JPH0357745B2 - - Google Patents

Info

Publication number
JPH0357745B2
JPH0357745B2 JP55052625A JP5262580A JPH0357745B2 JP H0357745 B2 JPH0357745 B2 JP H0357745B2 JP 55052625 A JP55052625 A JP 55052625A JP 5262580 A JP5262580 A JP 5262580A JP H0357745 B2 JPH0357745 B2 JP H0357745B2
Authority
JP
Japan
Prior art keywords
oil
petroleum
bacteria
crude oil
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55052625A
Other languages
Japanese (ja)
Other versions
JPS56148285A (en
Inventor
Kosei Hata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikenkai
Original Assignee
Seikenkai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikenkai filed Critical Seikenkai
Priority to JP5262580A priority Critical patent/JPS56148285A/en
Publication of JPS56148285A publication Critical patent/JPS56148285A/en
Publication of JPH0357745B2 publication Critical patent/JPH0357745B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は海水と原油または重油とのみからなる
貧栄養環境下で急速に資化、発育および乳化を行
い資化終了と共に急速に死滅するシユードモナス
(Pseudomonas)菌を利用することに関するもの
である。 本発明によるシユードモナス菌は増殖に要した
と略同じ期間で急速に死滅するという従来の細菌
学における常識を破る特性を有するものであり、
本発明はこの菌の特性を利用した該菌を含有する
製剤およびその使用法に関するものである。 さらにまた本発明により内因的本質的に解析す
れば、菌は本来良な栄養と環境の場において良い
増殖を示すものであり、ことに対数期において著
しい。ところでこの対数期に原油を添加すると、
原油は菌にとつてかなり厳しく有毒であるためま
もなく増殖速度は急に劣化する。所で本発明は対
数増殖期において本来有毒のはずの原油を添加し
たとき、一層発育が旺盛になり、発育促進を示す
菌の開発ならびに活用に関するものである。 一般に油類による海洋汚染については、石油類
の海洋への流出事故とその量、流出石油の行方、
流出石油の海中への分散、分解、散逸、陸上資源
の汚染などに関して詳細な報告がなされている。
また微生物による汚染油類の分解についても可成
り詳細な知見が報告されている。例えば海面上に
0.1〜0.4μの薄膜になつて拡がつた石油のうち揮
散しないものについては1〜2週間で種々の細菌
がこれを攻撃し2〜3カ月で拡散石油の可成りの
部分が分解ないし消失するとの学説がある。そし
て他の生物や自然酸化によつて消失される量は微
生物による消失量の約1/10であろうとも言われ
ている。また汚染石油の酸化に寄与する細菌の属
(genus)も既に明らかにされている。 しかしながら液状炭化水素成分に対する酸化能
を有する菌の海洋微生物中で占める比率は予想よ
りも大きいとする見解をもつ専門家もある。何れ
にしろ原油の自然界での消長とそれに関係する生
物の知見は現在も蓄積されつゝあり、極めて詳細
かつ具体的な報告としては我国の環境庁の発表に
よる「水島重油流出事項に関する環境影響総合調
査」(昭和52年3月12日発行)があるが、この調
査報告によれば、海上に流出した油も1年の間を
経ずして殆んど分解、散逸されるように見える。
これに反して国連教育科学文化機関(UNESCO)
内の政府間海洋学委員会(IOC)と世界気象機関
(WMO)が1975〜1979年に共同して行つた油汚
染に関する調査では、海洋の油汚染の実態は深刻
なものであつて、細菌によつて殆んどすべての油
が年月を経ずして消化されているという従来の説
では充分納得のできないものであるとされてい
る。時あたかも本年3月3日、超大タンカーの内
槽洗滌に関しスラツジの海洋投棄およびそれに関
連して内外航のかなりの油タンカーにおいて深刻
な問題ををかゝえている事が報じられ、海洋汚染
とからみ世間を震させ、国会でも本問題は取り上
げられるに到つた。また沿岸においても濃度の薄
い油の処理は非常に困難な事柄として専門業者の
間で漸次問題視されつゝある。 ところで石油分解菌または石油成分分解菌の分
離法としては大別すると二つの従来法があり、一
つの方法は海洋の無機塩とNH3塩(または尿素)
と石油または石油成分とからなる培地を用いるも
のであり、他の方法は上記培地にビタミンまたは
カザミノ酸またはイースト抽出物のような高栄養
物質を添加した培地を用いるものである。後者の
方法のような高栄養の処で能力ある複合の酸化菌
が増殖をした場合、20℃、10日間の振盪培養で培
地は漸く濁り始めることが知られている。そして
このような特質を利用し微量の有機栄養物を発育
剤として汚染海洋中に投入することも行われてい
る。 本発明者等は以上に述べた石油汚染海水の微生
物による除去について極めて多数の実験研究を繰
返して本発明を完成するに至つた。すなわち、本
発明は、シユードモナス属石油資化性菌株をステ
フエンソン・ウエサムの培地で培養中に、その対
数増殖期において石油系炭化水素を添加したとき
に、該炭化水素によつて元のシユードモナス属石
油資化性菌株よりも石油資化力が増大されるシユ
ードモナス属菌株を含有する石油浄化用製剤、お
よび該製剤を石油系炭化水素による汚染海域また
は汚染場所で増殖させて該海域または場所の汚染
を浄化する方法を提供するものである。本発明の
詳細については以下の記載によつて明らかにされ
るであろう。 石油系炭化水素を分解・資化する単一細菌を使
用して石油汚染海水を浄化することは例えば特開
昭49−61376号および同昭51−142865号公報によ
り公知である。前者は分解経路を定義する第1の
エネルギー生成プラスミドを含有した単細胞微生
物および前記第1のプラミスドと共存不能な少な
くとも1種のエネルギー生成プラスミドを含有し
た単細胞微生物を夫々供与菌および受容菌として
選択し、前記供与菌と受容菌の接合を行わしめ、
かくして出来上つて来た不安定な超微生物を安定
化せしめて所望の特性を有する新菌を得る事を目
的とし、特に一個の細胞中に炭化水素複合体の分
解および資化能力を有する微生物の開発、特にシ
ユードモナス菌の単一菌種による海洋汚染石油の
最新遺伝学の活用による生物制御を目的として実
験を行い、線状脂肪族、環状脂肪族、香族および
多該芳香族炭化水素のすべてを分解できる単一の
新菌を得たものであり、それにより石油汚染海洋
の浄化に利せんとしたものである。 一方後者は、重油成分以外は全部無機物からな
る培地中で単独菌を増殖せしめることにより、
1000ppmの重油成分を5日間で薄層クロマトグラ
フイー上からはほとんど痕跡程度に残留せしむる
までに減少させることができたという知見に基づ
くものである。 しかしながらこれらの先行技術は何れも人為的
添加による窒素栄養源の存在下で菌体の培養を行
うものであつて、前者ではNH3そして後者では
NH2CONH2を存在させていて、何れも唯の海水
よりは富栄養培地で原油ないし重油を分解、資化
している。すなわちこれらの先行技術は石油汚染
海洋とは著しく異なる環境下で育成された菌を使
用するものであり、前者では海水中に多量存在す
る塩例えばNaClを含有せず窒素源としてNH4
2.1g/そして更にビタミンCを10mg/含有
する培地を使用し、後者ではNH2CONH2を0.25
g/含有する培地を使用していて、何れの培地
も石油類と海水のみからなる石油汚染海洋の環境
と比較して異質の富栄養の培地を使用している。 本発明によるシユードモナス菌は以上述べたよ
うな従来技術の菌類と全く異なる特性を有するも
のであり、海水と原油のみの極端な貧栄養条件
下でかつ激しい温度変動中においてそして更に油
量の変動の大きい培地中で原油を資化し、極めて
よい喰い切りを示すことができる;菌接種後海
水と油のみの所で激しい増殖と乳化が急速に起
り、原油の資化が終了すると急速に死滅する特徴
がある。特に増殖から死滅に至る過程は従来の微
生物等の常識を遥かに超えていて、増殖に要した
日数と増殖の終点から死滅に至る日数とは略等し
い。具体的に言えば、原油量30ppmのときに増殖
に要する日数は1.5日であり、定常期間0.5日、そ
してこれから死滅に至る日数は2.5日であり、ま
た原油量500ppmのときに増殖期間2.5日、定常期
間1日に、死滅に至る期間4日である。 本発明によるシユードモナス菌は次のようにし
て得ることができる。しかしながらここに述べた
方法はその一例を示したものであつて培地組成、
培養条件により種々の変法を採用できることはい
うまでもない。 第1工程 菌体としてFERM−PNo.(微工研菌寄託番号)
2927ならびに2928を使用し、次の組成の培地に該
菌を接種し培養した。培地組成 海 水 1000ml A重油 1g 栄養源* 少量 培養温度 18℃ * (NH42SO40.5g/、デンプン0.2g/、
ビタミン0.01g/。 上記培地で充分よく増殖し得るようになつたと
きに栄養の添加を次第に減少させた培地で継代を
繰返し、何等栄養を添加せず海水とA重油だけで
発育増殖できるようになつた。 第2工程 第一工程で得た菌を使用し次の組成の培地に該
菌を接種し培養した。培地組成 海 水 1000ml 原 油 30ppm ビタミン 0.01g/ 培養温度 21℃ 上記培地で温度21℃で培養すると10〜15日で白
濁を生じたものが得られるが、このもののビタミ
ン含有量を逐次減少させて継代し海水を原油のみ
で充分増殖し得る菌を得た(残存原油量4ppm)。 第3工程 第二工程で得た菌を継代するに当り、菌が原油
を消費し尽したときまたはその少し前の時期の菌
の最も発育旺勢なときに継代を繰返し行つた。こ
うして菌添加後4日で残存原油量0.15ppmの菌を
得た。 第4工程 第三工程で得た菌の馴化による育成を続けて増
殖力および乳化力の大きい菌株を得た。この菌は
原油の資化および乳化を急速に行いかつ原油消費
率の異常に高いものであり、第三工程では30ppm
の原油を4日間かかつて資化した菌株が僅か1日
半で略完全資化可能な能力を有する菌となつた。
このように貧栄養中で原油を乳化しかつ急速に完
全資化することのできる菌は原油に対する依存性
が大きい。 すなわちこの菌は原油が存在すれば元気である
が、原油が無くなると菌は自己融触を起して急速
に死滅の方向に向う。この菌は海水と原油のみの
貧栄養中で自己の増殖期間と略同一期間で死滅す
ることがわかつたが、このような現象は従来バク
テリオフアージによる融解および自己生産による
抗生物質の過剰量による死滅以外には知られてい
なかつたことであり、本発明者により初めて見出
されたことである。 第5工程 第四工程で得た菌が海中に溶存する原油量420
〜30ppm)から海面にベつたりと浮遊する量
(1500ppm)までの各原油濃度に対し最も大きな
資化力を示すように馴化を繰返した。最初低原油
濃度で菌を接種し、4〜5時間で乳化し始めるが
その後完全資化の行われたことを確認してから次
第に原油濃度を高めて行く方法により低濃度から
高濃度まで所望の濃度でよく増殖する菌を得た。
こうして得た菌は、例えば原油濃度30ppmでは1
日半で完全資化(30ppm馴化菌使用;以下同じ)、
100ppmでは2日、300ppmでは2日半、500ppm
では2日半、1000ppmでは略3日で完全資化を行
うことができた。 第6工程 次に、こうして得た菌が高温(例えば37℃)で
も低温(約8℃)でも充分能力を発揮できるよう
に、増殖適温(18〜30℃)から高温または低温の
方へ、菌の増殖、乳化および資化作用を弱化せし
めないように継代し漸次馴化を行つた。こうして
増殖適温での力価を100とすれば高温(37℃)で
115、低温(8℃)で50の成績を示すまで馴化す
ることができた。例えば原油濃度30ppm馴化菌を
適温および高温で1日半、低温で3日で略完全に
資化することのできる菌を得た。 このようにして得られた菌は、最初は漸く原油
中の何らかの成分を資化し得る程度の力しか持つ
ていない菌を、海水中で石油類の存在下で他に如
何なるものも添加することなくこれを資化して消
費し石油除去率99.5%以上を示すが、石油類が消
失すれば急速に死滅するという新規な特徴を有し
ている。そしてこのようにして得た菌は石油類の
存在しない良好な環境下では石油資化力が急速に
低下して元の菌に戻り、まだ海水のみでは急速に
死滅するので安全性の点からも汚染石油類除去の
目的に極めて大きな実用的価値を有するものであ
る。その上、本菌の生菌および培養上澄について
は、急性、亜急性ならびに慢性に亘つて所定の方
式による検討を行い、夫々安全性の高い事を確認
した。ことに生菌を飼料に混じてマウスに経口投
与ならびに眼に多量の菌塊をぬりつける実験等か
らも何ら異常は認められず高い安全性を実証出来
た。 図1は本発明による菌の特徴の一つを示したも
のであり、海水に原油30ppmを添加した培地にお
ける該菌の増殖死滅曲線Aが急激な上昇・降下を
示しているのに対して、特開昭49−61376号公報
に開示されている菌の増殖死滅曲線はa〜dの通
りであり、本発明による菌の特性が従来のものと
著しく異つていることがわかる。上記公報に記載
のもので遺伝子操作の最終段階のものさえ石油が
5万ppm添加されたものではなお109/mlであり、
菌は明らかに対数期を過ぎて定常期に入りつゝあ
る。これに較べ本発明の菌においては、前記石油
添加量の僅か500ppmの添加でもなお35億個の細
胞収量を示し、かつそれに至る時間は非常に早
く、栄養の非常に良い培地に発育速度の早い大腸
菌などを培養したときの発育増殖速度に類似して
いる。しかも、その発育環境は上記公報に記載の
ものが富栄養であるにもかゝわらず、本発明のも
のは、海水と原油のみの極端な貧栄養である。つ
まり本発明による菌の増殖死滅曲線における急激
な上昇は石油類の該菌に及ぼす発育促進効果の一
つの現われと解釈すべきであり、このような効果
は在来の菌では全くみられなかつた特徴的なもの
である。 そこで本発明による菌の最大の特徴について更
に説明する。前記第1〜6工程を経由して育成さ
れた菌を下記組成のステフエンソン−ウエサム培
地(S−W)培地で継代するときに、継代数を経
るに従い原油添加による発育促進の程度、乳
化力、資化力が低下して行く事が明らかとなつ
たが、かゝる現象をも踏まえて前より屡々述べて
来た石油汚染物の清掃上殊に望まれる特性である
貧栄養における早い増殖、急速な死滅、さらに完
全に近い喰い切りなどの能力が本来的に菌のどの
様な特性と密接に係り合つているかについて以下
に説明する。 ここでステフエンソン・ウエサム培地(以下S
−W培地と呼ぶ)とは下記組成よりなるものであ
る:KH2PO41g;MgSO4・7H2O0.7g;NaCl1
g;(NH42HPO44g;グルコース5g;
FeSO4・7H2O0.03gを水1中に含有する培地
(以下培地の組成は水1中の数量を示す)。 (S−W)培地での継代々数による発育促進
現象の後退 (a) 原油500ppm馴化株の場合; 継代数の異なる菌株を各々〔S−W〕の培地に
培養し、その発育対数期に原油を10ppm、
30ppm、100ppm、300ppm、500ppm量滴下した
時、該菌らの発育促進の強弱ならびに有無につい
て観察した。測定結果は表1群の通りである。測
定方法:ヘキサン抽出;UV(200〜400nm)で連
続的に計測しその面積の集計する。濁度はUV
(460nm)で測定。 発育促進を示すものに下線を引いた。
The present invention relates to the use of Pseudomonas bacteria, which rapidly assimilates, grows and emulsifies in an oligotrophic environment consisting only of seawater and crude oil or heavy oil, and rapidly dies upon completion of assimilation. The Pseudomonas bacterium according to the present invention has the characteristic that it rapidly dies in approximately the same period of time required for proliferation, which is contrary to the conventional wisdom in bacteriology.
The present invention relates to a preparation containing this bacterium that utilizes the properties of this bacterium, and a method for using the same. Furthermore, when the endogenous nature is analyzed according to the present invention, bacteria naturally exhibit good growth in a field of good nutrition and environment, especially in the logarithmic phase. By the way, if crude oil is added in this logarithmic phase,
Crude oil is quite harsh and toxic for bacteria, so the growth rate quickly deteriorates soon. The present invention, however, relates to the development and utilization of a bacterium that grows even more vigorously and exhibits accelerated growth when crude oil, which should originally be toxic, is added during the logarithmic growth phase. In general, regarding marine pollution caused by oil, we will discuss oil spill accidents into the ocean, the amount thereof, the fate of the spilled oil,
Detailed reports have been made regarding the dispersion, decomposition, and dissipation of spilled oil into the sea, and the contamination of land resources.
Also, fairly detailed knowledge has been reported regarding the decomposition of contaminated oils by microorganisms. For example, above sea level
Among the oil that has spread as a thin film of 0.1 to 0.4μ, various bacteria will attack it within 1 to 2 weeks, and a considerable portion of the dispersed oil will decompose or disappear within 2 to 3 months. There is a theory that It is also said that the amount lost by other organisms and natural oxidation is about 1/10 of the amount lost by microorganisms. The genus of bacteria that contributes to the oxidation of contaminated oil has also been identified. However, some experts believe that the proportion of bacteria capable of oxidizing liquid hydrocarbon components among marine microorganisms is larger than expected. In any case, knowledge about the evolution of crude oil in the natural world and the organisms related to it is still being accumulated, and an extremely detailed and specific report is the "Environmental Impact Comprehensive Report on the Mizushima Heavy Oil Spill" released by Japan's Environment Agency. According to this investigation report, it appears that most of the oil spilled into the sea will be decomposed and dissipated within a year.
