長域に分割される。
Next, a second embodiment of the present invention will be explained with reference to FIG. In the second embodiment, the illumination light (white light) itself is separated with the same characteristics as the spectroscopic means in the scattered light receiving system to create a reference signal for each wavelength range, and standardization is performed using this reference signal. It is. In FIG. 2, the illumination light branched by the beam splinter 26 is split into two wavelength ranges by a dichroic ink mirror 27a, and the light transmitted through this is further split into two wavelength ranges by a dichroic ink mirror 27b. .

グイクロイックミラ−27aの波長選択特性はグイクロ
イックミラ−27cと同一であり、グイクロイックミラ
−27bの波長選択特性はダイクロイックξラー27d
と同一である。従って、光電変換器28aは、例えば5
00n−よりも短波長側の波長戒分の総光量を受光し、
光電変換器28bは500nm〜600nmの中間波長
域の戒分の総光量を受光し、モして光電変換器28cは
600nmよりも長波長域の成分の総光量を受光する。
The wavelength selection characteristics of the dichroic mirror 27a are the same as those of the dichroic mirror 27c, and the wavelength selection characteristics of the dichroic mirror 27b are the same as those of the dichroic mirror 27d.
is the same as Therefore, the photoelectric converter 28a has, for example, 5
Receives the total amount of light of wavelengths on the shorter wavelength side than 00n-,
The photoelectric converter 28b receives the total amount of light in the intermediate wavelength range of 500 nm to 600 nm, and the photoelectric converter 28c receives the total amount of light in the wavelength range longer than 600 nm.

第5図は第2の実施例における処理回路の構戒の一例を
示し、割算器を用いて規格化を行なう。
FIG. 5 shows an example of the structure of the processing circuit in the second embodiment, in which standardization is performed using a divider.

ここではアナログ的に割算を行なうが、プロセッサーの
プログラムによって割算を行なってもよい。
Although division is performed in an analog manner here, division may also be performed using a processor program.

光電変換器28aから出力され、アンプで増幅された信
号Vaと、光電変換器28dから出力され、アンプで増
幅された信号Vdとは割算器70Aに人力され、割算器
70AはSA=Va/Vdの値を出力する。
The signal Va output from the photoelectric converter 28a and amplified by the amplifier and the signal Vd output from the photoelectric converter 28d and amplified by the amplifier are input to the divider 70A, and the divider 70A calculates SA=Va. /Vd value is output.

同様に光電変換器28bからの信号vbと光電変換器2
8eからの信号Veとは、割算器70BによってS B
 = V b / V eの演算が行なわれ、光電変換
器28cからの信号Vcと光電変換器28fからの信号
vfとは割算器70GによってSC= V c / V
 fの演算が行なわれる。
Similarly, the signal vb from the photoelectric converter 28b and the photoelectric converter 2
The signal Ve from 8e is divided into S B by the divider 70B.
= Vb/Ve is calculated, and the signal Vc from the photoelectric converter 28c and the signal vf from the photoelectric converter 28f are divided by the divider 70G into SC=Vc/V.
The calculation of f is performed.

第4図と同様に、プロセッサー44はアナログデジタル
変換器を介して出力値SA,SB,SCを入力してメモ
リ52に記憶する。
Similar to FIG. 4, processor 44 inputs output values SA, SB, SC via an analog-to-digital converter and stores them in memory 52.

第1の実施例では、異なる波長域間の信号レベルの変化
を標準値を用いて比較したが、ここでは規格化された出
力値SASSB,SC同志の大小関係を評価するだけで
付着面の判定ができる。
In the first embodiment, changes in signal levels between different wavelength ranges were compared using standard values, but here, the adhesion surface can be determined by simply evaluating the magnitude relationship between the standardized output values SASSB and SC. I can do it.

