JPH0357447B2 - - Google Patents

Info

Publication number
JPH0357447B2
JPH0357447B2 JP56083478A JP8347881A JPH0357447B2 JP H0357447 B2 JPH0357447 B2 JP H0357447B2 JP 56083478 A JP56083478 A JP 56083478A JP 8347881 A JP8347881 A JP 8347881A JP H0357447 B2 JPH0357447 B2 JP H0357447B2
Authority
JP
Japan
Prior art keywords
optical fiber
fiber
optical
temperature
deformed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56083478A
Other languages
Japanese (ja)
Other versions
JPS57198407A (en
Inventor
Mitsuo Kasori
Hiroshi Imagawa
Hironori Maki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56083478A priority Critical patent/JPS57198407A/en
Publication of JPS57198407A publication Critical patent/JPS57198407A/en
Publication of JPH0357447B2 publication Critical patent/JPH0357447B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/10Non-chemical treatment
    • C03B37/14Re-forming fibres or filaments, i.e. changing their shape
    • C03B37/15Re-forming fibres or filaments, i.e. changing their shape with heat application, e.g. for making optical fibres

Description

【発明の詳細な説明】 本発明は光通信用部品および製造方法の改良に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in optical communication components and manufacturing methods.

光フアイバ通信は、従来の金属ケーブルを用い
た電気通信に比べ、ケーブルを細径、低損失、大
容量かつ軽量にできる等数多くの利点を有してお
り、伝送器、光源および実装等の技術開発が進め
られている。その一方では、光通信用部品或いは
部品収納ケースの小型化も重要な技術項目として
開発が進められている。しかしながら、従来の光
通信用部品或いは部品又収納ケースは光フアイバ
の許容曲率の制約により、ある程度大きくせざる
をえず、小型化が防げられていた。すなわち、光
フアイバに曲げその他の変形を加えると応力が発
生し、その応力が光フアイバの強度以下であつて
も疲労により断線する可能性があるので、光フア
イバを変形するに際しては応力が小さく長時間に
わたつて断線がおこりえない小さい変形率で変形
させざるをえないためである。また、小さい変形
率で変形させても、フアイバ素材表面に傷等があ
ると応力下において傷が進展し、光フアイバに断
線が生じる虞れがあうためである。
Optical fiber communication has many advantages over conventional telecommunications using metal cables, such as the ability to make cables smaller in diameter, lower loss, larger capacity, and lighter in weight. Development is underway. On the other hand, miniaturization of optical communication components or component storage cases is also being developed as an important technical item. However, conventional optical communication parts, parts, and storage cases have to be made somewhat large due to restrictions on the allowable curvature of optical fibers, and miniaturization has been prevented. In other words, applying bending or other deformation to an optical fiber generates stress, and even if the stress is less than the strength of the optical fiber, it may break due to fatigue. This is because the wire must be deformed at a small deformation rate that prevents wire breakage over time. Further, even if the optical fiber is deformed at a small deformation rate, if there are scratches or the like on the surface of the fiber material, the scratches will develop under stress and there is a risk that the optical fiber will break.

本発明は上記事情を考慮してなされたもので、
その目的とするところは、光フアイバに曲げその
他の変形力を与えたことにより発生する応力歪を
低減化若しくは実際上零にすることができ、信頼
性の向上および小型化をはかり得る光通信用部品
を提供することにある。
The present invention was made in consideration of the above circumstances, and
Its purpose is to reduce or virtually eliminate stress and strain caused by bending or other deforming forces applied to optical fibers, and to improve reliability and reduce size for optical communications. Our goal is to provide parts.

また、本発明の他の目的は上記した信頼性の向
上および小型をはかり得る光通信用部品の製造方
法に提供することにある。
Another object of the present invention is to provide a method for manufacturing optical communication components that can improve the reliability and reduce the size of the optical communication components described above.

