JPH0357191A - High frequency heating device - Google Patents

High frequency heating device

Info

Publication number
JPH0357191A
JPH0357191A JP19293489A JP19293489A JPH0357191A JP H0357191 A JPH0357191 A JP H0357191A JP 19293489 A JP19293489 A JP 19293489A JP 19293489 A JP19293489 A JP 19293489A JP H0357191 A JPH0357191 A JP H0357191A
Authority
JP
Japan
Prior art keywords
winding
primary winding
transformer
wire
windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19293489A
Other languages
Japanese (ja)
Other versions
JP2697167B2 (en
Inventor
Daisuke Betsusou
大介 別荘
Naoyoshi Maehara
前原 直芳
Takahiro Matsumoto
松本 孝広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19293489A priority Critical patent/JP2697167B2/en
Publication of JPH0357191A publication Critical patent/JPH0357191A/en
Application granted granted Critical
Publication of JP2697167B2 publication Critical patent/JP2697167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of High-Frequency Heating Circuits (AREA)

Abstract

PURPOSE:To prevent the generation of corona between each wire, and to lengthen longevity of an electric wire by winding a winding that forms a pressure rise transformer almost in a line, so as to make voltage between each winding almost the same as the voltage applied to the winding divided by the number of windings. CONSTITUTION:A pressure rise transformer is composed of a primary winding 1, a bobbin 2 for the primary winding, a secondary winding 3, a ferrite core 4, and a gap 5. Since the primary winding 1 of the pressure rise transformer is wound in a line by the number of winding of approximately five turns, the voltage generated between wire 5 of the primary winding 1 is approximately 100V at a peak value. The potential difference generated between the wire of the primary winding 1 can thus be made lower than that generated between the wire of a primary winding of a conventional pressure rise transformer of the power source whose resonance frequency fr is approximately 20kHz. Insulation between each winding can be assured, and the generation of corona is prevented, and the longevity of the winding can be ensured thereby.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、誘電加熱を利用して食品の加熱調理を行う高
周波加熱装置に関するもので、特に高周波加熱装置の電
源に周波数変換器、いわゆるインバータを備えた高周波
加熱装直の電源回路に関するものである. 従来の技術 以下、従来の技術を図面を参照して説明する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a high-frequency heating device for cooking food using dielectric heating, and particularly to a high-frequency heating device that is equipped with a frequency converter, a so-called inverter, as a power source of the high-frequency heating device. This paper concerns the power supply circuit for high-frequency heating equipment. BACKGROUND ART Below, a conventional technique will be explained with reference to the drawings.

第6図は、従来の高周波加熱装置の電源の回路構戒を示
す回路図である。同図において50Hzまたは60Hz
の商用電源12は、ダイオードブリッジ13で整流され
直流電圧に変換される.前記直流電圧はフィルタl4を
通してインダクタl1コンデンサl5、トランジスタ1
1に印加される. 前記、インダククlとコンデンサ15は共振回路を構戒
しており、実動状態の共振回路の共振周波数f1は次式
で与えられる. 1 ” ” ”x2x JT7T ””” ここに、Ll は、共振回路のインダクタlのインダク
タンス、Cは、共振回路のコンデンサー5の容量である
. トランジスタ1lは、(1)式で示される共振周波数1
1でスインチングすることにより、共振回路の共振動作
を持続させている。
FIG. 6 is a circuit diagram showing the circuit configuration of a power source of a conventional high-frequency heating device. In the same figure, 50Hz or 60Hz
A commercial power supply 12 is rectified by a diode bridge 13 and converted into a DC voltage. The DC voltage passes through a filter l4, an inductor l1, a capacitor l5, and a transistor 1.
Applied to 1. The inductor l and the capacitor 15 form a resonant circuit, and the resonant frequency f1 of the resonant circuit in actual operation is given by the following equation. 1 ” ” ”x2x JT7T ””” Here, Ll is the inductance of the inductor 1 of the resonant circuit, and C is the capacitance of the capacitor 5 of the resonant circuit. The transistor 1l has a resonant frequency 1 expressed by equation (1).
1, the resonant operation of the resonant circuit is maintained.