プロセッサー44は出力値SA,SB,SCを比較して
、SA;SB#SCであるときは、その異物がペリクル
の表面側(受光系側)にあると判定し、 SA>SB<SCであるときは裏面側にあると判定する
.これは、裏面の異物からの散乱光は、信号レベルとし
てVd,Vfが、表側の異物の場合とくらべて小さくな
り、相対的に信号Veの方が大きくなるからである. 尚、このような判定回路はアナログコンパレータ、ロジ
ックIC等によってディスクリートで組むこともできる
. 第6図は本発明の第3の実施例による欠陥検査装置の構
成を示し、照明光学系には母線の方向がy方向と直交し
たシリンドリカル(又はトーリック)レンズ80が設け
られる。シリンドリ力ルレンズ80の光軸AXoはべり
クル23の面と垂直であり、シリンドリカルレンズ80
によって集光された白色照明光はべりクル23上でX方
向に延びたスリット状照明光SLとなる。ペリクル付き
レチクル24は不図示の一次元スライダー等によってy
方向に一定速度で移動する。スリット状照明光SLはべ
りクル23のX方向の幅とほぼ等しい長さを有し、レチ
クル24のy方向の走査のみで、全面の検査ができる. 一方、散乱光受光系は光軸AXrに沿って配置されたミ
ラーM1結像光学系82、グイクロイック【ラー27c
1リレー系86、グイクロイックミラ−27d、及び3
つの一次元撮像素子(COD等)84d、84e、84
fで構戒される.ξラーMは結像光学系82の光軸AX
rをペリクル23の面に対して所定の角度(5′〜20
゜程度)に設定するように折り曲げるものであり、結像
光学系82はミラーMで反射されたスリット状照明光S
Lの照射領域部分の像を、一次元撮像素子84d上に結
像する。このとき照射領域からの散乱光は、グイクロイ
ックミラ−27cによって、例えば500nm以下の短
波長戒分による異物暗視像が一次元撮像素子84上に形
威される。結像光学系82で作られた像は、リレー系8
6によってほぼ等倍にレリーされ、グイクロイックミラ
−27dによって2つの波長域(5 0 0nn+〜6
 0 0nmと600n船以上)に分けられた後、それ
ぞれ一次元撮像素子84e、84f上に再結像する。
The processor 44 compares the output values SA, SB, and SC, and when SA;SB#SC, it determines that the foreign object is on the surface side of the pellicle (light receiving system side), and SA>SB<SC. It is determined that it is on the back side. This is because the signal levels Vd and Vf of the scattered light from the foreign object on the back side are smaller than those in the case of the foreign object on the front side, and the signal Ve is relatively larger. Incidentally, such a judgment circuit can also be constructed discretely using analog comparators, logic ICs, etc. FIG. 6 shows the configuration of a defect inspection apparatus according to a third embodiment of the present invention, and the illumination optical system is provided with a cylindrical (or toric) lens 80 whose generatrix direction is perpendicular to the y direction. The optical axis AXo of the cylindrical lens 80 is perpendicular to the surface of the bevel 23, and the cylindrical lens 80
The white illumination light focused by becomes slit-shaped illumination light SL extending in the X direction on the bezel 23. The reticle 24 with a pellicle is moved by a one-dimensional slider (not shown), etc.
move at a constant speed in a direction. The slit-shaped illumination light SL has a length approximately equal to the width of the bezel 23 in the X direction, and the entire surface can be inspected by scanning the reticle 24 in the Y direction only. On the other hand, the scattered light receiving system includes a mirror M1 imaging optical system 82 arranged along the optical axis AXr,
1 relay system 86, guikroic mirror 27d, and 3
One-dimensional imaging devices (COD etc.) 84d, 84e, 84
It is admonished by f. ξ ra M is the optical axis AX of the imaging optical system 82
r to the surface of the pellicle 23 at a predetermined angle (5' to 20
The imaging optical system 82 is configured to bend the slit-shaped illumination light S reflected by the mirror M.
An image of the irradiation region L is formed on the one-dimensional image sensor 84d. At this time, the scattered light from the irradiation area is formed on the one-dimensional imaging device 84 by the guichroic mirror 27c as a foreign object night vision image based on a short wavelength of, for example, 500 nm or less. The image created by the imaging optical system 82 is transmitted to the relay system 8
6 to approximately the same magnification, and two wavelength ranges (500 nn+ to 6
00 nm and 600 nm or more), and then re-imaged on one-dimensional imaging devices 84e and 84f, respectively.