On the contrary, the United Nations Educational, Scientific and Cultural Organization (UNESCO)
A survey on oil pollution jointly conducted between 1975 and 1979 by the Intergovernmental Oceanographic Commission (IOC) and the World Meteorological Organization (WMO) found that the actual state of oil pollution in the ocean was serious, and that bacterial The conventional theory that almost all the oil is digested within a few years is considered to be unconvincing. Just then, on March 3rd of this year, it was reported that sludge was being dumped into the ocean regarding the cleaning of the inner tanks of supertankers, and that a number of domestic and international oil tankers were experiencing serious problems related to this, resulting in marine pollution. This shocked the public and led to the issue being brought up in the Diet. Furthermore, even on the coast, the treatment of oil with a low concentration is becoming increasingly viewed as a problem by specialists as it is extremely difficult. By the way, there are two conventional methods for separating petroleum-degrading bacteria or petroleum component-degrading bacteria. One method uses marine inorganic salts and NH3 salts (or urea).
and petroleum or petroleum components; another method is to use a medium to which the above-mentioned medium is supplemented with highly nutritious substances such as vitamins or casamino acids or yeast extract. It is known that when competent complex oxidizing bacteria proliferate in a highly nutritious environment as in the latter method, the medium gradually becomes cloudy after 10 days of shaking culture at 20°C. Taking advantage of these properties, small amounts of organic nutrients are also being introduced into polluted oceans as growth agents. The present inventors have completed the present invention by repeating a large number of experimental studies regarding the above-mentioned removal of oil-contaminated seawater by microorganisms. That is, the present invention provides that when a petroleum-based hydrocarbon is added during the logarithmic growth phase of a Pseudomonas petroleum-utilizing bacterial strain in a Stephenson-Wessam medium, the hydrocarbon transforms the original Pseudomonas petroleum An oil purification preparation containing a Pseudomonas strain that has an increased ability to assimilate oil than an assimilating strain, and the preparation can be grown in a sea area or place contaminated with petroleum-based hydrocarbons to prevent contamination of the sea area or place. It provides a method of purification. The details of the invention will be made clear by the following description. Purification of petroleum-contaminated seawater using a single bacterium that decomposes and assimilates petroleum-based hydrocarbons is known, for example, from JP-A-49-61376 and JP-A-51-142865. In the former case, a unicellular microorganism containing a first energy-generating plasmid defining a decomposition pathway and a unicellular microorganism containing at least one energy-generating plasmid that cannot coexist with the first plasmid are selected as a donor bacterium and a recipient bacterium, respectively. , conjugating the donor bacteria and recipient bacteria,
The aim is to stabilize the unstable super microorganisms that have been created in this way and obtain new microorganisms with desired properties, and in particular, to obtain microorganisms that have the ability to decompose and assimilate hydrocarbon complexes in a single cell. Experiments were conducted with the aim of developing and biologically controlling marine oil pollution caused by a single bacterial species of Pseudomonas bacteria by utilizing the latest genetics. The idea was to obtain a single new bacterium that can decompose oil, which could be used to clean up oil-polluted oceans. On the other hand, the latter is achieved by growing a single bacterium in a medium consisting entirely of inorganic substances except for the heavy oil component.
This is based on the knowledge that it was possible to reduce 1000 ppm of heavy oil components to the point where only traces remained on thin layer chromatography in 5 days. However, in all of these prior art techniques, bacterial cells are cultured in the presence of an artificially added nitrogen nutrient source;
NH 2 CONH 2 is present, and crude oil or heavy oil is decomposed and utilized in a rich nutrient medium rather than just seawater. In other words, these prior art techniques use bacteria grown in an environment significantly different from the oil-polluted ocean, and the former uses NH 4 as a nitrogen source without containing salts such as NaCl, which are present in large amounts in seawater.
A medium containing 2.1 g/and further 10 mg/vitamin C was used, the latter containing 0.25 NH 2 CONH 2
Both media are rich in nutrients, which is different from the oil-polluted marine environment, which consists only of petroleum and seawater. The Pseudomonas bacterium according to the present invention has characteristics completely different from those of the prior art fungi as described above, and can survive under extreme oligotrophic conditions with only seawater and crude oil, during severe temperature fluctuations, and even under fluctuations in the amount of oil. It can assimilate crude oil in a large medium and show extremely good throughput; after inoculation, intense growth and emulsification occur rapidly in a place with only seawater and oil, and it rapidly dies when the assimilation of crude oil is finished. There is. In particular, the process from growth to death far exceeds conventional knowledge of microorganisms, and the number of days required for growth is approximately equal to the number of days from the end of growth to death. Specifically, when the amount of crude oil is 30 ppm, the number of days required for proliferation is 1.5 days, the steady period is 0.5 days, and the number of days from which it will die is 2.5 days, and when the amount of crude oil is 500 ppm, the number of days required for proliferation is 2.5 days. , the steady-state period is 1 day, and the period leading to death is 4 days. The Pseudomonas bacterium according to the present invention can be obtained as follows. However, the method described here is just one example, and the method described here is based on the culture medium composition,
It goes without saying that various modified methods can be adopted depending on the culture conditions. 1st step: As a bacterial cell, FERM-P No. (FERM-P number)
2927 and 2928, the bacteria were inoculated into a medium with the following composition and cultured. Medium composition Seawater 1000ml Heavy oil A 1g Nutrient source * small amount Culture temperature 18℃ * (NH 4 ) 2 SO 4 0.5g/, starch 0.2g/,
Vitamin 0.01g/. When they were able to grow sufficiently in the above medium, they were repeatedly subcultured in a medium in which the addition of nutrients was gradually reduced, and they became able to grow and proliferate only with seawater and heavy oil A without adding any nutrients. Second Step Using the bacteria obtained in the first step, the bacteria were inoculated into a medium with the following composition and cultured. Medium composition Seawater 1000ml Crude oil 30ppm Vitamin 0.01g/Culture temperature 21℃ When cultured in the above medium at a temperature of 21℃, a product that becomes cloudy in 10 to 15 days is obtained, but the vitamin content of this product is gradually reduced. Through subculture, we obtained bacteria that can sufficiently grow in seawater using only crude oil (residual crude oil amount: 4 ppm). Third step In subculturing the bacteria obtained in the second step, passages were repeatedly carried out when the bacteria had consumed all of the crude oil or when the bacteria were at their most vigorous growth period, a little before that. In this way, bacteria with a residual crude oil amount of 0.15 ppm were obtained 4 days after the addition of the bacteria. Fourth step: The bacteria obtained in the third step were continued to be grown through acclimatization to obtain a strain with high growth and emulsifying ability. This bacterium rapidly assimilates and emulsifies crude oil and has an abnormally high crude oil consumption rate, with a consumption rate of 30 ppm in the third step.
A bacterial strain that could once assimilate 100 liters of crude oil in four days has now become a bacterium capable of almost complete assimilation in just one and a half days.
Bacteria that can emulsify crude oil and rapidly completely assimilate crude oil in oligotrophic conditions are highly dependent on crude oil. In other words, this bacterium is healthy if crude oil is present, but when the crude oil is gone, the bacterium undergoes self-fusion and rapidly dies out. It was found that this bacterium dies in an oligotrophic environment consisting only of seawater and crude oil in approximately the same period as its own growth period, but this phenomenon has traditionally been caused by lysis by bacteriophages and an excess amount of antibiotics produced by self-production. This is something that was not known other than death, and was discovered for the first time by the present inventor. 5th step Amount of crude oil dissolved in the sea by the bacteria obtained in the 4th step 420