共振回路のインダクタ1は昇圧トランスl6の1次巻線
lを兼ねている。1次巻線lには、共振回路の共振動作
により第7図に示す様な波形の電圧が発生する. 昇圧トランス16は1次巻線lの電圧を昇圧し、2次巻
線3に高電圧を発生させる.前記高電圧は、倍電圧整流
回路l7で直流高電圧に変換されマグネトロン18に印
加される.マグネトロン1Bは、マイクロ波を発生し、
前記マイクロ波は、高周波加熱装置のオーブン庫内の食
品に照射され、食品を誘電加熱する. 第8図に従来の昇圧トランス16の構戒を示す断面図を
示す.従来の昇圧トランス16は1次巻線l、2次巻線
3、コア4およびギャップ9からflifiされる。
The inductor 1 of the resonant circuit also serves as the primary winding l of the step-up transformer l6. A voltage with a waveform as shown in Fig. 7 is generated in the primary winding l due to the resonant operation of the resonant circuit. The step-up transformer 16 boosts the voltage of the primary winding 1 and generates a high voltage in the secondary winding 3. The high voltage is converted into a DC high voltage by the voltage doubler rectifier circuit 17 and applied to the magnetron 18. Magnetron 1B generates microwaves,
The microwaves are irradiated onto the food inside the oven of the high-frequency heating device, dielectrically heating the food. Figure 8 shows a cross-sectional view of the structure of a conventional step-up transformer 16. A conventional step-up transformer 16 is flifed from a primary winding l, a secondary winding 3, a core 4 and a gap 9.

1次巻線1は巻数が25ターン程度、2次巻線3は巻数
が380ターン程度であり、コア4はフェライトを用い
ており、ギャップは1次巻線l下に設けられている。1
次巻線1は、前述したように共振回路のインダクタlを
兼ねており、そのため、1次巻線1のインダクタンスL
,は、(】)式で示されるように、共振回路の共振周波
数を決定する。
The primary winding 1 has about 25 turns, the secondary winding 3 has about 380 turns, the core 4 is made of ferrite, and a gap is provided below the primary winding l. 1
As mentioned above, the secondary winding 1 also serves as the inductor l of the resonant circuit, and therefore the inductance L of the primary winding 1
, determines the resonant frequency of the resonant circuit, as shown by the equation ( ]).

1次巻線lのインダクタンスL1は、その巻数で決定さ
れ、1次巻線lの巻数をN.とすると次式で与えられる
The inductance L1 of the primary winding l is determined by the number of turns, and the number of turns of the primary winding l is set to N. Then, it is given by the following formula.

LL =k(N+ )”       ・・・(2)た
だし、kは比例定数. 1次巻線1に流れる電!(励磁t;Ur,は磁束Φ=I
+L+ を発生させ、磁東Φの一部は、2次巻&93に
鎖交し、2次巻線3に高電圧を誘起する.このときの起
電圧E2は次式で示される.E!ceN,r,Φ   
   ・(3)ただし、N2は2次巻線3の巻数、f1
は共振周波数、Φは、2次Sm3と鎖交する磁束である
LL = k (N+)" ... (2) where k is a proportional constant. The electric current flowing in the primary winding 1 (excitation t; Ur, is the magnetic flux Φ = I
+L+, a part of the magnetic east Φ interlinks with the secondary winding &93, and induces a high voltage in the secondary winding 3. The electromotive force E2 at this time is expressed by the following formula. E! ceN, r, Φ
・(3) However, N2 is the number of turns of secondary winding 3, f1
is the resonance frequency, and Φ is the magnetic flux interlinking with the secondary Sm3.