従って、一次元撮像素子84e上にはスリント状の照射
領域内での中間波長成分(500nm〜600nm)に
よる異物暗視像が形戊され、一次元撮像素子84f上に
は照射領域内での長波長戒分(600nm以上)による
異物暗視像が形威される.ここで一次元撮像素子84d
,84e,84fスリット状照明光SLの照射領域の長
手方向(X方向)に沿って複数の画素を有するため、照
射領域の長手方向に関する異物位置の計測分解能は、一
次元撮像素子84d、84e、84fの画素数によって
決まる。例えばスリット状照明光SLの長さ(ペリクル
23のX方向の幅)を約80IllI1とし、512画
素の一次元撮像素子を使うものとすると、有効画素数を
400(両側の56画素分にはべりタルフレームの像が
できる)にしたとしても、■画素分でペリクル上0.2
m+* (2 0 0 μm)の分解能が得られる. さらに参照系は第2図と同様に照明光の一部をビームス
ブリソタ26で分岐して、グイクロイフクミラ−27a
、27bで3つの波長域に分割し、それぞれの波長域で
の光量を光電素子84a、84b,84cで受光する. 処理回路としては、第5図と同様に割算器を用いて規格
化を行なうようにする。
Therefore, a night vision image of a foreign object is formed on the one-dimensional image sensor 84e by intermediate wavelength components (500 nm to 600 nm) within the slint-like irradiation area, and a foreign object night vision image is formed on the one-dimensional image sensor 84f using a medium wavelength component (500 nm to 600 nm) within the irradiation area. A night vision image of a foreign object is produced by wavelength control (600 nm or more). Here, the one-dimensional image sensor 84d
, 84e, 84f have a plurality of pixels along the longitudinal direction (X direction) of the irradiation area of the slit-shaped illumination light SL, so the measurement resolution of the foreign object position in the longitudinal direction of the irradiation area is the same as that of the one-dimensional imaging devices 84d, 84e, It is determined by the number of pixels of 84f. For example, if the length of the slit-shaped illumination light SL (width of the pellicle 23 in the Even if the image of the frame is created, it is 0.2 pixels above the pellicle.
A resolution of m+* (200 μm) can be obtained. Further, the reference system is constructed by branching a part of the illumination light with a beam sub-switcher 26 as shown in FIG.
, 27b into three wavelength ranges, and the amount of light in each wavelength range is received by photoelectric elements 84a, 84b, and 84c. As for the processing circuit, standardization is performed using a divider as in FIG. 5.

第7図は、一次元撮像素子84d,84e、84fの画
像信号の1ライン分の波形を例示したものである。1ラ
イン分の読み出しサイクルとレチクル24のy方向の移
動速度とは一定の関係になるように同期が働いており、
ここではスリット状照明光SLのy方向の幅分だけレチ
クル24が移動するたびに、1ライン分の画像信号が得
られる。
FIG. 7 illustrates the waveform of one line of image signals from the one-dimensional image sensors 84d, 84e, and 84f. Synchronization works so that there is a constant relationship between the readout cycle for one line and the moving speed of the reticle 24 in the y direction.
Here, an image signal for one line is obtained each time the reticle 24 moves by the width of the slit-shaped illumination light SL in the y direction.

第7図(A)、(B)、(C)はそれぞれ一次元撮像素
子84d、84e,84fの画像信号を示し、縦軸は画
素の信号レベルVd,Ve,Vrを表わし、横軸は画素
数を表わす。信号レベル■d,Ve,Vfは、それぞれ
光電素子84a、84b、84cの出力信号レベルを基
準として規格化された後で大小関係が比較される. 第7図において、画素位置P, 、Pt,P3で一定値
以上の信号レベルが得られたものとする。
FIGS. 7(A), (B), and (C) show image signals of the one-dimensional image sensors 84d, 84e, and 84f, respectively, the vertical axis represents pixel signal levels Vd, Ve, and Vr, and the horizontal axis represents pixel signal levels. represents a number. The signal levels d, Ve, and Vf are compared in magnitude after being standardized based on the output signal levels of the photoelectric elements 84a, 84b, and 84c, respectively. In FIG. 7, it is assumed that signal levels above a certain value are obtained at pixel positions P, , Pt, and P3.