Acclimatization was repeated to show the greatest assimilation ability for each crude oil concentration, from ~30 ppm) to the amount floating on the sea surface (1500 ppm). Initially, bacteria are inoculated at a low crude oil concentration, and emulsification begins in 4 to 5 hours, but after confirming complete assimilation, the crude oil concentration is gradually increased to achieve the desired concentration from low to high. We obtained bacteria that grew well at certain concentrations.
For example, at a crude oil concentration of 30 ppm, the bacteria obtained in this way are 1
Completely assimilated in a day and a half (using 30ppm adapted bacteria; the same applies hereinafter),
100ppm for 2 days, 300ppm for 2 and a half days, 500ppm
At 1000ppm, complete assimilation could be achieved in 2 and a half days, and in about 3 days at 1000ppm. 6th step Next, so that the bacteria obtained in this way can fully demonstrate its ability at both high temperatures (e.g. 37 degrees Celsius) and low temperatures (about 8 degrees Celsius), the bacteria are moved from the optimal temperature for growth (18 to 30 degrees Celsius) to higher or lower temperatures. The cells were passaged and acclimatized gradually so as not to weaken their proliferation, emulsification, and assimilation effects. Thus, if the titer at the optimum growth temperature is 100, then at high temperature (37℃)
115, and was able to acclimate to a low temperature (8℃) until it showed a score of 50. For example, we obtained bacteria that can almost completely assimilate bacteria adapted to a crude oil concentration of 30 ppm in one and a half days at moderate and high temperatures, and in three days at low temperatures. The bacteria obtained in this way were initially only strong enough to assimilate some components in crude oil, but were placed in seawater in the presence of petroleum without adding anything else. It utilizes and consumes this and shows an oil removal rate of over 99.5%, but it has the novel feature of quickly dying out once the oil disappears. In addition, the bacteria obtained in this way will quickly lose its ability to assimilate oil and return to its original form in a favorable environment where no petroleum is present, and will quickly die if exposed to seawater alone, so it is not safe from a safety point of view. It has extremely great practical value for the purpose of removing contaminated petroleum. Furthermore, the live bacteria and culture supernatant of this bacterium were examined using a prescribed method for acute, subacute, and chronic conditions, and it was confirmed that they were highly safe. In particular, no abnormalities were observed in experiments in which live bacteria were mixed with feed and administered orally to mice, and a large amount of bacterial mass was applied to the eyes, demonstrating a high level of safety. Figure 1 shows one of the characteristics of the bacterium according to the present invention, in which the growth/death curve A of the bacterium in a medium containing seawater and 30 ppm of crude oil shows rapid rises and falls. The growth and death curves of the bacteria disclosed in JP-A-49-61376 are as shown in a to d, and it can be seen that the characteristics of the bacteria according to the present invention are significantly different from those of the conventional ones. Even the product described in the above publication in the final stage of genetic engineering with 50,000 ppm of petroleum added is still 10 9 /ml.
The bacteria has clearly passed the logarithmic phase and is entering the stationary phase. In comparison, the bacteria of the present invention still showed a yield of 3.5 billion cells even with the addition of only 500 ppm of the above-mentioned amount of petroleum added, and the time to reach this cell yield was very quick, and the growth rate was fast in a highly nutritious medium. This is similar to the growth and proliferation rate when culturing E. coli. Moreover, although the growth environment described in the above publication is eutrophic, the one of the present invention is extremely oligotrophic, consisting only of seawater and crude oil. In other words, the rapid rise in the growth and death curve of the bacteria according to the present invention should be interpreted as one manifestation of the growth-promoting effect of petroleum on the bacteria, and such an effect has not been observed at all with conventional bacteria. It is distinctive. Therefore, the most important feature of the bacterium according to the present invention will be further explained. When the bacteria grown through the above steps 1 to 6 are subcultured in a Stephenson-Wesham medium (S-W) having the following composition, the degree of growth promotion due to crude oil addition and emulsifying power increase with the passage number. It has become clear that assimilation capacity declines, but based on this phenomenon, rapid growth in oligotrophic conditions is a particularly desired characteristic for cleaning petroleum contaminants, which has been often mentioned. We will explain below what characteristics of bacteria are closely related to the abilities such as rapid killing, near-complete devouring, etc. Here, Stephenson-Wesham medium (hereinafter referred to as S
-W medium) has the following composition: KH 2 PO 4 1 g; MgSO 4.7H 2 O 0.7 g; NaCl 1
g; (NH 4 ) 2 HPO 4 4 g; glucose 5 g;
A medium containing 0.03 g of FeSO 4 .7H 2 O in 1 part of water (the composition of the medium below indicates the amount in 1 part of water). Regression of the growth promotion phenomenon depending on the number of passages in the (S-W) medium (a) In the case of strains acclimated to 500 ppm crude oil; Strains with different passage numbers were cultured in the [S-W] medium, and their growth was in the logarithmic phase. 10ppm of crude oil,
When dropping amounts of 30 ppm, 100 ppm, 300 ppm, and 500 ppm, the strength and presence of promotion of the growth of the bacteria were observed. The measurement results are shown in Table 1 group. Measurement method: Hexane extraction; Continuously measure with UV (200-400nm) and calculate the area. Turbidity is UV
(460nm). Those showing accelerated growth are underlined.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 上表1群から明らかなように、 1) (S−W)培地で1代継代したばかりの未
だ殆んど弱化していない菌株は原油添加後120
分後にはかなり強い発育促進を受けること、お
よび添加量が多いほど(100ppm以上の添加量
の場合は、100ppm添加の場合と同じ成績を示
す)強く発育促進を受けることがわかる。(表
中のアンダーラインの数値参照) 2) (S−W)培地で4代継代の幾分か弱化し
た菌株は添加量10ppmの場合には添加後180分
後から発育促進を受ける。30ppm、100ppm、
300ppmおよび500ppm添加の場合は、120分後
から発育促進を受けるが、1)の場合と同様添
加量が増すにつれて発育促進の程度は強かつ
た。 3) (S−W)培地で6代継代の弱化した菌株
は添加量が10ppmの場合には発育促進を受け
ず、30ppm、100ppm、300ppm、500ppmの添
加量になつて初めて180分後から発育促進を受
けることがわかる。 4) (S−W)培地で8代継代の菌株はもはや
10ppmや30ppmの少量の添加量では発育促進を
受けず、110ppm、300ppm、500ppm添加の時
に180分後から僅かに発育促進を受けた。 5) (S−W)培地で10代継代した菌株は添加
量300ppmの時のみ発育促進を受け、しかもそ
れは180分後に僅か出現したのみであつた。 6) (S−W)培地で12代継代した菌株はもは
や何れの場合にも発育促進を受けなかつたのみ
ならず、500ppmの添加量では発育抑制の傾向
を幾分か示した。 7) なお、14代から18代継代の菌株についても
計測したが、何れも12代目の菌株に類似の成績
を示し、何れの添加量に於ても発育促進は受け
なかつたのみならず、13、14代目の菌株では原
油500ppm添加の時に15、16、17、18代目の菌
株では300ppmおよび500ppmの添加の時には菌
は発育抑制を受けた。 なお、菌株計算によつても本菌が発育促進を示
している事を明らかにしたが、此処では1代継代
菌株の場合についてのみ記述する。
[Table] As is clear from Group 1 in Table 1 above, 1) The strain, which has just been passaged for the first generation in the (S-W) medium and is not weakened yet, is 120% after adding crude oil.
It can be seen that after 10 minutes, the growth promotion is quite strong, and that the higher the amount added (addition amounts of 100 ppm or more show the same results as 100 ppm addition), the stronger the growth promotion. (See the underlined numbers in the table) 2) A somewhat weakened strain that has been passaged for 4 generations in the (S-W) medium receives growth promotion from 180 minutes after addition when the amount added is 10 ppm. 30ppm, 100ppm,
When adding 300ppm and 500ppm, growth was promoted after 120 minutes, but as in case 1), the degree of growth promotion became stronger as the amount added increased. 3) A weakened strain that has been passaged for 6 generations in (S-W) medium does not undergo growth promotion when the added amount is 10 ppm, but only after 180 minutes when the added amount is 30 ppm, 100 ppm, 300 ppm, and 500 ppm. It can be seen that growth is promoted. 4) The strain of 8th passage in (S-W) medium is no longer
When small amounts of 10 ppm and 30 ppm were added, growth was not promoted, but when 110 ppm, 300 ppm, and 500 ppm were added, growth was slightly promoted after 180 minutes. 5) The bacterial strain that had been passaged for 10 generations on the (S-W) medium experienced growth promotion only when the amount added was 300 ppm, and this only slightly appeared after 180 minutes. 6) The strain that had been passaged for 12 generations on the (S-W) medium not only no longer experienced growth promotion in any case, but also showed some tendency for growth inhibition at the addition amount of 500 ppm. 7) Furthermore, we also measured the bacterial strains from the 14th generation to the 18th generation, and all of them showed similar results to the 12th generation strain, and not only did no growth promotion occur at any of the added amounts, but For the 13th and 14th generation strains, the growth of the bacteria was suppressed when 500ppm of crude oil was added, and for the 15th, 16th, 17th, and 18th generation strains, when 300ppm and 500ppm were added. Although strain calculations revealed that this bacterium promotes growth, only the case of the 1st generation strain will be described here.