まず、本発明の概要を説明する。本発明は、光
フアイバに曲げその他の変形を与えこの状態を保
持したまま同じフアイバに熱処理を施したのち、
さらに上記状態を保持したまま光フアイバ冷却す
ることにより、上記変形により発生した応力を緩
和しその変形に応じた“曲げくせ”をつけ、光フ
アイバの応力歪を低減化するものである。得られ
た光フアイバは所望の曲率を持ち、軸方向に対し
変形した、例えば半円状、コイル状等の形状とな
る。かくして付けられる曲げくせの程度は処理温
度、処理時間、負荷応力およびフアイバ組成等に
より変化する。そして、曲げくせが付けられた光
フアイバで光伝送路の分岐や接続部等の筐体内配
線を行うことにより疲労の起こらない小型で信頼
性の高い光通信用部品が実現が可能となる。ま
た、本発明は前記熱処理温度をフアイバ素材の転
移温度より低い温度に設定しているので、次のよ
うな効果を奏する。すなわち、一般にガラスは表
面に傷が付くともろくなるためフアイバ表面には
何らかの樹脂被覆が施されているが、この樹脂が
溶解しない温度範囲で実施できるので、製造時に
光フアイバに傷を付けなくて済む。このようにし
て得られる応力歪の低減化された、変形光フアイ
バは単に光通信用部品の小型化のみならず、その
他の方面への応用が可能である。例えば、コイル
状の光フアイバを製作すれば、伸縮自在となり、
車両連結等にも有利となる。
First, an overview of the present invention will be explained. In the present invention, an optical fiber is subjected to bending or other deformation, and after heat treatment is applied to the same fiber while maintaining this state,
Furthermore, by cooling the optical fiber while maintaining the above-mentioned state, the stress generated by the above-mentioned deformation is alleviated and a "bending habit" corresponding to the deformation is imparted, thereby reducing the stress strain of the optical fiber. The obtained optical fiber has a desired curvature and is deformed in the axial direction, for example, into a semicircular shape, a coil shape, or the like. The degree of bending thus created varies depending on processing temperature, processing time, applied stress, fiber composition, etc. By using bent optical fibers to conduct branching of optical transmission lines, connections, and other wiring within the housing, it becomes possible to realize small, highly reliable optical communication components that do not cause fatigue. Further, in the present invention, since the heat treatment temperature is set to a temperature lower than the transition temperature of the fiber material, the following effects are achieved. In other words, glass generally becomes brittle when its surface is scratched, so the surface of the fiber is coated with some kind of resin, but since it can be carried out at a temperature range where this resin does not melt, there is no need to damage the optical fiber during manufacturing. It's over. The thus obtained deformed optical fiber with reduced stress strain can be applied not only to miniaturization of optical communication components but also to other fields. For example, if you make a coiled optical fiber, it can be expanded and contracted.
This is also advantageous for connecting vehicles, etc.

以下、本発明の詳細を実施例によつて説明す
る。
Hereinafter, the details of the present invention will be explained with reference to Examples.

実施例 1 転移温度が600〔℃〕であるバリウムシリケート
ガラスをコアとし転移温度が480〔℃〕であるポロ
シリケートガラスをクラツドとする多成分系ガラ
スフアイバを直径9〔mm〕の石英管に巻き付け、
固定テープを用いてフアイバを石英管に取着し
た。そして、電気炉内で260〔℃〕、30〔分〕の熱処
理を施した。なお、フアイバーはコア径100〔μ
m〕、外形140〔μm〕であり約15〔μm〕厚のポリ
フツ化ビニリデン樹脂がコートされ、巻付け時に
フアイバには傷がつきにくくしてある。
Example 1 A multicomponent glass fiber having a core of barium silicate glass with a transition temperature of 600 [°C] and a cladding of porosilicate glass with a transition temperature of 480 [°C] was wound around a quartz tube with a diameter of 9 [mm]. ,
The fiber was attached to the quartz tube using fixing tape. Then, heat treatment was performed at 260 [°C] for 30 [minutes] in an electric furnace. The fiber has a core diameter of 100 [μ
It has an outer diameter of 140 [μm] and is coated with polyvinylidene fluoride resin about 15 [μm] thick to prevent the fiber from being damaged during winding.