位置P1では3つの信号レベルVd,Ve,Vfがとも
に大きく、規格化した後では、V a / V d、V
b/VeSVc/Vfはほぼ等しくなり、位置P1の異
物が表面側であると判定される。また位置P2では信号
レベルVd,Ve,Vfがともに小さくなってはいるが
、規格化した後の比Va/Vd,Vb/Ve,Vc/V
fはほぼ等しくなり、位置P2の異物も表面側であると
判定される。また信号レベルの大小で、位itP,の異
物の方が位置P!の異物よりも大きいことがわかる.一
方、位置P,では、信号レベルVd,Vfに対して信号
レベルVeがかなり大きくなっている.このため規格化
した後の位置P,での比Va/Vd,Vb/Ve、V 
c / V fの大小を比較すると、V b / V 
eだけが他の2つの異なった値になり、位置P,の異物
が裏面側に存在することがわかる。
At position P1, the three signal levels Vd, Ve, and Vf are all large, and after normalization, V a / V d, V
b/VeSVc/Vf becomes approximately equal, and it is determined that the foreign object at position P1 is on the surface side. Also, at position P2, although the signal levels Vd, Ve, and Vf are all small, the normalized ratios Va/Vd, Vb/Ve, and Vc/V
f are almost equal, and it is determined that the foreign object at position P2 is also on the front side. Also, depending on the signal level, the foreign object at position itP is better than the foreign object at position P! It can be seen that it is larger than the foreign object. On the other hand, at position P, the signal level Ve is considerably larger than the signal levels Vd and Vf. Therefore, the ratios Va/Vd, Vb/Ve, V at position P after normalization are
Comparing the magnitude of c / V f, V b / V
Only e has two different values, indicating that a foreign object at position P exists on the back side.

本実施例のようにスリット状照明光SLを一括にベリク
ルに照射し、照射領域の像を撮像する場合、照明光SL
の長手方向の照度分布が均一であることが望ましい。し
かしながら均一性が得られない場合は、照度分布のデー
タを予め求めておいて、画像信号の画素毎(又は一定区
間の複数画素毎)に信号レベルを補正すればよい.そし
て補正された信号レベルを使って規格化を行ない、規格
化された比の大小関係を評価すればよい。
When the slit-shaped illumination light SL is irradiated to the vellicle all at once as in this embodiment and an image of the irradiation area is captured, the illumination light SL
It is desirable that the illuminance distribution in the longitudinal direction be uniform. However, if uniformity cannot be obtained, data on the illuminance distribution may be obtained in advance and the signal level may be corrected for each pixel of the image signal (or for each plurality of pixels in a certain section). Then, normalization is performed using the corrected signal level, and the magnitude relationship between the normalized ratios can be evaluated.

信号レベルの補正方法については、特公昭635269
6号公報にも開示されている。
Regarding the signal level correction method, please refer to the Japanese Patent Publication No. 635269.
It is also disclosed in Publication No. 6.

以上、本発明の各実施例を説明したが、その他にいくつ
かの変形例が考えられる. そこで以下にそれら変形例について述べる。
Although each embodiment of the present invention has been described above, several other variations are possible. Therefore, these modified examples will be described below.