【表】 表から明らかなように比濁計の測定と同様の成
績すなわち原油添加後120分から発育促進が見ら
れ、240分後に於て比較試料に比べ10ppm添加の
場合は12%増、30ppm添加の場合20%増、
100ppm、300ppm、500ppm添加の場合はそれぞ
れ24%増となつた。 (b) 原油30ppm馴化菌の場合 500ppm馴化菌の場合と同様の実験を行なつた
(たゞし、対数増殖期に於ける原油添加量は、
10ppm、30ppm、100ppm、300ppm、量にした。) 実験結果は表3群の通りである。
[Table] As is clear from the table, the same results as the nephelometer measurements were observed, that is, growth promotion was observed from 120 minutes after adding crude oil, and after 240 minutes, compared to the comparative sample, there was a 12% increase in the case of 10 ppm addition, and a 12% increase in the case of 30 ppm addition. 20% increase if
When adding 100ppm, 300ppm, and 500ppm, the amount increased by 24%. (b) In the case of bacteria adapted to 30 ppm crude oil The same experiment as in the case of bacteria adapted to 500 ppm was conducted (However, the amount of crude oil added during the logarithmic growth phase was
The amount was set to 10ppm, 30ppm, 100ppm, and 300ppm. ) The experimental results are shown in Table 3.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 上記の表3群から明らかなように、原油添加量
が少量であつても前記500ppm馴化株の場合とそ
の発育促進の有無、強弱などの成績は似た傾向を
示した。 なお、14代から18代の菌株についても測定した
が、12代目の菌株と同様に全く発育促進を受けな
いのみならず、300ppm量添加によつて比較試料
に比較して増殖が幾分か抑制された。 上記実験は(S−W)培地を用いたときである
が、より富栄養のペプトンや肉エキスを培地に用
いたときの継代時でも(S−W)培地における成
績と本質的に変るものでなく、添加後120分後頃
から該培地に継代数の少いものにおいては漸次発
育現象がみられた。 また発育促進程度の高い本発明菌の死滅につい
ては500ppmおよび30ppmそれぞれの馴化菌を海
水中または淡水中に投入した場合何れも3代継代
までの油依存性の強いものは急速に死滅してい
る。しかし発育促進の程度が弱まるにつれて少し
づつその寿命は伸びる。 (S−W)培地での継代代数に依る乳化現象
の変化 (a) 500ppm馴化菌使用(培地:海水+原油
500ppm)
[Table] As is clear from the above Table 3 group, even if the amount of crude oil added was small, the performance of the 500 ppm-acclimated strain and the presence or absence of growth promotion, strength, etc. showed similar trends. In addition, we also measured the strains from the 14th generation to the 18th generation, and not only did they not experience any growth promotion like the 12th generation strain, but the addition of 300 ppm also inhibited the growth to some extent compared to the comparison sample. It was done. The above experiment was performed using (S-W) medium, but even when using more nutritious peptone or meat extract in the medium, the results are essentially different from those in (S-W) medium. However, from about 120 minutes after addition, a gradual growth phenomenon was observed in those with a small number of passages in the medium. In addition, regarding the killing of the present invention bacteria with a high degree of growth promotion, when 500 ppm and 30 ppm of the adapted bacteria were introduced into seawater or fresh water, the highly oil-dependent bacteria up to 3rd generation were rapidly killed. There is. However, as the degree of growth promotion weakens, its lifespan gradually increases. (S-W) Changes in emulsification phenomenon depending on the number of passages in culture medium (a) Using 500ppm adapted bacteria (medium: seawater + crude oil
500ppm)