発明が解決しようとする課題 高周波加熱装置の電源に用いられる昇圧トランスを、小
型にすることは1t源自体をコンパクト、軽量にでき、
かつ、低コスト化が可能となる.昇圧トランスを小型化
するためには、共振回路の共振周波数を上げる方法がと
られる.共振周波数r,を上げると(3)式に示すよう
に起電圧Eつが大きくなるため、一定の起電圧とするに
は磁束Φを小さくすればよい. 磁束Φが小さくなれば、磁束を通す昇圧トランスのコア
の断面積を小さくでき、コアを小型化できる. また、共振周波数を高くするには、(1)式で示される
ようにインダクタンスL1を小さくしてやればよい。
Problems to be Solved by the Invention Making the step-up transformer used for the power source of the high-frequency heating device smaller makes it possible to make the 1-ton source itself compact and lightweight.
Moreover, it is possible to reduce costs. In order to downsize a step-up transformer, a method is used to increase the resonant frequency of the resonant circuit. As the resonant frequency r is increased, the electromotive force E increases as shown in equation (3), so in order to maintain a constant electromotive force, the magnetic flux Φ should be reduced. If the magnetic flux Φ is reduced, the cross-sectional area of the core of the step-up transformer through which the magnetic flux passes can be reduced, and the core can be made smaller. Furthermore, in order to increase the resonant frequency, the inductance L1 may be reduced as shown in equation (1).

L,は(2)式に示されるように1次S線lの巻数N1
の2乗に比例するため、壱数N,を減らしてやればよい
. このように共振周波数を上げることにより、コアの大き
さを小さくでき、かつ、1次巻線1の巻数を減らせるた
め、昇圧トランスを小型・軽量かつ低コストなものにす
ることができる.しかしながら、共振周波数f1を10
0kHz以上の値にすると、l次t!&Ilの巻数N,
は、第9図に示すように6〜8ターン程度になる.同図
において、1次巻線1は矢印19に示される順番で巻か
れる.そして1次壱wA1には第7図に示した様な、ピ
ーク値が500v程度の電圧が発生する.従って、第9
図に示すように、例えばL次巻tiillの巻数が8タ
ーンであれば、1ターン当り約62.5(V)発生する
ことになる. そこで、1次巻線の巻き始めの電線20と、2列目の電
線2lとの間には約312(V )の電位差が発生する
. 第8図に示すような、従来の昇圧トランスでは、1次t
1線lの巻数は25ターン程度であるので、1次巻線l
の巻き始めの電線22と2列目のtIli!23との間
には180(V)程度の電位差しか発生しない。
L, is the number of turns N1 of the primary S wire l as shown in equation (2)
Since it is proportional to the square of , you can reduce the number N. By increasing the resonant frequency in this way, the size of the core can be reduced and the number of turns of the primary winding 1 can be reduced, making it possible to make the step-up transformer smaller, lighter, and lower in cost. However, the resonant frequency f1 is 10
If the value is greater than 0kHz, the lth order t! &Il number of turns N,
As shown in Figure 9, it takes about 6 to 8 turns. In the figure, the primary winding 1 is wound in the order indicated by arrow 19. A voltage with a peak value of about 500V is generated in the primary wA1 as shown in FIG. Therefore, the ninth
As shown in the figure, for example, if the number of turns of the L-order winding tiill is 8 turns, approximately 62.5 (V) will be generated per turn. Therefore, a potential difference of about 312 (V) is generated between the electric wire 20 at the beginning of winding of the primary winding and the electric wire 2l in the second row. In a conventional step-up transformer as shown in Fig. 8, the primary t
The number of turns of one wire l is about 25 turns, so the primary winding l
Wire 22 at the beginning of winding and tIli in the second row! 23, only a potential difference of about 180 (V) occurs.

すなわち第9図に示すような、共振周波数が約100k
Hz以上の電源に用いられる昇圧トランスは、従来の共
振周波数が20k}fz程度の電源に用いられる昇圧ト
ランス第8図に比べ、1次巻線の線間に発生する電圧は
、2倍近くになり、このため、腺間にコロナ放電が発生
し、電線の絶縁皮膜の寿命を著しく低下させてしまうと
いう課題がある。
In other words, as shown in Figure 9, the resonance frequency is approximately 100k.
A step-up transformer used for a power supply with a frequency of Hz or higher generates nearly twice as much voltage between the lines of the primary winding as compared to a conventional step-up transformer used in a power supply with a resonant frequency of about 20k}fz (Figure 8). Therefore, there is a problem in that corona discharge occurs between the glands, and the life of the insulating film of the electric wire is significantly reduced.