まず照明光としては、複数の輝線スペクトルを含む水銀
放電灯からの光、又は互いに中心波長の異なる発光ダイ
オード(又は半導体レーザ)の複数個からの光を同軸に
合成した光、等が利用できる。また照明光をスポット化
してポリゴンミラーガルバノくラー等でペリクル上を一
次元に走査する方式にした場合、一次元の走査位置に応
じて照明光(ビーム)のべリクルへの入射角が変化する
こともある。通常この種の方式では一次元の走査軌跡全
体を特定の空間方向から見込むように散乱光受光系(結
像レンズ等)が固定されているため、スポットビームの
走査位置に応じて変化する入射角のために散乱光の受光
レベル(感度)が変化することになる。そこで受光系の
光電素子の信号レベル、又は異物有無を判定するスライ
スレベル等をスポットビームの走査位置に応じて変化さ
せる回路を設ける必要がある. ところで各実施例では散乱光受光系を、ペリクルに対し
て照明光入射側の空間に配置したが、ペリクルがフレー
ムに張設された状熊で単体で検査できる場合、受光系は
照明光人射側と反対の空間に配置することもできる.こ
の場合でも受光系の光軸はペリクル面に対して小さな角
度(5@〜45゜程度)に設定し、ペリクル自体からの
散乱光の受光量を少なくするようにすることが望ましい
.さらに散乱光受光系は、照明光の照射領域を互いに異
なる方向から見込むように複数を配置し、各受光系で得
られた検出結果を比較することで、異物の検出精度サイ
ズ特定能力等を増すこともできる.この場合、付着した
異物に比較的大きな散乱指向性があっても、確実に検出
できるといった利点がある. また、散乱光受光系に使う波長選択素子としてのグイク
ロイックミラーは他の色フィルターやプリズム(分散素
子)にしてもよい. プリズムにする場合は、入射する散乱光のスペクトル分
布を一次元アレイセンサーで光電検出して、表面側の異
物からのスペクトル分布と裏面側の異物からのスペトク
ル分布との差異を判定すればよい.ただしプリズムによ
る分光は、異物からの散乱光強度が小さいことから、光
電検出時のS/N比を確保することが難しいこともある
First, as the illumination light, light from a mercury discharge lamp including a plurality of bright line spectra, or light coaxially synthesized from a plurality of light emitting diodes (or semiconductor lasers) having different center wavelengths, etc. can be used. Furthermore, if the illumination light is turned into a spot and scanned over the pellicle one-dimensionally using a polygon mirror galvanometer, etc., the angle of incidence of the illumination light (beam) on the pellicle will change depending on the one-dimensional scanning position. Sometimes. Normally, in this type of method, the scattered light receiving system (imaging lens, etc.) is fixed so that the entire one-dimensional scanning trajectory is viewed from a specific spatial direction, so the incident angle changes depending on the scanning position of the spot beam. Therefore, the reception level (sensitivity) of scattered light changes. Therefore, it is necessary to provide a circuit that changes the signal level of the photoelectric element in the light receiving system, or the slice level for determining the presence or absence of foreign objects, depending on the scanning position of the spot beam. Incidentally, in each of the embodiments, the scattered light receiving system was placed in the space on the illumination light incident side relative to the pellicle, but if the pellicle is stretched over a frame and can be inspected by itself, the light receiving system It can also be placed in the space opposite to the side. Even in this case, it is desirable to set the optical axis of the light receiving system at a small angle (approximately 5 to 45 degrees) with respect to the pellicle surface to reduce the amount of scattered light received from the pellicle itself. Furthermore, by arranging multiple scattered light receiving systems so that they look at the illumination light irradiation area from different directions, and comparing the detection results obtained with each receiving system, the accuracy of detecting foreign objects and the ability to identify the size are increased. You can also. In this case, there is an advantage that even if the attached foreign object has a relatively large scattering directionality, it can be detected reliably. Furthermore, the guichroic mirror used as a wavelength selection element used in the scattered light receiving system may be replaced by other color filters or prisms (dispersive elements). When using a prism, the spectral distribution of the incident scattered light can be photoelectrically detected using a one-dimensional array sensor, and the difference between the spectral distribution from the foreign object on the front side and the spectral distribution from the foreign object on the back side can be determined. However, in spectroscopy using a prism, the intensity of scattered light from foreign objects is low, so it may be difficult to ensure a good S/N ratio during photoelectric detection.