上記熱処理を施したのち、そのままの状態で放
置し、フアイバを放冷した。しかるのち、固定テ
ープをはずしたところフアイバに直径35〔mm〕の
曲げくせがついた。この曲げくせがついたフアイ
バの応力分布を測定したところ熱処理前を直線状
フアイバのそれと差は見られず曲がりによる応力
は消失していた。
After performing the above heat treatment, the fiber was left as it was and allowed to cool. However, when the fixing tape was removed, the fiber was bent to a diameter of 35 mm. When the stress distribution of this bent fiber was measured, there was no difference between the stress distribution of the straight fiber and the straight fiber before heat treatment, and the stress caused by the bending disappeared.

実施例 2 転位温度が440〔℃〕であるアルカリボロシリケ
ートガラスをコアとし転位温度が480〔℃〕である
ボロシリケートガラスをクラツドとする多成分系
がガラスフアイバを直径9〔mm〕の石英管に持き
つけ先の実施例1と同様に260〔℃〕、30〔分〕の熱
処理を施した。なお、フアイバはコア径80〔μ
m〕、外径125〔μm〕で、約65〔μm〕厚のシリコ
ーンプライマリーコートが施されている。この場
合の曲げくせは直径37〔mm〕であつた。また、応
力分布測定も直線状フアイバと比べ変化はなかつ
た。
Example 2 A multicomponent system consisting of a core made of alkali borosilicate glass with a transposition temperature of 440 [°C] and a cladding made of borosilicate glass with a transposition temperature of 480 [°C] was used to form a glass fiber into a quartz tube with a diameter of 9 [mm]. Heat treatment was performed at 260 [°C] for 30 [minutes] in the same manner as in Example 1. The fiber has a core diameter of 80 [μ
m], outer diameter 125 [μm], and a silicone primary coat approximately 65 [μm] thick. The bend in this case was 37 mm in diameter. Furthermore, there was no change in stress distribution measurements compared to the straight fiber.

実施例 3 実施例1と同じ多成分系ガラスフアイバおよび
石英管を用いて260〔℃〕、2〔H〕、及び260〔℃〕、
10〔H〕の熱処理を施したところ、ついた曲げく
せはそれぞれ直径32〔mm〕、30〔mm〕であつた。ま
た、実施例1と同じ多成分系ガラスフアイバおよ
び石英管を用いて200〔℃〕、2〔H〕及び300〔℃〕
2〔H〕の熱処理を施したところ、ついた曲げく
せはそれぞれ直径48〔mm〕、26〔mm〕であつた。
Example 3 Using the same multicomponent glass fiber and quartz tube as in Example 1, 260 [°C], 2 [H], and 260 [°C],
When heat treated at 10 [H], the resulting bends had diameters of 32 [mm] and 30 [mm], respectively. In addition, using the same multi-component glass fiber and quartz tube as in Example 1, temperatures of 200 [°C], 2 [H] and 300 [°C] were measured.
When heat treatment was performed for 2 [H], the resulting bends had diameters of 48 [mm] and 26 [mm], respectively.

このように曲げくせの程度は熱処理の時間や温
度等によつて変化し、温度による効果は時間によ
る効果よりも大きいものである。
As described above, the degree of bending changes depending on the heat treatment time, temperature, etc., and the effect of temperature is greater than the effect of time.