線間のコロナ放電を防ぐには、電線の絶縁皮膜を厚くす
る方法が有効であるが、電線一本当りの絶縁皮膜を厚く
すると、一次巻線は、150木程度のより線を用いてい
るため、一次巻線の大きさが大きくなり、かつ高価なも
のとなってしまうという課題があった. iI!題を解決するための手段 本発明は、従来のこのような課題を解決するためになさ
れたものであり、簡単な構成で従来の課題を解決できる
極めて有効な手段である.すなわち、バッテリーまたは
商用電源などを整流して得られる直流電源と、前記直流
電源を高周波数の電源に変換する周波数変換器と、前記
周波数変換器の出力を昇圧し、マグネトロンを駆動する
昇圧トランスとを備え、この昇圧トランスを複数のSw
Aおよびフェライト等の磁性材料からなるコアとから構
成すると共に、前記、複数の巻線の内、一部または全部
を略一列に巻く構成とする.また、一列に巻く構成とし
た巻線を、他の巻線と対面する面積が広くなるように配
置する構成とする. 作用 本発明は、昇圧トランスを構成する巻線の巻き方を、略
一列に巻く構成とし、巻線の線間電圧が、巻線に印加さ
れる電圧のほぼ巻数分の1の電圧となるよう構戒するこ
とにより、少ない巻数で、巻線の線間に発生する電位差
を小さなものとするので、線間のコロナ発生を防止でき
、電線の寿命を確保することができ信頼性を高められ、
かつ、電線の絶縁皮膜を厚くする必要がないので、コス
トは高くならない. また、巻線をほぼ一列に巻くという単純な横或であるた
め、電線を巻くためのわくであるボビンの構造に、大き
な変更をしなくてすむため、従来の巻線機などの生産設
備をそのまま使用できるという効果を有するものである
. 巻線を略一列に巻くことにより、ファン等で強制空冷す
る場合、巻線全体に風が当たり、非常に高い冷却効果が
得られ、100kHz以上の高周波であろうと、巻線の
発熱がおさえられるという作用を有する. また、一列に巻く構成とした巻線を、他の巻線と対面す
る面積が広くなるように配置する構戒とすることにより
、コアを介して他の@線と鎖交する磁束を減らすことが
でき、よりコアを小型なものにできるという作用を有す
る. 実施例 本発明の高周波加熱装買の電源の回路構成は従来例であ
る第6図と同様であるので、その説明を省略する. 以下、本発明の一実施例を、図[を参照して説明する. 第1図は、本発明の一実施例である昇圧トランスの構成
を示す断面図である.同図において、昇圧トランスは1
次巻線1.1次巻線用ボビン2,2次巻線3,フェライ
トのコア4,ギャップ5,から構成される. 1次巻,IIIは、同図に示すように5ターン程度の巻
数で一列に巻かれている.1次巻線lには、従来の技術
でも述べたように第7図に示されるような、ピーク値が
500V程度の電圧が発生する.しかしながら、本発明
における昇圧トランスの1次巻線lは、5ターン程度の
巻数で一列に巻かれているため、第1図において、1次
巻線1の線間5に発生する電圧はピーク値でIOOV程
度となる.従って、共振周波数f1が100kHz以上
の電源に用いられる昇圧トランスでも、1次港線lの巻
き方を、上記したように一列に巻く構成とすることによ
り、1次巻線1の線間に発生する電位差を、従来の共振
周波数f7が20kHz程度の電源の昇圧トランスの一
次@線の線間に発生する電位差よりも低くすることがで
き、巻線間の絶縁を確保でき、コロナ発生を防止し、巻
線の寿命を保証することができる. 第2図は、本発明の他の実施例である.同図は、一列に
巻いた1次巻線lを、2次巻線3と対面する面積6が広
くなるように、横向きに配置した構成を示す断面図であ
る.同図において、1次巻線lのつくる磁束は、大半は
コア4を通るが、一部の磁束は、2次巻線3と直接鎖交
する。そこで、同図に示すように、一列に巻いたl次巻
線lを、2次巻線3と対面する面積6が広くなるように
、横向きに配置する構成とすることにより、1次巻線l
がつくる磁束の内、2次巻線3と直接鎖交する磁束8の
量を増加させることができる.このため、コアを通って
2次巻線3と鎖交する磁束7を減らすことができる.コ
アを通る磁束7を減らす方法として、ギャップ9の位置
を、1次巻綿1のところに配置する横或が有効である。
In order to prevent corona discharge between wires, it is effective to thicken the insulation coating of the wire, but if the insulation coating of each wire is thickened, the primary winding will use approximately 150 strands of wire. Therefore, there was a problem that the size of the primary winding became large and expensive. iI! Means for Solving the Problems The present invention has been made to solve these conventional problems, and is an extremely effective means that can solve the conventional problems with a simple configuration. That is, a DC power source obtained by rectifying a battery or commercial power source, a frequency converter that converts the DC power source into a high frequency power source, and a step-up transformer that boosts the output of the frequency converter to drive the magnetron. This step-up transformer is equipped with multiple SW
A and a core made of a magnetic material such as ferrite, and some or all of the plurality of windings are wound approximately in a line. In addition, the windings wound in a row are arranged so that the area facing the other windings is large. Effects of the present invention The windings constituting the step-up transformer are wound in a substantially straight line, so that the line-to-line voltage of the windings is approximately 1/the number of turns of the voltage applied to the windings. By using a small number of turns, the potential difference generated between the wires of the winding can be reduced, preventing the generation of corona between the wires, ensuring the life of the wire, and increasing reliability.