ところで本発明の原理で説明したように、ペリクルの裏
面側の異物からの散乱光は、特定波長λmのところでピ
ークとなり、その両側の波長域(λmとλm+1との間
、及びλmとλm−1との間)では強度が著しく減衰す
る. そこで特定波長λmを中心としたバンド幅100n一程
度の第1照明光と、この照明光の中心波長λmに対して
数+nw以上長波長側、又は短波長側に離れたバンド幅
100n一程度の第2照明光とを別光源又は同一光源で
作り、ペリクル上の同一領域に照射するようにしてもよ
い.この場合、受光系には第1照明光の波長域と第2照
明光の波長域とを分離するグイクロイックミラーを設け
、2つの光電検出手段からの信号レベルの大小関係を評
価する. 従って特定波長λmが565n一程度の場合、ハロゲン
ランプ等の白色光源を用いるときは、ハロゲンランプか
らの光のうち、例えば500rv〜700nmの間の波
長域のみをフィルタリングしてペリクルに照射し、第1
受光系には500n一〜60Qna+に感度分布をもた
せ、第2受光系には600n一〜700nsに感度分布
をもたせるようにする。
By the way, as explained in the principle of the present invention, the scattered light from the foreign matter on the back side of the pellicle peaks at a specific wavelength λm, and the wavelength ranges on both sides of that peak (between λm and λm+1, and between λm and λm-1) ), the intensity is significantly attenuated. Therefore, first illumination light with a bandwidth of about 100n centered on a specific wavelength λm and a bandwidth of about 100n separated from the center wavelength λm of this illumination light by more than several +nw on the long wavelength side or on the short wavelength side. The second illumination light and the second illumination light may be generated from a different light source or the same light source, and may be irradiated onto the same area on the pellicle. In this case, the light receiving system is provided with a gicroic mirror that separates the wavelength range of the first illumination light and the wavelength range of the second illumination light, and the magnitude relationship between the signal levels from the two photoelectric detection means is evaluated. Therefore, when the specific wavelength λm is about 565 nm, when using a white light source such as a halogen lamp, the pellicle is irradiated with only the wavelength range of 500 rv to 700 nm filtered out of the light from the halogen lamp. 1
The light receiving system is made to have a sensitivity distribution from 500n1 to 60Qna+, and the second light receiving system is made to have a sensitivity distribution from 600n1 to 700ns.

〔発明の効果〕〔Effect of the invention〕

以上の様に本発明によれば、ペリクル等の薄い透明物体
に付着した異物等の欠陥の有無を検出するだけでなく、
その欠陥が透明体の表裏のいずれであるかも判定でき、
リソグラフィ工程での欠陥発生を未然に防ぐことができ
る。
As described above, according to the present invention, it is possible to not only detect the presence or absence of defects such as foreign matter attached to a thin transparent object such as a pellicle, but also to
It can also be determined whether the defect is on the front or back side of the transparent object.
It is possible to prevent defects from occurring during the lithography process.