【表】【table】

【表】 上表4から明らかな如く、継代数を経るに従い
漸時菌の乳化力が弱下する。それのみでなく乳化
現象の発生が非常に早い菌からなりおくれる段階
までが存在する。また、より重要な事であるが、
原油添加により発育促進を受けなくなつた12代目
〜14代目の菌でも菌接種後48時間後から少し乳化
現象を起すことが認知された。このことは発育促
進と乳化の関係の解明に重要な鍵となる。 (b) 30ppm馴化菌使用(培地;海水+原油
30ppm)
[Table] As is clear from Table 4 above, the emulsifying power of the bacteria gradually decreases as the number of passages increases. In addition to this, there is a stage where the emulsification phenomenon occurs from very early bacteria to a stage where it is delayed. Also, more importantly,
Even in the 12th to 14th generation bacteria, whose growth was no longer stimulated by the addition of crude oil, it was recognized that a slight emulsification phenomenon occurred 48 hours after inoculation. This is an important key to elucidating the relationship between growth promotion and emulsification. (b) Using 30ppm adapted bacteria (medium; seawater + crude oil
30ppm)

【表】 上表5から明らかな如く、500ppm馴化菌の場
合と類似の成績を示し、原油添加により発育刺激
を受けなくなつた菌株でも乳化現象が生じること
がわかる。 (S−W)培地での継代々数による原油除去
力の程度 (a) 500ppm馴化菌使用(培地:海水+原油
500ppm)
[Table] As is clear from Table 5 above, the results were similar to those of the 500 ppm-acclimated bacteria, and it can be seen that the emulsification phenomenon occurs even with the strain that is no longer stimulated to grow by the addition of crude oil. (S-W) Degree of crude oil removal power depending on the number of passages in the medium (a) Using 500 ppm adapted bacteria (medium: seawater + crude oil
500ppm)

【表】【table】

【表】 上表6から明らかなように原油500ppm添加の
場合、添加後168時間目に於てその原油残量は、 継代1代目の菌株は僅か1ppm(元の1/500量)
に、 継代4代目の菌株も僅か2ppm(元の1/250量)
に、 継代6代目の菌株は5ppm(元の1/100量)に、 継代8代目の菌株では25ppm(元の1/20量)
に、 継代10代目の最少の発育促進を示す菌株では
50ppm(元の1/10量)に漸次除去率は悪化する
が、それでも原油残存量は1桁少くなる。これに
対して、 継代12代目のもはや発育促進が認められなくな
つた菌株では除去能力は急に減弱化し元の1/
2.5にしかならず、原油清掃剤としては実用的な
菌にはなり得ない。 継代14代目の菌株では250ppm(元の1/2量)
に、 次にもはや乳化力をも失つた継代16代目の菌株
は300ppm(元の2/3量)に除去率は悪化し、継
代18代目の菌株は(海水+原油500ppm)の培地
には全く成育しえず原油除去率は0であつた(実
験誤差は修正した。)。 なお、240時間培養を続けた場合、発育促進度
の弱い継代6代目の菌株でも2ppm以下になるこ
と、およびもはや発育促進を受けなくなつていて
乳化のみを示す菌株、例えば継代12代目の菌株で
は198ppm前後までしか原油除去率が下がらない
ことがわかつた、このことは本発明よる発育促進
菌が乳化のみを示す菌よりも顕著な原油除去率を
有することを示している。つまり発育促進菌は単
なる乳化菌に比較して喰い切りの成績が非常に良
で、桁違いに優れた効果を発揮し、また単なる資
化菌との差は一層顕著であることがわかる。 (b) 30ppm馴化菌使用(培地:海水+原油
30ppm)
[Table] As is clear from Table 6 above, when 500 ppm of crude oil is added, the remaining amount of crude oil at 168 hours after addition is only 1 ppm for the first generation strain (1/500 of the original amount)
In addition, the fourth generation strain is only 2 ppm (1/250 of the original amount)
5 ppm (1/100 of the original amount) for the 6th generation strain, and 25 ppm (1/20 of the original amount) for the 8th generation strain.
In strains showing minimal growth promotion at passage 10,
Although the removal rate gradually deteriorates to 50 ppm (1/10 of the original amount), the remaining amount of crude oil will still be one order of magnitude smaller. On the other hand, in the 12th generation strain that no longer promotes growth, the removal ability suddenly decreases to 1/2 of its original level.
2.5, making it impossible for it to be a practical bacterium as a crude oil cleaning agent. 250ppm for the 14th generation strain (1/2 the original amount)
Next, the removal rate of the 16th generation strain, which had lost its emulsifying ability, deteriorated to 300 ppm (2/3 of the original amount), and the 18th generation strain was placed in a medium of (seawater + crude oil 500 ppm). could not grow at all, and the crude oil removal rate was 0 (experimental errors have been corrected). It should be noted that if culture is continued for 240 hours, the concentration will be less than 2 ppm even for strains in the 6th generation, which have a weak degree of growth promotion, and that strains that no longer receive growth promotion and only show emulsification, such as strains in the 12th generation, It was found that the crude oil removal rate of the strain decreased only to around 198 ppm, which indicates that the growth-promoting bacteria according to the present invention has a more remarkable crude oil removal rate than the bacteria that only exhibits emulsification. In other words, it can be seen that growth-promoting bacteria have a much better performance in terms of cutting through than simple emulsifying bacteria, and exhibit an order of magnitude better effect, and the difference from simple assimilating bacteria is even more remarkable. (b) Using 30ppm adapted bacteria (medium: seawater + crude oil
30ppm)

【表】 上表7から明らかなように、原油500ppm添加
時と同様に30ppm添加の場合も継代数を経るに従
い原油の除去は漸次悪化はするが、原油の添加に
よつて発育促進を受けなくなつた菌株は急に様変
りに喰い切りの状況が悪化することが明らかとな
つた。さらに言えば240時間培養を続けた場合、
もつとも発育促進度の弱い継代6代目の菌株でも
原油除去率は0.8ppm以下になること、およびも
はや発育促進を受けなくなつた菌株、例えば継代
12代目の菌株では10ppmと変らないこと、つまり
発育促進菌と発育促進を示さない乳化菌とは喰い
切りの点で著しい差があり、さらにたゞ単なる資
化菌とは一層格段の差を生じた。 発育促進と乳化の有無ならびに原油除去力と
の相関々係 以上の〜の結果を要約すると次の通りで
ある: (a) 500ppm馴化菌の場合(培地:海水+原油
500ppm)
[Table] As is clear from Table 7 above, when adding 30 ppm of crude oil as well as when adding 500 ppm of crude oil, the removal of crude oil gradually worsens as the number of passages passes, but growth is not promoted by adding crude oil. It became clear that the situation with the mature strains suddenly changed and the situation in which they were eaten became worse. Furthermore, if the culture is continued for 240 hours,
Even in the 6th generation strain, which has a weak degree of growth promotion, the crude oil removal rate is 0.8 ppm or less, and strains that no longer receive growth promotion, e.g.
In the 12th generation strain, it is the same as 10ppm, which means that there is a significant difference in terms of throughput between growth-promoting bacteria and emulsifying bacteria that do not promote growth, and an even more significant difference from mere assimilating bacteria. Ta. Correlation between growth promotion, presence or absence of emulsification, and ability to remove crude oil The results of ~ above can be summarized as follows: (a) In the case of 500 ppm-acclimated bacteria (medium: seawater + crude oil
500ppm)