In addition, there is no need to thicken the insulating film on the wire, so the cost does not increase. In addition, because it is a simple horizontal winding method that winds the wire almost in a row, there is no need to make major changes to the structure of the bobbin, which is the frame for winding the wire, so conventional production equipment such as winding machines can be used. This has the effect that it can be used as is. By winding the windings in approximately one row, when forced air cooling is performed using a fan, etc., the wind hits the entire winding, resulting in a very high cooling effect, and suppressing heat generation in the windings even at high frequencies of 100kHz or higher. It has this effect. In addition, by arranging the windings wound in a row so that the area facing other windings is large, the magnetic flux interlinking with other @ wires through the core can be reduced. This has the effect of making the core more compact. Embodiment The circuit configuration of the power source of the high-frequency heating device of the present invention is the same as that of the conventional example shown in FIG. 6, so a description thereof will be omitted. An embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a sectional view showing the structure of a step-up transformer that is an embodiment of the present invention. In the same figure, the step-up transformer is 1
Secondary winding 1. Consists of a bobbin 2 for the primary winding, a secondary winding 3, a ferrite core 4, and a gap 5. The primary winding, III, is wound in a row with approximately 5 turns as shown in the figure. As described in the prior art, a voltage with a peak value of about 500 V is generated in the primary winding l, as shown in FIG. However, since the primary winding l of the step-up transformer according to the present invention is wound in a row with approximately 5 turns, the voltage generated between the lines 5 of the primary winding 1 in FIG. 1 has a peak value. It is about IOOV. Therefore, even in a step-up transformer used for a power supply with a resonant frequency f1 of 100 kHz or more, by winding the primary port wire l in a single row as described above, it is possible to It is possible to make the potential difference between the primary @ wires of a step-up transformer of a conventional power supply with a resonant frequency f7 of about 20 kHz lower than the potential difference that occurs between the lines, ensuring insulation between the windings and preventing corona generation. , the life of the winding can be guaranteed. FIG. 2 shows another embodiment of the present invention. This figure is a sectional view showing a configuration in which the primary winding l wound in a row is arranged horizontally so that the area 6 facing the secondary winding 3 is wide. In the figure, most of the magnetic flux generated by the primary winding l passes through the core 4, but some of the magnetic flux directly interlinks with the secondary winding 3. Therefore, as shown in the figure, by arranging the primary winding l wound in a row horizontally so that the area 6 facing the secondary winding 3 is wide, the primary winding l
Of the magnetic flux created by the coil, the amount of magnetic flux 8 that directly interlinks with the secondary winding 3 can be increased. Therefore, the magnetic flux 7 that passes through the core and interlinks with the secondary winding 3 can be reduced. As a method of reducing the magnetic flux 7 passing through the core, it is effective to position the gap 9 at the position of the primary cotton 1.