実施例 4 実施例1と同じ多成分系ガラスフイバを直径16
〔mm〕の石英管に巻きつけ300〔℃〕、25〔分〕で熱
処理を施したところ、ついた曲げくせは直径55
〔mm〕であつた。勿論、この場合も直線状フアイ
バと比べて応力分布に変化はなかつた。
Example 4 The same multi-component glass fiber as in Example 1 was used with a diameter of 16 mm.
When wrapped around a [mm] quartz tube and heat-treated at 300 [℃] for 25 [minutes], the resulting bend became a diameter of 55 mm.
It was [mm]. Of course, in this case as well, there was no change in stress distribution compared to the straight fiber.

このように光フアイバを同フアイバの素材の転
位温度以下で応力を加えたまま熱処理を施す事に
より変形による応力を緩和もしくは実際上ゼロに
できる。このため、光通信用部品の信頼性の向上
および小型化をはかり得る。なお、熱処理温度の
下限は明らかではないが、例えば50〔℃〕でも100
〔H〕程度保持すると曲げくせをつける事ができ
た。しかしながら実用上は前述の実施例で用いた
200℃以上でフアイバ素材の転移温度以下程度が
好ましい。
In this way, by heat-treating the optical fiber while applying stress at a temperature below the dislocation temperature of the material of the fiber, the stress caused by deformation can be alleviated or practically reduced to zero. Therefore, it is possible to improve the reliability and reduce the size of optical communication components. Note that the lower limit of the heat treatment temperature is not clear, but for example, even at 50 [℃], 100
By holding it at [H] level, I was able to create a bending habit. However, in practice, the
It is preferably 200°C or higher and lower than the transition temperature of the fiber material.

また、前記実施例においてはバリウムシリケー
トガラスおよびボロシリケートを用いたが他の多
成分系ガラス、例えばソーダライムガラスや鉛ガ
ラス等を用いてもよい。その他、本発明はその要
旨を逸脱しない範囲で、種々変形して実施するこ
とができる。
Furthermore, although barium silicate glass and borosilicate were used in the above embodiments, other multicomponent glasses such as soda lime glass and lead glass may also be used. In addition, the present invention can be implemented with various modifications without departing from the gist thereof.

Claims (1)

【特許請求の範囲】 1 少なくとも部分的に曲率を持つて変形してい
る光フアイバの変形部の応力歪みが、直接状の光
フアイバに前記曲率を持つた変形を生じせしめる
ことによつて生じる応力歪みに比較して低減され
ていることを特徴とする光通信用部品。 2 少なくとも部分的に曲率を持つように光フア
イバに変形力を与えると共に前記光フアイバを光
フアイバ素材に転移温度以下の温度で熱処理し、
しかるのち前記変形力を保持した状態で前記光フ
アイバを冷却することにより、前記光フアイバに
変形を付与し、かつ前記光フアイバの変形部の応
力歪みが、直接状の光フアイバに前記曲率を持つ
た変形を生じせしめることによつて生じる応力歪
みに比較して低減された光フアイバを得ることを
特徴とする光通信用部品の製造方法。 3 前記光フアイバ素材として、転移温度が400
〜600℃の多成分系ガラスを用いたことを特徴と
する特許請求の範囲第2項記載の光通信用部品の
製造方法。 4 前記冷却は自然冷却であることを特徴とする
特許請求の範囲第2項記載の光通信用部品の製造
方法。 5 前記加熱は200℃以上であることを特徴とす
る特許請求の範囲第2項記載の光通信用部品の製
造方法。
[Claims] 1. Stress caused by stress strain in a deformed portion of an optical fiber that is at least partially deformed with a curvature causing a direct optical fiber to be deformed with the curvature. An optical communication component characterized by reduced distortion. 2 applying a deforming force to the optical fiber so that it has at least a partial curvature, and heat-treating the optical fiber to an optical fiber material at a temperature below the transition temperature;
Thereafter, by cooling the optical fiber while maintaining the deformation force, the optical fiber is deformed, and the stress strain in the deformed portion of the optical fiber causes the optical fiber to have the curvature as described above. 1. A method for manufacturing optical communication components, characterized by obtaining an optical fiber with reduced stress strain compared to that caused by causing deformation. 3 The optical fiber material has a transition temperature of 400
3. The method for manufacturing an optical communication component according to claim 2, characterized in that a multi-component glass having a temperature of 600°C to 600°C is used. 4. The method of manufacturing optical communication components according to claim 2, wherein the cooling is natural cooling. 5. The method of manufacturing an optical communication component according to claim 2, wherein the heating is performed at a temperature of 200° C. or higher.
JP56083478A 1981-05-30 1981-05-30 Parts for optical communication and its manufacture Granted JPS57198407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56083478A JPS57198407A (en) 1981-05-30 1981-05-30 Parts for optical communication and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56083478A JPS57198407A (en) 1981-05-30 1981-05-30 Parts for optical communication and its manufacture