さらに、この検査装置を自動ペリクル貼付装置と一体に
して使えば、ペリクルをマスクやレチクルに仮止めした
状態でペリクル裏面の異物付着がチェックできるととも
に、裏面に異物がなければそのまま本貼りを行ない、問
題があれば仮止めをはずして別のペリクルと交換すると
いった一連の作業を安全に自動化することも可能である
Furthermore, if this inspection device is used in conjunction with an automatic pellicle pasting device, it is possible to check for foreign matter on the back of the pellicle while the pellicle is temporarily attached to a mask or reticle, and if there is no foreign matter on the back, the final pasting can be carried out. If there is a problem, it is possible to safely automate a series of tasks such as removing the temporary pellicle and replacing it with another pellicle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の原理を説明する図、第2図は、本発
明の第1実施例による装置の構戒を示す図、 第3図は、従来装置の構成を示す図、 第4図は、第1実施例における信号処理系の構成を示す
ブロック図、 第5図は第2実施例による検査装置における信号処理系
の構或を示すブロック図、 第6図は第3実施例による検査装置の構戒を示す傾斜図
、 第7図は、第3実施例における光電検出の様子を説明す
るグラフ図である。 〔主要部分の符号の説明〕 21・・・・・・光源、 22、25・・・・・・集光レンズ、 23・・・・・・ペリクル、 24・・・・・・レチクル、 26・・・・・・ビームスプリンタ 27a、27b、27c,27d ・・・・・・グイクロイック珈ラー 2 8 a, 2 8 b, 2 8 c, 2 8 
d, 2 8 e,28f・・・・・・光電変換器
FIG. 1 is a diagram explaining the principle of the present invention, FIG. 2 is a diagram showing the configuration of a device according to the first embodiment of the present invention, FIG. 3 is a diagram showing the configuration of a conventional device, and FIG. The figure is a block diagram showing the configuration of the signal processing system in the first embodiment, FIG. 5 is a block diagram showing the configuration of the signal processing system in the inspection device according to the second embodiment, and FIG. 6 is the block diagram showing the configuration of the signal processing system in the inspection device according to the second embodiment. A tilted view showing the configuration of the inspection device. FIG. 7 is a graph diagram explaining the state of photoelectric detection in the third embodiment. [Explanation of symbols of main parts] 21... Light source, 22, 25... Condensing lens, 23... Pellicle, 24... Reticle, 26.・・・・・・Beam splinter 27a, 27b, 27c, 27d ・・・・Guicroic coffee 2 8 a, 2 8 b, 2 8 c, 2 8
d, 2 8 e, 28f...Photoelectric converter

Claims (2)

【特許請求の範囲】[Claims] (1)光透過性の平坦物体を照明し、該平坦物体の表裏
面に存在する異物等の欠陥を検査する装置において、 所定の波長帯域に渡って強度分布を有する多色光を、前
記平坦物体のいずれか一方の面に向けて照射する照射手
段と; 前記多色光の照射によって前記欠陥で生ずる散乱光を波
長選択素子により特定の波長域に分けて受光する複数の
光電検出器と; 該複数の光電検出器の夫々から出力される信号の大きさ
の比較に基づいて、前記欠陥が前記平坦物体の表裏面の
どちらに存在するかを判定する判定手段 とを備えたことを特徴とする欠陥検査装置。
(1) In an apparatus that illuminates a light-transmitting flat object to inspect defects such as foreign matter existing on the front and back surfaces of the flat object, polychromatic light having an intensity distribution over a predetermined wavelength band is illuminated on the flat object. irradiation means for irradiating toward one of the surfaces; a plurality of photoelectric detectors that receive scattered light generated by the defect by irradiation with the polychromatic light, dividing it into a specific wavelength range using a wavelength selection element; and determining means for determining whether the defect exists on the front or back surface of the flat object based on a comparison of the magnitudes of signals output from each of the photoelectric detectors. Inspection equipment.
(2)光透過性の平坦物体を照明し、該平坦物体の表裏
面に存在する異物等の欠陥を検査する装置において、 所定の波長帯域に渡って強度分布を有する多色光を、前
記平坦物体のいずれか一方の面に向けて照射する照射手
段と; 該照射手段からの多色光を分光する第1分光手段と; 該第1分光手段で分光された特定の波長域毎の光量を個
別に検出する第1光電検出手段と;前記多色光の照射に
よって前記欠陥で生ずる散乱光を、前記第1分光手段と
ほぼ等しい特性で分光する第2分光手段と; 該第2分光手段で分光された特定波長域毎の光量を個別
に検出する第2光電検出手段と; 前記第1光電検出手段と第2光電検出手段の各々からの
信号の大きさの比を、前記特定波長域毎に求めると共に
、異なる特定波長域間での該比の大小関係に基づいて、
前記平坦物体の表裏面のどちらに前記欠陥が存在するか
を判定する判定手段とを備えたことを特徴とする欠陥検
査装置。
(2) In an apparatus that illuminates a light-transmitting flat object to inspect defects such as foreign matter existing on the front and back surfaces of the flat object, polychromatic light having an intensity distribution over a predetermined wavelength band is illuminated on the flat object. an irradiation means for irradiating toward either one of the surfaces; a first spectroscopy means for dispersing the polychromatic light from the irradiation means; and a first dispersion means for separately dispersing the amount of light for each specific wavelength range separated by the first spectroscopy means. a first photoelectric detection means for detecting; a second spectroscopy means for spectrally dispersing the scattered light generated by the defect due to the irradiation with the polychromatic light with substantially the same characteristics as the first spectroscopy means; a second photoelectric detection means for individually detecting the amount of light for each specific wavelength range; determining a ratio of signal magnitudes from each of the first photoelectric detection means and the second photoelectric detection means for each of the specific wavelength ranges; , based on the magnitude relationship of the ratio between different specific wavelength ranges,
A defect inspection device characterized by comprising: determining means for determining whether the defect is present on either the front or back surface of the flat object.
JP19376489A 1989-07-26 1989-07-26 Defect inspection equipment Expired - Lifetime JP2814390B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19376489A JP2814390B2 (en) 1989-07-26 1989-07-26 Defect inspection equipment
US07/554,839 US5072128A (en) 1989-07-26 1990-07-20 Defect inspecting apparatus using multiple color light to detect defects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19376489A JP2814390B2 (en) 1989-07-26 1989-07-26 Defect inspection equipment