このような構戒することにより、コアを通る磁束7を減
らすことができるので、コアの断面積を小さくでき、コ
アを小型・軽量なものにすることができる。
By taking such precautions, the magnetic flux 7 passing through the core can be reduced, so the cross-sectional area of the core can be reduced, and the core can be made smaller and lighter.

第3図に示す図も、本発明の他の実施例である。The diagram shown in FIG. 3 is also another embodiment of the present invention.

同図は、ギャップ9の大きさを小さくし、磁気抵抗を小
さくし、かつ、ギャップ9の位置を、1次巻線1と2次
S線3との間に配置した昇圧トランスの構成を示す断面
図である.周波数の増加とともに、電線は表皮効果によ
ってその損失が増大していく。このため巻線量は少ない
方が好ましい。
This figure shows the configuration of a step-up transformer in which the size of the gap 9 is made small, the magnetic resistance is made small, and the gap 9 is placed between the primary winding 1 and the secondary S wire 3. This is a cross-sectional view. As the frequency increases, the loss of wires increases due to the skin effect. For this reason, it is preferable that the amount of winding is small.

このため、同図に示したような構戒にすれば、昇圧トラ
ンスの磁気抵抗を、小さくできるので、1次巻線Iの巻
数を減らせ、かつ、必要なインダクタンスを得ることが
できる。1次巻線lの巻数を減らしても、1次巻線lは
一列に巻く構戒としているので、1次巻線lの巻線間の
絶縁は確保できる. 一般に、巻線の損失は、前述した表皮効果による損失と
、ギャップ9から漏れる磁束(漏洩磁束)が巻線と鎖交
することにより、巻線にうず電流等を発生させることに
よる損失とから或る。このため、ギャップ9を同図に示
すように、1次巻線1と2次巻線3との間に配置するこ
とにより、1次巻線1および2次巻&!l3の両方の巻
線からギヤ・ンプ9を遠ざけ、ギャップ9の漏洩磁束の
影響による巻線の損失を減少させることができる.しか
しながら、このようにコアの磁気抵抗を下げる構成にす
ると、1次壱線1と、2次巻線3との磁気結合が非常に
強くなる.磁気結合が強すぎると、共振回路の共振動作
を持続するためにスイッチング動作を行っているトラン
ジスタの損失が増大する傾向にある.このため、第3図
のような、磁気抵抗の少ない昇圧トランスを用いる場合
には、第4図に示す回路構成のように、1次巻線1であ
る共振回路のインダクタ1に直列に、インダクタ10を
挿入すれば、トランジスタl1の損失増大を防止するこ
とができる. 第5図も本発明の他の実施例であり、1次SvA1およ
び2次巻線2を一列に巻く構戒とした昇圧トランスの断
面図である.共振周波数],を高くするに従って、l次
巻線1と同様に2次巻線2も巻数が減少していく.従っ
て、1次巻線lと同様に2次巻線2も一列に巻く構戒と
することにより巻線間の絶縁を保証することができる.
2次S締3は、■次巻線lに比べ、断面積は極めて小さ
いが巻数が大きくなるため、1次巻線lと2次巻線3を
、それぞれ一列に巻いて、1次巻線lの上に2次巻線3
を、配直する構戒とすると、昇圧トランスの高さが非常
に高くなり、かつ、コアの磁路長が長くなり、コアの損
失が増大する.そこで第5図に示すように、1次巻線1
と2次巻vA3を重ねて巻く構成とすることにより、昇
圧トランスの高さを低くすることができる. 発明の効果 以上のように本発明の昇圧トランスは、巻線を略一列に
巻く構戒とすることにより、少ない巻数であっても、巻
線間の絶縁を確保することができ、信頼性およびS線の
寿命が保証される.特に、本発明によれば巻線を略一列
に巻く簡単な構戒であるため、従来の巻線を巻くための
ボビン構造に大きな変更をすることなく実現できるため
、従来の巻線設備を有効に利用できるという効果がある
Therefore, if the configuration is as shown in the figure, the magnetic resistance of the step-up transformer can be reduced, so the number of turns of the primary winding I can be reduced and the necessary inductance can be obtained. Even if the number of turns of the primary winding l is reduced, insulation between the windings of the primary winding l can be ensured because the primary winding l is wound in a single row. Generally, the loss in the winding is divided into the loss due to the skin effect mentioned above and the loss due to the generation of eddy current etc. in the winding due to the magnetic flux leaking from the gap 9 (leakage magnetic flux) interlinking with the winding. Ru. Therefore, by arranging the gap 9 between the primary winding 1 and the secondary winding 3 as shown in the figure, the primary winding 1 and the secondary winding &! By moving the gear amplifier 9 away from both windings of l3, it is possible to reduce loss in the windings due to the influence of leakage magnetic flux in the gap 9. However, when the magnetic resistance of the core is reduced in this way, the magnetic coupling between the primary wire 1 and the secondary winding 3 becomes extremely strong. If the magnetic coupling is too strong, the loss in the transistors that perform switching operations