Publications (2)

Publication Number Publication Date
JPS57198407A JPS57198407A (en) 1982-12-06
JPH0357447B2 true JPH0357447B2 (en) 1991-09-02

Family

ID=13803568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56083478A Granted JPS57198407A (en) 1981-05-30 1981-05-30 Parts for optical communication and its manufacture

Country Status (1)

Country Link
JP (1) JPS57198407A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812001A (en) * 1987-07-28 1989-03-14 Raychem Corp. Annealing bent optical fiber
US5492552A (en) * 1994-03-03 1996-02-20 Minnesota Mining And Manufacturing Company Holder for annealing fiber optic coils
US5463312A (en) * 1994-03-03 1995-10-31 Minnesota Mining And Manufacturing Company Faraday-effect sensing coil with stable birefringence

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516740A (en) * 1974-07-05 1976-01-20 Fujitsu Ltd Hikaridensosenno seizohoho
JPS537340A (en) * 1976-07-09 1978-01-23 Nippon Telegr & Teleph Corp <Ntt> Optical fiber cable
JPS5312341A (en) * 1976-07-20 1978-02-03 Furukawa Electric Co Ltd:The Improvement of optical fiber characteristic

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516740A (en) * 1974-07-05 1976-01-20 Fujitsu Ltd Hikaridensosenno seizohoho
JPS537340A (en) * 1976-07-09 1978-01-23 Nippon Telegr & Teleph Corp <Ntt> Optical fiber cable
JPS5312341A (en) * 1976-07-20 1978-02-03 Furukawa Electric Co Ltd:The Improvement of optical fiber characteristic

Also Published As

Publication number Publication date
JPS57198407A (en) 1982-12-06

Similar Documents

Publication Publication Date Title
US4812001A (en) Annealing bent optical fiber
US3050907A (en) Method for shaping a fiber optical device
EP0093460B1 (en) Method of manufacturing a fibre-optical coupling element
KR940007341Y1 (en) Fiber optic cannister with compliant base layer
EP0076575B1 (en) Optical fiber insensitive to temperature variations
AU775675B2 (en) Method of splicing two optical fibers
JPH07115878B2 (en) Method for producing optical fiber with high mechanical resistance by drawing with large tensile force
JPS6138134B2 (en)
JPH0357447B2 (en)
KR890003438B1 (en) Process for the preparation of image fiber
JPH01503180A (en) Improved polarization preserving optical fiber and its manufacturing method
JPH04234709A (en) Glass fiber coil
JPH10300996A (en) Coated optical fiber
JPS6228101B2 (en)
JP2959868B2 (en) Optical fiber converter and method of using the same
JP3117456B2 (en) Small diameter optical fiber
JPS5828706A (en) Production of optical fiber bundle having flexibility
GB2105321A (en) Reduction of strength loss during fiber processing
JPH0378707A (en) High-strength optical fiber
JPS59127011A (en) Excessive length shaping method of optical fiber
JPS6245531B2 (en)
JPH07234322A (en) Method for drawing plastic optical fiber
JP2002207138A (en) Method for manufacturing optical fiber element and optical fiber element
JPS6335585B2 (en)
JPH03185408A (en) Quartz fiber for optical parts