Publications (2)

Publication Number Publication Date
JPH0357945A true JPH0357945A (en) 1991-03-13
JP2814390B2 JP2814390B2 (en) 1998-10-22

Family

ID=16313420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19376489A Expired - Lifetime JP2814390B2 (en) 1989-07-26 1989-07-26 Defect inspection equipment

Country Status (1)

Country Link
JP (1) JP2814390B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7276292B2 (en) 2001-03-01 2007-10-02 Dowa Mining Co., Ltd. Insulating substrate boards for semiconductor and power modules
US7440118B2 (en) 2005-06-24 2008-10-21 International Business Machines Corporation Apparatus and method for color filter inspection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7276292B2 (en) 2001-03-01 2007-10-02 Dowa Mining Co., Ltd. Insulating substrate boards for semiconductor and power modules
US7440118B2 (en) 2005-06-24 2008-10-21 International Business Machines Corporation Apparatus and method for color filter inspection

Also Published As

Publication number Publication date
JP2814390B2 (en) 1998-10-22

Similar Documents

Publication Publication Date Title
US5072128A (en) Defect inspecting apparatus using multiple color light to detect defects
US7953567B2 (en) Defect inspection apparatus and defect inspection method
US8975582B2 (en) Method and apparatus for reviewing defects
US5506676A (en) Defect detection using fourier optics and a spatial separator for simultaneous optical computing of separated fourier transform components
US7127098B2 (en) Image detection method and its apparatus and defect detection method and its apparatus
US8411264B2 (en) Method and apparatus for inspecting defects
US6366352B1 (en) Optical inspection method and apparatus utilizing a variable angle design
JP2009251412A (en) Device and method for inspecting mask blank, method of manufacturing reflection type exposure mask, and method of manufacturing semiconductor integrated circuit
JPH10325711A (en) Method and apparatus for inspection as well as manufacture of semiconductor substrate
JP2008058111A5 (en)
KR20100110321A (en) Inspecting apparatus and inspecting method
US20080031509A1 (en) Apparatus and method for measuring the height profile of a structured substrate
US7924517B2 (en) Spatial filter, a system and method for collecting light from an object
US8823929B2 (en) Inspection apparatus
JP5297930B2 (en) Defect inspection apparatus and method
WO2009133849A1 (en) Inspection device
JP2928277B2 (en) Projection exposure method and apparatus
US7767982B2 (en) Optical auto focusing system and method for electron beam inspection tool
CN110658196B (en) Defect detection device and defect detection method
JP2822243B2 (en) Defect inspection equipment
US8699783B2 (en) Mask defect inspection method and defect inspection apparatus
KR20000011981A (en) Apparatus for inspecting defects and method thereof
JP5278783B1 (en) Defect inspection apparatus, defect inspection method, and defect inspection program
JPH0357945A (en) Defect inspection instrument
US20130250297A1 (en) Inspection apparatus and inspection system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070814

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090814

Year of fee payment: 11

EXPY Cancellation because of completion of term