to maintain the resonant operation of the resonant circuit tends to increase. Therefore, when using a step-up transformer with low magnetic resistance as shown in Fig. 3, an inductor is connected in series with the inductor 1 of the resonant circuit, which is the primary winding 1, as shown in the circuit configuration shown in Fig. 4. By inserting a transistor 10, it is possible to prevent an increase in the loss of the transistor l1. FIG. 5 is another embodiment of the present invention, and is a sectional view of a step-up transformer in which the primary SvA1 and the secondary winding 2 are wound in a line. As the resonant frequency] increases, the number of turns of the secondary winding 2, like the primary winding 1, decreases. Therefore, by winding the secondary winding 2 in a single row in the same way as the primary winding 1, insulation between the windings can be guaranteed.
The secondary S fastener 3 has an extremely small cross-sectional area but a large number of turns compared to the secondary winding l, so the primary winding l and the secondary winding 3 are each wound in a row, and the primary winding Secondary winding 3 on top of l
If we plan to rearrange the step-up transformer, the height of the step-up transformer will become very high, the magnetic path length of the core will become long, and the loss of the core will increase. Therefore, as shown in Figure 5, the primary winding 1
By winding the secondary winding vA3 and the secondary winding vA3 in an overlapping manner, the height of the step-up transformer can be lowered. Effects of the Invention As described above, the step-up transformer of the present invention has a structure in which the windings are wound approximately in a row, so that even with a small number of turns, insulation between the windings can be ensured, and reliability and The life of the S line is guaranteed. In particular, according to the present invention, since the winding wire is wound in a simple line, it can be realized without major changes to the conventional bobbin structure for winding the winding wire, making the conventional winding equipment effective. It has the advantage that it can be used for

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図、第5図は本発明の一実施例に
おける高周波加熱装直の昇圧トランスの構戒を示す断面
図、第4図は同高周波加熱装置のインバータ回路の回路
図、第6図は従来の高周波加熱装置のインバータ回路図
、第7図は昇圧トランスの1次巻線に発生する電圧を示
す波形図、第8図は従来の昇圧トランスの構成を示す断
面図、第9図は100kHz以上の周波数で使用される
昇圧トランスの構成を示す断面図である. 1・・・・・・1次巻線、3・・・・・・2次巻線、4
・・・・・・コア、l2・・・・・・商用電源、l6・
・・・・・昇圧トランス、l8・・・・・・マグネトロ
ン。
1, 2, 3, and 5 are cross-sectional views showing the structure of a step-up transformer installed in a high-frequency heating device according to an embodiment of the present invention, and FIG. 4 is a cross-sectional view of an inverter circuit of the same high-frequency heating device Circuit diagram, Fig. 6 is an inverter circuit diagram of a conventional high-frequency heating device, Fig. 7 is a waveform diagram showing the voltage generated in the primary winding of a step-up transformer, and Fig. 8 is a cross section showing the configuration of a conventional step-up transformer. 9 are cross-sectional views showing the structure of a step-up transformer used at frequencies of 100 kHz or higher. 1...Primary winding, 3...Secondary winding, 4
...Core, l2...Commercial power supply, l6.
...Step-up transformer, l8... Magnetron.