【表】 ×:認められず
(b) 30ppm馴化菌の場合(培地:海水+原油
30ppm)
[Table] ×: Not recognized
(b) In the case of 30ppm-acclimated bacteria (medium: seawater + crude oil
30ppm)

【表】 表8および表9の結果をグラフで示すと図2お
よび図3の通りである。 なお上述の成績はFERM−PNo.5490のもので
あるが、同時に寄託したFERM−PNo.5491にお
いても、また他の菌においても、原油による発育
促進、乳化および資化の相関関係は本質的に同じ
である。そしてこの事は強力な発育促進菌の力価
の低下時のテストのみならず、誘導よる力価の増
強時においても同様に確認された。 そして、それらの表および図に示された結果こ
そ石油汚染への微生物浄化において微生物に備え
て欲しい種々の特性を一方では原油の側から、ま
た他方では微生物の特性の側から眺めてそれらを
関連づけた貴重な成績である。 従来の菌の実験成績は精々原油の資化止りで、
著しく進歩した研究でも漸く乳化に手が届く程度
までゞあつて、発育促進菌の存在についてはその
現象の存在さえも予想外の事であつたのである。 実施例 1 水槽(90cm×50cm×40cm)に原油0.5gおよび
海水1000mlからなる培地50を注入し、予め本発
明による菌を海水+原油培地で培養して得た菌株
20mlを接種し、18℃で42時間静置培養した。こう
して得た培養液を冷却し、遠心分離して菌体と乳
化物の混合物60gを得た。 (製剤A)上記混合物10gにデンプン0.44gお
よび原油0.001gを添加してよく混合し、こうし
て得た混合物を真空中で水分含量8%になるまで
乾燥し、得られた乾燥品2.9gをガラスビンに入
れ、例えばCO2ガス、N2ガスなどを充填する。
こうして得た製剤の室温保存有効期間は20日間以
上であり、5〜8℃の冷蔵保存の場合は3カ月以
上であつた。 (製剤B)上記混合物10gにデンプン0.44g、
原油0.001gおよびシスチン0.11gを添加してよ
く混合し、製剤Aと同様に水分含量8%の製剤
3.01gを作り、N2ガスを用いてガラスビンに封
入する。こうして得た製剤の室温保存有効期間は
20日間以上であり、5〜8℃の冷蔵保存の場合は
3カ月以上であつた。 (製剤C)上記混合物10gにデンプン0.4gを
添加してよく混合し、こうして得た混合物を真空
乾燥して製剤2.5gを得た。こうして得た製剤は
室温保存において長期間有効であつた。 (製剤D)上記混合物10gにシスチン0.1gお
よび原油0.001を添加してよく混合し、こうして
得た混合物を真空乾燥して製剤2.1gを得た。こ
うして得た製剤は室温保存において長期間有効で
あつた。 実施例 2 縦26cm、横45cm、深さ30cm、容量約33のアク
リル樹脂水槽に原油(mixed)12.5mlを滴下し、
該原油を水槽の底面および壁面に充分よく塗布し
た後、海水25を入れた。このときの海水中の原
油量は500ppmである。海水温度を18℃に調節し、
エアレーシヨンン装置を取り付けた。次に本発明
による原油資化菌(FERM−PNo.5490)の培養
液(海水+原油の培地で48時間培養したもの)9
ml(海水の1/3000の量を添加した。この9mlは
原油500ppm馴化菌3ml、100ppm馴化菌3mlおよ
び30ppm馴化菌3mlからなる。実験開始24時間後
から2/分の通気量で曝気を行つた。 実験開始後、経時的に検水を行い水槽内の水の
乳化状態および水槽壁面の原油付着状態を目視に
より観察し、溶存原油含有量(UV測定)および
1c.c.当り菌数を測定した。その結果を表10に示
す。
[Table] The results of Tables 8 and 9 are shown in graphs as shown in FIGS. 2 and 3. The above results are for FERM-P No. 5490, but in FERM-P No. 5491 deposited at the same time as well as in other bacteria, the correlation between growth promotion, emulsification, and assimilation by crude oil is essentially the same. It's the same. This was confirmed not only when the titer of powerful growth-promoting bacteria was decreased, but also when the titer was increased by induction. The results shown in the tables and figures are the results of looking at the various characteristics that microorganisms should possess in microbial purification of petroleum contamination, on the one hand from the perspective of crude oil, and on the other from the characteristics of microorganisms, and relating them. This is a valuable achievement. The experimental results of conventional bacteria are that they can only assimilate crude oil,
Even with the remarkable advances in research, emulsification was finally within reach, and even the existence of growth-promoting bacteria was unexpected. Example 1 A culture medium 50 consisting of 0.5 g of crude oil and 1000 ml of seawater was injected into an aquarium (90 cm x 50 cm x 40 cm), and the bacteria according to the present invention were cultured in seawater + crude oil medium in advance to obtain a strain.
20ml was inoculated and statically cultured at 18°C for 42 hours. The thus obtained culture solution was cooled and centrifuged to obtain 60 g of a mixture of bacterial cells and emulsion. (Formulation A) Add 0.44 g of starch and 0.001 g of crude oil to 10 g of the above mixture and mix well. The mixture thus obtained is dried in vacuo to a moisture content of 8%, and 2.9 g of the resulting dry product is poured into a glass bottle. For example, fill with CO 2 gas, N 2 gas, etc.
The shelf life of the thus obtained formulation when stored at room temperature was 20 days or more, and when stored refrigerated at 5-8°C, it was 3 months or more. (Formulation B) 0.44 g of starch in 10 g of the above mixture,
Add 0.001g of crude oil and 0.11g of cystine and mix well to make a formulation with a water content of 8% as in Formulation A.
Make 3.01g and seal in a glass bottle using N2 gas. The shelf life of the thus obtained preparation at room temperature is
The storage period was 20 days or more, and the storage period was 3 months or more when refrigerated at 5-8°C. (Formulation C) 0.4 g of starch was added to 10 g of the above mixture and mixed well, and the mixture thus obtained was vacuum dried to obtain 2.5 g of a preparation. The thus obtained formulation was effective for a long period of time when stored at room temperature. (Formulation D) 0.1 g of cystine and 0.001 g of crude oil were added to 10 g of the above mixture and mixed well, and the mixture thus obtained was vacuum dried to obtain 2.1 g of the preparation. The thus obtained formulation was effective for a long period of time when stored at room temperature. Example 2 12.5 ml of crude oil (mixed) was dropped into an acrylic resin water tank with a length of 26 cm, a width of 45 cm, a depth of 30 cm, and a capacity of approximately 33 cm.
After thoroughly applying the crude oil to the bottom and walls of the tank, 25 ml of seawater was added. The amount of crude oil in the seawater at this time is 500 ppm. Adjust the seawater temperature to 18℃,
An aeration device was installed. Next, a culture solution of the crude oil assimilating bacterium (FERM-P No. 5490) according to the present invention (cultivated for 48 hours in a medium of seawater + crude oil) 9
ml (1/3000 of seawater was added. This 9 ml consisted of 3 ml of bacteria adapted to 500 ppm of crude oil, 3 ml of bacteria adapted to 100 ppm, and 3 ml of bacteria adapted to 30 ppm. Aeration was carried out at an aeration rate of 2/min from 24 hours after the start of the experiment. After starting the experiment, we conducted water tests over time to visually observe the emulsification state of water in the water tank and the state of crude oil adhesion on the tank wall, and to calculate the dissolved crude oil content (UV measurement) and the number of bacteria per c.c. The results are shown in Table 10.

【表】【table】

【表】 表10から明らかな如く、乳化現象は菌添加4時
間後から始まり、7時間を経過した時点から急速
に強まり、48〜72時間後が最も顕著であつた。以
降は漸次衰退し、144時間後当りからは急速に透
明度が増して来て192時間も経過すれば殆んど透
明となつた。 一方、最初壁面にベつたりと付着していた原油
も24時間後頃から漸次薄くなり始め、96時間後に
は付着原油ほとんど認められなくなつた。また、
海水の限油含有量も24時間後には180ppm、48時
間後には30ppm、72時間後には0.5ppmと急速に
減少し、96時間後には0.3ppm、120時間後には
0.2ppmと漸次減少したが、以降は120時間後と同
じ成績を示した(99.96%の除去率)。 次に海水中の原油資化菌の消長は初め1×106
個/c.c.のものが24時間で5×108個、48時間で3.5
×109と増菌した。以降は漸次減少し始め72時間
で2.5×109、96時間で3×108、120時間で6×
107、144時間では1×107、となつた。その後は
急速に死滅に向かい168時間で僅か2×105、192
時間では生きた個体は全く検出されなかつた。 以上、実験の推移を簡潔に記載したが、実験開
始から192時間(8日)経た時点の水槽は原油汚
染前の水槽と変わりなく非常に美しく、また海水
も極く僅かに白濁している感じを除けば、何ら通
常の海水と変わりない清浄状態であつた。 実施例 3 原油含有量を30ppmとし、原油30ppm馴化菌を
使用する以外は実施例2と同様に操作を行つた。
実験の結果を表11に示す。
[Table] As is clear from Table 10, the emulsification phenomenon started 4 hours after the addition of the bacteria, rapidly became stronger after 7 hours, and was most noticeable after 48 to 72 hours. After that, it gradually declined, and after 144 hours, the transparency rapidly increased and became almost transparent after 192 hours. On the other hand, the crude oil that had initially adhered to the wall surface began to gradually become thinner after about 24 hours, and after 96 hours, almost no crude oil could be seen adhering to it. Also,
The limit oil content in seawater also rapidly decreased to 180ppm after 24 hours, 30ppm after 48 hours, 0.5ppm after 72 hours, 0.3ppm after 96 hours, and 0.3ppm after 120 hours.
Although it gradually decreased to 0.2 ppm, the results were the same as after 120 hours (99.96% removal rate). Next, the evolution of crude oil-utilizing bacteria in seawater is initially 1×10 6
8 pieces/cc in 24 hours, 3.5 in 48 hours
The bacteria increased to × 109 . After that, it started to gradually decrease to 2.5×10 9 at 72 hours, 3×10 8 at 96 hours, and 6× at 120 hours.
10 7 , and 1×10 7 in 144 hours. After that, it rapidly died out and only 2 × 10 5 , 192 in 168 hours
No live specimens were detected at this time. The progress of the experiment has been briefly described above, but after 192 hours (8 days) from the start of the experiment, the aquarium was as beautiful as the aquarium before the oil pollution, and the seawater was also very slightly cloudy. Other than that, the water was as clean as normal seawater. Example 3 The same procedure as in Example 2 was performed except that the crude oil content was 30 ppm and bacteria adapted to 30 ppm crude oil were used.
The results of the experiment are shown in Table 11.

【表】 表11から明らかなように、乳化現象は実験開始
後4時間目から始まり、時間経過とともに漸次強
まり、36〜48時間後に最も顕著となり、以降は衰
退し96時後頃からは急速に透明感が生じて来て、
144時間後にはほゞ透明となつた。 一方、海水の原油含量も、24時間後には3ppm
と元の1/10に、48時間後には0.3ppmと元の
1/100に急激に減少した。72時間後には
0.2ppm、96時間後には0.15ppmと漸次減少した
が、以降は96時間後と同じ成績を示した(99.5%
の除去率)。 次に、資化菌の消長であるが、初め3×105
個体数が24時間で4×108、48時間で1.2×109
増加した。以降は減少の一途をたどり、72時間で
5×108、96時間で2×107となつた。その後は急
速に死滅し始め、120時間では僅か3×105、144
時間にもなると1個残らずに死滅してしまつた。 以上、実験の推移を簡潔に記載したが実験開始
から144時間(6日)経過した時点の水槽ならび
に水槽水は非常に美しかつた。 なお、原油により発育促進を示すに到つた菌は
原油中の各成分に対して如何様に反応するかを検
べた所、軽質油の部分に対しては極めてわずかの
馴化の程度で旺盛な発育促進現象を示し、これに
反しB重油においてはわずかに困難、更にC重油
においてはより厳しい馴化上の困難に遭遇した。
しかし前述の第1〜6工程に類似の誘導を続ける
事により発育資化、乳化さらに促進現象が原油に
おけると同様の開係順序で現われ、一旦促進現象
が現われゝばそれから先より濃い濃度での馴化は
B重油、C重油の方が原油に於けるよりも容易で
あつた。また、喰い切りが良くて、残りの成分が
異常に少いという事はほとんどの成分が菌体にと
り込まれた事を意味している。従来“石油蛋白”
という言葉が好んで用いられて来たが、この場合
使用される菌が何であれ用いられる石油成分で発
育促進を受ける菌は使用された事が無かつた。ま
た発育促進の方が収量が良い事は当然である。 また、油によつて発育促進を示現する菌を活性
汚泥に添加して、つまり強化活性汚泥を作つて油
を処理する方法も本発明による菌の応用の一例で
ありこうすることにより沿岸のタンク清掃時等に
美しい水を効率よく排出する長所を有する。次に
本発明による菌の活性汚泥への応用例を示す。 実施例 4 (1) 原油500ppm、100ppmおよび30ppmに馴化し
た原油により発育促進を示す菌の培養液を活性
汚泥量の1/10量で活性汚泥に投入し、石油含
有廃水を流入し、漸次流入速度を高めた。この
ように強化された活性汚泥の処理能力は菌無添
加の活性汚泥の70倍であつた。また、公知の石
油資化菌を添加した活性汚泥の処理能力の15倍
であつた。 (2) 活性汚泥中の原虫類による適応能力は菌より
も著しく劣つているので負荷変動の高い石油類
含有廃水に対しては先づ菌のみで処理するのが
よいことがある。そこで原油500ppm、100ppm
および30ppm発育促進菌を容量30の水槽内で
培養して109/mlの菌数とし、これに原油含有
廃水を10ml/分の量で流入させ、こうして得ら
れる菌含有廃水混合物を原虫生棲水槽に流入さ
せて普通の浄化処理を行つた。処理液を分離し
て得た水中に検知された原油量は最初の量の
1/250以下であつた。 実施例 5 容量50の小型ドラム缶に石油系混合物をその
壁面ならびに底面に塗布し、3日間放置後、水圧
をかけた海水で付着油をできるだけ剥離した。壁
面などから剥れて海水表面に浮遊して来る物質お
よび成分を吸引除去した後、本発明による菌
FERM−PNo.5490)の培養液(海水+原油の培
地で48時間培養したもの)を海水量の1/3000量
添加した。菌添加後120時間で海水ならびにドラ
ム缶の壁面、底面とも非常に清浄となつた。 なお、本発明菌のFERM−PNo.5490および
5491はそれぞれFERM−PNo.2927および2928か
ら本明細書に記載の育成法によつて作られた菌の
登録番号である。そしてこれらの本発明菌の通常
培地における培養上の生物学的所見にFRINo.2927
および2928登録時と変りはないが、ただ原油0.5
g、海水1および寒天のみの培地における48時
間培養後のコロニーは白色の不透明で直径1.5mm
に達する。
[Table] As is clear from Table 11, the emulsification phenomenon started from 4 hours after the start of the experiment, gradually strengthened over time, became most noticeable after 36 to 48 hours, then declined, and rapidly increased from around 96 hours. A sense of transparency arises,
After 144 hours, it became almost transparent. On the other hand, the crude oil content of seawater also increased to 3ppm after 24 hours.
48 hours later, it rapidly decreased to 0.3 ppm, 1/100 of the original value. After 72 hours
0.2ppm, which gradually decreased to 0.15ppm after 96 hours, but thereafter showed the same results as after 96 hours (99.5%
removal rate). Next, regarding the evolution of assimilating bacteria, the initial population of 3 x 10 5 increased to 4 x 10 8 in 24 hours, and to 1.2 x 10 9 in 48 hours. After that, the number continued to decrease, reaching 5 x 10 8 in 72 hours and 2 x 10 7 in 96 hours. After that, it begins to die rapidly, and in 120 hours, only 3 × 10 5 , 144
When the time came, all of them died. The progress of the experiment has been briefly described above, but the aquarium and aquarium water were extremely beautiful 144 hours (6 days) after the start of the experiment. Furthermore, when we examined how the bacteria whose growth was promoted by crude oil reacted to various components in crude oil, we found that they grew vigorously with very little acclimatization to light oil. In contrast, slightly more difficult acclimatization difficulties were encountered with B fuel oil and even more severe acclimatization difficulties were encountered with C fuel oil.
However, by continuing induction similar to the above-mentioned steps 1 to 6, growth assimilation, emulsification, and promotion phenomena will appear in the same opening order as in crude oil, and once the promotion phenomenon appears, from then on, it will become more concentrated. Acclimatization was easier with B heavy oil and C heavy oil than with crude oil. In addition, the fact that it is well eaten and there is an abnormally small amount of remaining components means that most of the components have been taken up by the bacterial cells. Conventional “petroleum protein”
However, no matter what kind of bacteria is used in this case, bacteria whose growth is promoted by the petroleum components used have never been used. It goes without saying that growth promotion will result in better yields. Another example of the application of the bacteria according to the present invention is a method of treating oil by adding bacteria whose growth is promoted by oil to activated sludge, that is, creating reinforced activated sludge. It has the advantage of efficiently discharging beautiful water during cleaning, etc. Next, an example of application of bacteria to activated sludge according to the present invention will be shown. Example 4 (1) A culture solution of bacteria whose growth is promoted by crude oil that has been acclimated to 500 ppm, 100 ppm, and 30 ppm of crude oil is added to activated sludge in an amount of 1/10 of the amount of activated sludge, and petroleum-containing wastewater is introduced into the activated sludge. Increased speed. The treatment capacity of activated sludge strengthened in this way was 70 times that of activated sludge without added bacteria. In addition, the processing capacity was 15 times that of activated sludge containing known petroleum-utilizing bacteria. (2) The adaptive ability of protozoa in activated sludge is significantly inferior to that of bacteria, so it may be better to treat petroleum-containing wastewater with high load fluctuations first using bacteria alone. So crude oil 500ppm, 100ppm
Then, 30 ppm growth-promoting bacteria were cultured in a water tank with a capacity of 30 to obtain a bacterial count of 10 9 /ml, and crude oil-containing wastewater was flowed into this at a rate of 10 ml/min. It was poured into a water tank and subjected to normal purification treatment. The amount of crude oil detected in the water obtained by separating the treated liquid was less than 1/250 of the initial amount. Example 5 A petroleum mixture was applied to the walls and bottom of a small drum with a capacity of 50, and after being left for 3 days, as much of the adhering oil was removed as much as possible with seawater under hydraulic pressure. After removing by suction the substances and components that have peeled off from walls and floated on the seawater surface, the bacteria according to the present invention are removed.
FERM-P No. 5490) culture solution (cultivated for 48 hours in a medium of seawater + crude oil) was added in an amount of 1/3000 of the amount of seawater. 120 hours after adding the bacteria, both the seawater and the walls and bottom of the drum became extremely clean. In addition, the present invention bacteria FERM-P No. 5490 and
5491 is the registration number of the bacteria produced from FERM-P No. 2927 and 2928, respectively, by the growth method described in this specification. And FRI No. 2927 is given to the biological findings of the culture of these present invention bacteria in normal culture medium.
And 2928 is the same as when registered, but only crude oil 0.5
g, After 48 hours of culture in seawater 1 and agar-only media, colonies are white, opaque, and 1.5 mm in diameter.
reach.

【図面の簡単な説明】[Brief explanation of drawings]

図1は本発明による菌株の増殖死滅曲線を示す
図表であり、図2および図3は本発明による菌株
の発育促進・乳化・資化特性を示す図表である。
FIG. 1 is a chart showing the growth/death curve of the strain according to the present invention, and FIGS. 2 and 3 are charts showing the growth promotion, emulsification, and assimilation characteristics of the strain according to the present invention.

Claims (1)

【特許請求の範囲】 1 シユードモナス属石油資化性菌株をステフエ
ンソン・ウエサムの培地で培養中に、その対数増
殖期において石油系炭化水素を添加したときに、
該炭化水素によつて元のシユードモナス属石油資
化性菌株よりも石油資化力が増大されるシユード
モナス属菌株を含有する石油浄化用製剤。 2 該シユードモナス属石油資化性菌株が微工研
菌寄第2927号、第2928号、第5490号または第5491
号の菌株である特許請求の範囲第1項に記載の石
油浄化用製剤。 3 該石油系炭化水素が原油、重油、その他の石
油含有製品である特許請求の範囲第1項に記載の
石油浄化用製剤。 4 該シユードモナス属菌株をそのままかまたは
原油または石油系炭化水素または/および栄養源
と共に不活性ガス雰囲気下で容器に充填封入した
特許請求の範囲第1項または第2項に記載の石油
浄化用製剤。 5 シユードモナス属石油資化性菌株をステフエ
ンソン・ウエサムの培地で培養中に、その対数増
殖期において石油系炭化水素を添加したときに、
該炭化水素によつて元のシユードモナス属石油資
化性菌株よりも石油資化力が増大されるシユード
モナス属菌株を含有する石油浄化用製剤を石油系
炭化水素による汚染海域または汚染場所で増殖さ
せて該海域または場所の汚染を浄化する方法。 6 汚染海域が海洋または沿岸である特許請求の
範囲第5項に記載の方法。 7 汚染場所が油タンカー、石油貯蔵タンクまた
は活性汚泥処理場である特許請求の範囲第5項に
記載の方法。
[Scope of Claims] 1. When a petroleum hydrocarbon of the genus Pseudomonas is cultured in a Stephenson-Wessam medium and a petroleum-based hydrocarbon is added during its logarithmic growth phase,
An oil purification preparation containing a Pseudomonas strain whose oil assimilation ability is increased by the hydrocarbons compared to the original Pseudomonas strain. 2. The petroleum-utilizing bacterial strain of the genus Pseudomonas is a microorganism strain of the Microtechnical Research Institute No. 2927, No. 2928, No. 5490, or No. 5491.
The petroleum purification formulation according to claim 1, which is a strain of No. 3. The petroleum purification formulation according to claim 1, wherein the petroleum-based hydrocarbon is crude oil, heavy oil, or other petroleum-containing product. 4. The petroleum purification preparation according to claim 1 or 2, wherein the Pseudomonas strain is sealed in a container as is or together with crude oil or petroleum-based hydrocarbons or/and a nutrient source under an inert gas atmosphere. . 5. When petroleum-based hydrocarbons were added during the logarithmic growth phase of Pseudomonas oil-utilizing bacterial strains in the Stephenson-Wetham medium,
An oil purification preparation containing a Pseudomonas strain whose oil assimilation ability is increased by the hydrocarbons compared to the original oil assimilating strain of the Pseudomonas genus is grown in a sea area or polluted place contaminated by petroleum-based hydrocarbons. A method of decontaminating the area or location. 6. The method according to claim 5, wherein the contaminated sea area is the ocean or the coast. 7. The method according to claim 5, wherein the contaminated site is an oil tanker, an oil storage tank, or an activated sludge treatment plant.
JP5262580A 1980-04-21 1980-04-21 Purifying pharmaceutical for petroleum pollution and purifying method Granted JPS56148285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5262580A JPS56148285A (en) 1980-04-21 1980-04-21 Purifying pharmaceutical for petroleum pollution and purifying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5262580A JPS56148285A (en) 1980-04-21 1980-04-21 Purifying pharmaceutical for petroleum pollution and purifying method

Publications (2)

Publication Number Publication Date
JPS56148285A JPS56148285A (en) 1981-11-17
JPH0357745B2 true JPH0357745B2 (en) 1991-09-03

Family

ID=12919987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5262580A Granted JPS56148285A (en) 1980-04-21 1980-04-21 Purifying pharmaceutical for petroleum pollution and purifying method

Country Status (1)

Country Link
JP (1) JPS56148285A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987007316A1 (en) * 1986-05-29 1987-12-03 Zapadno-Sibirsky Nauchno-Issledovatelsky Geologora Bacterial composition and method for purifying water and soil of oil pollution
JPH0761261B2 (en) * 1987-03-05 1995-07-05 新技術事業団 New microorganism
JPH0763357B2 (en) * 1987-03-05 1995-07-12 新技術事業団 New microorganism

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4961376A (en) * 1972-06-07 1974-06-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4961376A (en) * 1972-06-07 1974-06-14

Also Published As

Publication number Publication date
JPS56148285A (en) 1981-11-17

Similar Documents

Publication Publication Date Title
US4521515A (en) Bacterial strain for purifying hydrocarbons pollution and purification process
Colwell et al. Ecological aspects of microbial degradation of petroleum in the marine environment
Veldkamp et al. Mixed culture studies with the chemostat
US3769164A (en) Microbial degradation of petroleum
US3871956A (en) Microbial degradation of petroleum
JP2010516233A (en) Bioremediation method for accelerated biodegradation of petroleum hydrocarbons in polar regions covered with sea ice, and a mixture of bacteria and enzymes as agents to perform the method
JPS63503524A (en) Bacterial composition for reclamation of oil-contaminated water and soil
Tano-Debrah et al. An inoculum for the aerobic treatment of wastewaters with high concentrations of fats and oils
US6267888B1 (en) Biodispersion as a method for removal of hydrocarbon oil from marine aqueous environments
Olivera et al. Biosurfactant-enhanced degradation of residual hydrocarbons from ship bilge wastes
US3856667A (en) Microbial degradation of petroleum
US4415661A (en) Microbial degradation of petroleum materials
NO132231B (en)
EP0270805A2 (en) Bacterial method and compositions for degrading hydrocarbons
US5496723A (en) Strains of Acinetobacter species (bicoccum), Arthrobacter species, and Rhodococcus species, and a method for biological purification from oil spills and pollutions, using said strains
Chianelli et al. Bioremediation technology development and application to the Alaskan spill
AU732311B2 (en) A method of preparing a microbial culture for wastewater treatment
JPH0357745B2 (en)
EP0077422B1 (en) Bacterial strain for purifying hydrocarbons pollution, process for production thereof and purification process using said bacterial strain
RU2107722C1 (en) Acinetobacter calcoaceticus, pseudomonas fluorescens, alcaligenes faecalis bacteria strains consorcium for destroying oil and petroleum products
US5160525A (en) Bioremediation enzymatic composition
Eckford et al. Using nitrate to control microbially-produced hydrogen sulfide in oil field waters
RU2365438C2 (en) Biopreparation for soil and water purification from oil and oil products
Bento et al. The production of interfacial emulsions by bacterial isolates from diesel fuels
US5334312A (en) Use of bicarbonates in the biodegradation of hydrocarbon contaminants