Claims (2)

【特許請求の範囲】[Claims] (1)バッテリーまたは、商用電源などを整流して得ら
れる直流電源と、前記直流電源を高周波数の電源に変換
する周波数変換器と、前記周波数変換器の出力を昇圧し
、マグネトロンを駆動する昇圧トランスとを備え、この
昇圧トランスを複数の巻線およびフェライト等の磁性材
料から成るコアとから構成すると共に、前記、複数の巻
線の内、一部または全部を略一列に巻く構成とし、実質
上、線間電圧を巻線に印加する電圧の巻数分の1とする
構成とした高周波加熱装置。
(1) A DC power source obtained by rectifying a battery or commercial power source, a frequency converter that converts the DC power source into a high frequency power source, and a booster that boosts the output of the frequency converter to drive the magnetron. The step-up transformer is comprised of a plurality of windings and a core made of a magnetic material such as ferrite, and a part or all of the plurality of windings are wound substantially in a row, Above, a high-frequency heating device configured to set the line voltage to 1/the number of turns of the voltage applied to the windings.
(2)一列に巻く構成とした巻線を、他の巻線と対面す
る面積が広くなるように配置する構成とした特許請求の
範囲第1項記載の高周波加熱装置。
(2) The high-frequency heating device according to claim 1, wherein the windings are arranged in a line so that the area facing the other windings is large.
JP19293489A 1989-07-25 1989-07-25 High frequency heating equipment Expired - Fee Related JP2697167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19293489A JP2697167B2 (en) 1989-07-25 1989-07-25 High frequency heating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19293489A JP2697167B2 (en) 1989-07-25 1989-07-25 High frequency heating equipment

Publications (2)

Publication Number Publication Date
JPH0357191A true JPH0357191A (en) 1991-03-12
JP2697167B2 JP2697167B2 (en) 1998-01-14

Family

ID=16299432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19293489A Expired - Fee Related JP2697167B2 (en) 1989-07-25 1989-07-25 High frequency heating equipment

Country Status (1)

Country Link
JP (1) JP2697167B2 (en)

Also Published As

Publication number Publication date
JP2697167B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
US4453109A (en) Magnetic transformer switch and combination thereof with a discharge lamp
WO1989004082A1 (en) High efficiency converter
RU2000124803A (en) SWITCHING POWER CIRCUIT AND SEPARATE TRANSFORMER OF THE CONVERTER
JPH0395898A (en) X-ray generating device
JPH0357191A (en) High frequency heating device
JP3735490B2 (en) microwave
JPH029109A (en) High tension transformer
JPS6238953B2 (en)
JP2697166B2 (en) High frequency heating equipment
JPH04338615A (en) Inverter transformer
JP2002151285A (en) Inverter-type stabilizer
JP2649429B2 (en) Gas laser device
JP3259337B2 (en) Power converter
JPH0646563A (en) Dc high voltage power supply circuit
JPH09115454A (en) Power source device for driving magnetron
JP3168838B2 (en) High frequency heating equipment
JPH01267992A (en) Power supply device for magnetron
JPH06112063A (en) Magnetron drive device
JP2998599B2 (en) Power supply for magnetron drive
JPH0566943U (en) High voltage transformer for inverter power supply
JP4252137B2 (en) Power supply
JPH02117089A (en) Electromagnetic induction heating device
JPS61277370A (en) Switching regulator
JPH0444380A (en) Gas laser
JPH01130492A (en) Booster transformer for high frequency heating device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees