JPH0357111B2 - - Google Patents

Info

Publication number
JPH0357111B2
JPH0357111B2 JP6069087A JP6069087A JPH0357111B2 JP H0357111 B2 JPH0357111 B2 JP H0357111B2 JP 6069087 A JP6069087 A JP 6069087A JP 6069087 A JP6069087 A JP 6069087A JP H0357111 B2 JPH0357111 B2 JP H0357111B2
Authority
JP
Japan
Prior art keywords
compound
carboxyl group
reaction
water
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6069087A
Other languages
Japanese (ja)
Other versions
JPS63227591A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6069087A priority Critical patent/JPS63227591A/en
Publication of JPS63227591A publication Critical patent/JPS63227591A/en
Publication of JPH0357111B2 publication Critical patent/JPH0357111B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシラノール化合物の製造方法に関し、
更に詳しくはジシラザン化合物を加水分解してシ
ラノール化合物を製造する改良方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a silanol compound,
More specifically, the present invention relates to an improved method for producing a silanol compound by hydrolyzing a disilazane compound.

〔従来の技術〕[Conventional technology]

シラノール化合物特にトリオルガノシラノール
はオルガノシロキサンポリマーの重合開始剤原料
や末端停止剤として、工業的に有用なトリオルガ
ノシロキシ基含有化合物の原料として、又は医療
材料を始め広範囲、多分野にわたる有用物質の原
料となり得る重要な物質である。
Silanol compounds, especially triorganosilanols, can be used as raw materials for polymerization initiators and terminal terminators for organosiloxane polymers, as raw materials for industrially useful triorganosiloxy group-containing compounds, or as raw materials for useful substances in a wide range of fields, including medical materials. It is an important substance that can become

シラノール化合物を得るためのもつとも簡単な
方法は相当するクロロシラン化合物を加水分解す
る方法であるが、この方法は例えばトリエチルア
ミンのような副生塩化水素の補足剤の存在下に行
つても副生塩化水素が触媒となつて、得られたシ
ラノール化合物が更に脱水縮合されてジシロキサ
ン化合物となるのを防ぐことができず、結果とし
てかなり低い收率でしかシラノール化合物を得る
ことが出来ない。そこで従来からシラノール化合
物が更に脱水縮合されるのを防ぐためのシラノー
ル化合物の製法に関する種々の工夫がなされてき
ており、例えばトリオルガノクロロシランとヘ
キサオルガノジシラザンとの混合物をpH6〜9の
条件下で加水分解する方法(特公昭46−8690号)、
トリオルガノクロロシランとヘキサオルガノジ
シラザンとの混合物をpH調節剤等を用いること
なく単に加水分解する方法(特開昭60−23385号)
及びトリオルガノアシロキシシランをアルカリ
金属またはアルカリ土類金属の炭酸塩の存在下で
加水分解する方法(特公昭61−51598号)等が提
案されている。
The simplest method for obtaining silanol compounds is to hydrolyze the corresponding chlorosilane compound, but this method does not produce by-product hydrogen chloride even when carried out in the presence of a scavenger for by-product hydrogen chloride, such as triethylamine. acts as a catalyst, and the obtained silanol compound cannot be prevented from being further dehydrated and condensed to become a disiloxane compound, and as a result, the silanol compound can only be obtained at a considerably low yield. Therefore, in order to prevent further dehydration condensation of silanol compounds, various methods for producing silanol compounds have been devised. For example, a mixture of triorganochlorosilane and hexaorganodisilazane is prepared under conditions of pH 6 to 9. Method of hydrolysis (Special Publication No. 46-8690),
A method of simply hydrolyzing a mixture of triorganochlorosilane and hexaorganodisilazane without using a pH regulator, etc. (Japanese Patent Application Laid-Open No. 60-23385)
and a method of hydrolyzing triorganosiloxysilane in the presence of an alkali metal or alkaline earth metal carbonate (Japanese Patent Publication No. 51598/1983) has been proposed.

〔発明が解決しょうとする問題点〕[Problem that the invention seeks to solve]

しかしながら及びの方法は多量の塩化アン
モニウムを副生させる方法であるため該塩化アン
モニウムの沈澱を阻止するために多量の水を用い
る必要があり反応の容積効率が低いという欠点を
有している他、3種類または2種類の主原料を用
いるため工業設備上原料に応じた数のストツクタ
ンクや混合のための調整タンクを必要とし配管も
その分複雑になつて多額の設備費を要しまた配合
比を厳密に調節しなければならない等操作上も不
利である。
However, since the method and method produces a large amount of ammonium chloride as a by-product, it is necessary to use a large amount of water to prevent precipitation of the ammonium chloride, which has the disadvantage that the volumetric efficiency of the reaction is low. Since three or two types of main raw materials are used, industrial equipment requires a number of stock tanks and adjustment tanks for mixing depending on the raw materials, and the piping becomes complicated accordingly, requiring a large amount of equipment cost and requiring a large amount of equipment. It is also disadvantageous in terms of operation, such as having to make precise adjustments.

またの方法はトリオルガノアシロキシシラン
を出発原料とする方法を改良しようとするもので
あつて、トリオルガノアシロキシシランを単に加
水分解する場合には副生有機酸の触媒作用によつ
てトリオルガノシラノールの脱水縮合が起こり収
率低下を招いてしまうため、アルカリ金属または
アルカリ土類金属の炭酸塩の存在下に加水分解反
応を行わしめることによつて副生してくる有機酸
を捕捉しようとする方法である。従つてこの方法
の場合も2種類の主原料を用いること及び副生す
る多量の塩を溶解しなければならないことによ
る、前記,の方法と全く同様な設備上及び操
作上の問題点を有しているのである。
This method is an attempt to improve the method using triorganosiloxysilane as a starting material, and when triorganosiloxysilane is simply hydrolyzed, triorganosiloxysilane is catalyzed by the catalytic action of the by-product organic acid. Since dehydration condensation of silanol occurs, resulting in a decrease in yield, attempts were made to capture the organic acids produced as by-products by carrying out the hydrolysis reaction in the presence of alkali metal or alkaline earth metal carbonates. This is the way to do it. Therefore, this method has exactly the same equipment and operational problems as the above method due to the use of two types of main raw materials and the need to dissolve a large amount of by-product salt. -ing

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等はこのような従来技術の有する問題
点を解消し簡単な設備と操作によりシラノール化
合物を製造する方法を開発するべく鋭意研究した
結果、ジシラザン化合物を出発原料とし該ジシラ
ザン化合物の加水分解反応をジシラザン化合物に
対して当量以上の水溶性のカルボキシル基含有化
合物の存在下に行い副生するアンモニアを中和す
るときは、生成したシラノール化合物が更に脱水
縮合してジシロキサン化合物になる副反応が非常
に起こり難いという新しい事実を発見した。ここ
でジシラザン化合物に対して当量とは、ジシラザ
ン化合物の加水分解によつて生成するアンモニア
を中和するためのカルボキシル基のアンモニアに
対する当量比が1であることを意味する。更に驚
くべきことには該当量比が1以下の場合、更には
十分に小さく触媒量の場合であつても加水分解反
応が進行すること及びカルボキシル基含有化合物
のアンモニウム塩であつて水溶性のものを使用し
た場合も同様に加水分解反応が進行し、生成した
シラノール化合物が更に脱水縮合してジシロキサ
ン化合物になる副反応が非常に起こり難いことを
見出し本発明に到達したものである。
The inventors of the present invention have conducted extensive research to solve the problems of the prior art and develop a method for producing silanol compounds using simple equipment and operations. When the reaction is carried out in the presence of an equivalent or more water-soluble carboxyl group-containing compound to the disilazane compound to neutralize the by-produced ammonia, a side reaction occurs in which the produced silanol compound is further dehydrated and condensed to become a disiloxane compound. We have discovered a new fact that is extremely unlikely to occur. Here, the term "equivalent to the disilazane compound" means that the equivalent ratio of the carboxyl group to ammonia for neutralizing ammonia produced by hydrolysis of the disilazane compound is 1. What is more surprising is that the hydrolysis reaction proceeds when the ratio is less than 1, even when the catalytic amount is sufficiently small, and that the ammonium salt of a carboxyl group-containing compound is water-soluble. The present invention was achieved by discovering that the hydrolysis reaction proceeds in the same way when using silanol compounds, and the side reaction of the produced silanol compound further dehydrating and condensing to form a disiloxane compound is extremely unlikely to occur.

(ここにR1、R2、R3は水素原子、炭素数1〜
18のアルキル基、炭素数2〜7の脂肪族二重結合
含有基、炭素数1〜10のハロゲン化アルキル基、
フエニル基より選ばれる基を表わす。)で表わさ
れるジシラザン化合物を加水分解して一般式
〔B〕R1R2R3Si−OH(ここにR1、R2、及びR3
前記と同じ意味を表わす。)で表わされるシラノ
ール化合物を製造するに際し、水溶性のカルボキ
シル基含有化合物又はカルボキシル基含有化合物
のアンモニウム塩であつて水溶性のもの(以下、
「水溶性のカルボキシル基含有化合物」及び「カ
ルボキシル基含有化合物のアンモニウム塩であつ
て水溶性のもの」を「カルボキシル基含有化合物
等」という。)の存在下に前記加水分解反応を行
うことを特徴とするシラノール化合物の製造方法
である。
(Here, R 1 , R 2 , and R 3 are hydrogen atoms, with 1 to 1 carbon atoms.
18 alkyl groups, aliphatic double bond-containing groups having 2 to 7 carbon atoms, halogenated alkyl groups having 1 to 10 carbon atoms,
Represents a group selected from phenyl groups. ) is hydrolyzed to produce a silanol represented by the general formula [B] R 1 R 2 R 3 Si-OH (where R 1 , R 2 and R 3 have the same meanings as above). When producing a compound, a water-soluble carboxyl group-containing compound or a water-soluble ammonium salt of a carboxyl group-containing compound (hereinafter referred to as
"Water-soluble carboxyl group-containing compounds" and "water-soluble ammonium salts of carboxyl group-containing compounds" are referred to as "carboxyl group-containing compounds, etc." ) is a method for producing a silanol compound, characterized in that the hydrolysis reaction is carried out in the presence of a silanol compound.

本発明によれば、反応器にジシラザン化合物と
水とを仕込み、これに水で希釈したカルボキシル
基含有化合物等を室温下攪拌しながら滴下して行
くか、カルボキシル基含有化合物等の水溶液にジ
シラザン化合物を室温下攪拌しながら滴下して行
くか、又はジシラザン化合物、水及びカルボキシ
ル基含有化合物等を一括して仕込み室温下で攪拌
することによつて簡単にシラノール化合物を製造
することができ、シラノール化合物の縮合物であ
るジシロキサン化合物の生成を非常に良く防止す
ることができる。
According to the present invention, a disilazane compound and water are charged into a reactor, and a carboxyl group-containing compound diluted with water is added dropwise to the reactor while stirring at room temperature, or a disilazane compound is added to an aqueous solution of a carboxyl group-containing compound, etc. A silanol compound can be easily produced by adding the disilazane compound, water, a carboxyl group-containing compound, etc. all at once and stirring at room temperature. The formation of a disiloxane compound, which is a condensation product, can be very effectively prevented.

以下、本発明を更に具体的に説明する。 The present invention will be explained in more detail below.

本発明が適用されるジシラザン化合物は一般式
〔A〕で表わされる化合物である。これは一般式
〔C〕 (ここにR1、R2、R3は前記と同じ意味を表わ
す。)で表わされるクロロシランとアンモニアと
を反応させることによつて得られる。R1、R2
よびR3は一般式〔C〕のクロロシランとして安
定に存在することができさえすれば、アンモニア
によつて変異を受け難いことだけを条件として選
択される基であり、前記ジシラザン化合物は本質
的には非常に広範囲の化合物を含むものである。
そのごく一部の例を挙げると1,1,3,3−テ
トラメチルジシラザン、ヘキサメチルジシラザ
ン、ヘキサエチルジシラザン、1,3−ジオクチ
ル−1,1,3,3−テトラメチルジシラザン、
1,3−ジオクタデシル−1,1,3,3−テト
ラメチルジシラザン、1,3−ジビニル−1,
1,3,3−テトラメチルジシラザン、1,3−
ジビニル−1,3−ジフエニル−1,3−ジメチ
ルジシラザン、1,3−ビス(γ−メタクリロキ
シプロピル)−1,1,3,3−テトラメチルジ
シラザン、1,3−ビス(クロロメチル)−1,
1,3,3−テトラメチルジシラザン、1,3,
−ビス(トリフルオロプロピル)−1,1,3,
3−テトラメチルジシラザン、1,3−ビス(ヘ
プタデカフルオロデシル)−1,1,3,3−テ
トラメチルジシラザン、1,1,3,3−テトラ
フエニル−1,3−ジメチルジシラザン等が例示
される。
The disilazane compound to which the present invention is applied is a compound represented by general formula [A]. This is the general formula [C] (Here, R 1 , R 2 and R 3 have the same meanings as above.) It can be obtained by reacting a chlorosilane represented by the following formula with ammonia. R 1 , R 2 and R 3 are groups selected only on the condition that they are not easily mutated by ammonia as long as they can exist stably as a chlorosilane of the general formula [C], and the disilazane Compounds essentially include a very wide range of compounds.
A few examples are 1,1,3,3-tetramethyldisilazane, hexamethyldisilazane, hexaethyldisilazane, 1,3-dioctyl-1,1,3,3-tetramethyldisilazane. ,
1,3-dioctadecyl-1,1,3,3-tetramethyldisilazane, 1,3-divinyl-1,
1,3,3-tetramethyldisilazane, 1,3-
Divinyl-1,3-diphenyl-1,3-dimethyldisilazane, 1,3-bis(γ-methacryloxypropyl)-1,1,3,3-tetramethyldisilazane, 1,3-bis(chloromethyl )-1,
1,3,3-tetramethyldisilazane, 1,3,
-bis(trifluoropropyl)-1,1,3,
3-tetramethyldisilazane, 1,3-bis(heptadecafluorodecyl)-1,1,3,3-tetramethyldisilazane, 1,1,3,3-tetraphenyl-1,3-dimethyldisilazane, etc. is exemplified.

次に、本発明で用いるカルボキシル基含有化合
物としては水溶性であるか或はアンモニアと反応
して水溶性の塩に成り得る化合物であればどの様
なものでも良く非常に他種類の有機酸が該当する
ことになるが、敢えて例示すれば蟻酸、酢酸、プ
ロピオン酸、酪酸、イソ酪酸、吉草酸、イソ吉草
酸等の脂肪族一塩基酸類、蓚酸、マロン酸、メチ
ルマロン酸、こはく酸、グルタル酸、アジピン
酸、ピメリン酸等の脂肪族二塩基酸類、クロトン
酸、イソクロトン酸、イタコン酸、グルタコン
酸、シトラコン酸、フマール酸、マレイン酸等の
脂肪族二重結合含有カルボン酸類、グリコール
酸、酒石酸、グリセリン酸、クエン酸、乳酸、リ
ンゴ酸、オキサロ酢酸、シトラマル酸等のヒドロ
キシ基含有カルボン酸類、安息香酸、サリチル酸
等の芳香族カルボン酸類、上記カルボン酸類のハ
ロゲン化物等を一般的な例として挙げることがで
きる。また、これらのカルボン酸類のアンモニウ
ム塩を用いても同様の効果を得ることができる。
Next, the carboxyl group-containing compound used in the present invention may be any compound as long as it is water-soluble or can react with ammonia to form a water-soluble salt. However, examples include aliphatic monobasic acids such as formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, and isovaleric acid, oxalic acid, malonic acid, methylmalonic acid, succinic acid, and glutaric acid. acids, aliphatic dibasic acids such as adipic acid, pimelic acid, aliphatic double bond-containing carboxylic acids such as crotonic acid, isocrotonic acid, itaconic acid, glutaconic acid, citraconic acid, fumaric acid, maleic acid, glycolic acid, tartaric acid General examples include hydroxy group-containing carboxylic acids such as glyceric acid, citric acid, lactic acid, malic acid, oxaloacetic acid, and citramalic acid, aromatic carboxylic acids such as benzoic acid and salicylic acid, and halides of the above carboxylic acids. be able to. Further, similar effects can be obtained by using ammonium salts of these carboxylic acids.

そして、これらのカルボキシル基含有化合物等
の使用量はジシラザン化合物に対して当量比
0.005〜2の範囲とすることが望ましく、更に好
ましい範囲は0.01〜0.2である。従来技術の例
(特公昭61−51598号)に副生有機酸の存在を許す
と生成したトリオルガノシラノールの脱水縮合を
起こすとの趣旨の記述があるにも拘わらず、本発
明においてはジシラザン化合物に対して当量以上
のカルボキシル基含有化合物を用いて遊離のカル
ボキシル基が存在する状態にしても何等問題はな
い。ただ、カルボキシル基含有化合物を例えば反
応系が均一層になるほど大過剰に用いることは、
加水分解反応後水層を分離するだけで水洗工程を
必要とせず場合によつては蒸留工程をも省略でき
るという本発明の利点を失わせることになり好ま
しくない。しかしながら工業的には生産効率を優
先させるため短い時間で反応させる必要がある場
合もあるのであり、このような場合を考慮すると
ジシラザン化合物に対する当量比として2程度を
上限とするのが適当である。なおカルボキシル基
含有化合物のアンモニウム塩であつて水溶性のも
のを用いる場合は多量に用いても反応系が均一層
になることはないが、水に対する溶解度の点で制
約があり、この場合もやはりジシラザン化合物に
対する当量比として2程度を上限とするのが適当
である。またカルボキシル基含有化合物等の使用
量が触媒量であつてもアンモニアを副生しながら
加水分解反応が進行するのが本発明の特徴であ
る。この場合は発生するアンモニアガスを反応器
外に排出した後に反応に影響を与えることなく安
価な塩酸又は硫酸を用いて中和等の処理をするか
或はそのまま他に有効利用することができるとい
う非常に優れた効果が得られる。但し、該カルボ
キシル基含有化合物等の使用量があまりにも低い
範囲では反応に長時間を要し実際的でなくなるの
で、ジシラザン化合物に対する当量比として
0.005程度を下限とすることが望ましい。
The amount of these carboxyl group-containing compounds used is based on the equivalent ratio to the disilazane compound.
The range is preferably 0.005 to 2, more preferably 0.01 to 0.2. Although there is a description in the prior art (Japanese Patent Publication No. 61-51598) that the presence of a by-product organic acid causes dehydration condensation of the triorganosilanol produced, in the present invention, the disilazane compound There is no problem even if the carboxyl group-containing compound is used in an amount equal to or more than the amount of the carboxyl group-containing compound to create a state in which free carboxyl groups exist. However, using a carboxyl group-containing compound in such an excessive amount that the reaction system becomes a uniform layer, for example,
This is not preferable because the advantage of the present invention, which is that the water layer is only separated after the hydrolysis reaction, does not require a water washing step and, in some cases, can even omit a distillation step. However, industrially, there are cases where it is necessary to carry out the reaction in a short time in order to give priority to production efficiency, and considering such cases, it is appropriate to set the upper limit of the equivalent ratio to the disilazane compound to be about 2. Note that when using a water-soluble ammonium salt of a carboxyl group-containing compound, the reaction system will not form a uniform layer even if it is used in a large amount, but there are restrictions in terms of solubility in water, and in this case as well. It is appropriate that the upper limit of the equivalent ratio to the disilazane compound is about 2. Further, even if the amount of the carboxyl group-containing compound used is a catalytic amount, it is a feature of the present invention that the hydrolysis reaction proceeds while producing ammonia as a by-product. In this case, the generated ammonia gas can be discharged outside the reactor and then neutralized using inexpensive hydrochloric acid or sulfuric acid without affecting the reaction, or it can be used as is for other purposes. A very good effect can be obtained. However, if the amount of the carboxyl group-containing compound used is too low, the reaction will take a long time and will be impractical, so the equivalent ratio to the disilazane compound
It is desirable to set the lower limit to about 0.005.

また、加水分解反応を行うに当つての水の使用
量は、科学量論的にはジシラザン化合物の2倍モ
ルが理論量であるが、この理論量の2〜50倍、好
ましくは3〜20倍であることが望ましい。反応器
の容積効率を優先させる場合はこの範囲の低い値
を選び、反応後の水洗や蒸留等の精製工程を省略
しようとする場合は高い値を選ぶことができるの
であつて、相反する要求にも対応できるのが本発
明の優れた点である。前記理論量の2倍より低い
範囲ではかなり厳しい攪拌条件を選ぶ必要があ
り、又前記理論量の50倍を越える値はたとえ容積
効率を優先させなくてもよい場合でも実際的でな
い。
In addition, the amount of water used in the hydrolysis reaction is stoichiometrically 2 times the mole of the disilazane compound, but it is 2 to 50 times the theoretical amount, preferably 3 to 20 times the theoretical amount. It is desirable to double the amount. If you want to give priority to the volumetric efficiency of the reactor, you can choose a lower value within this range, and if you want to omit purification steps such as water washing or distillation after the reaction, you can choose a higher value. The advantage of the present invention is that it can also be used. In a range lower than twice the theoretical amount, it is necessary to select fairly severe stirring conditions, and a value exceeding 50 times the theoretical amount is not practical even if volumetric efficiency does not have to be given priority.

なお反応温度は室温でよい。特別に加熱する必
要はないしまた条件によつては反応熱によるかな
りの温度上昇が認められるが、この場合も特別に
冷却する必要はない。従つて、強いて示せば加熱
も冷却もせずに成行きに任せた時の反応時の温度
範囲は大体10〜80℃位である。
Note that the reaction temperature may be room temperature. There is no need for special heating, and depending on the conditions, a considerable temperature increase due to reaction heat may be observed, but in this case also there is no need for special cooling. Therefore, the temperature range during the reaction is approximately 10 to 80°C when the reaction is allowed to take its course without heating or cooling.

溶媒は特に使用する必要はないが、シラノール
化合物を原料として用いる反応工程に必要であれ
ば、脂肪族炭化水素、芳香族炭化水素、或はエー
テル化合物等の水難溶性もしくは水不溶性の不活
性溶剤を溶媒として用いることになんら問題はな
く、この場合は水層を分離した後そのまま次工程
に供給することができる。又触媒量のカルボキシ
ル基含有化合物等を用いて加水分解反応を行う場
合は塩析効果が少ないため生成したシラノール化
合物が水層にとけ込み易くロスが多くなる傾向が
あるが、この場合は上記の溶媒を用いることが特
に有効である。
There is no particular need to use a solvent, but if necessary for a reaction process using a silanol compound as a raw material, a poorly water-soluble or water-insoluble inert solvent such as an aliphatic hydrocarbon, aromatic hydrocarbon, or ether compound may be used. There is no problem in using it as a solvent, and in this case, after separating the aqueous layer, it can be supplied to the next step as it is. In addition, when the hydrolysis reaction is carried out using a catalytic amount of a carboxyl group-containing compound, etc., the salting out effect is small, so the generated silanol compound easily dissolves into the water layer, resulting in a large amount of loss. Particularly effective is the use of solvents.

次に本発明における反応の態様を反応式を用い
て説明する。本発明における反応は使用するカル
ボキシル基含有化合物等の種類及び使用量に応じ
て、次の式及び式を組み合せた形もしくはそ
れぞれ単独の形で進行する。
Next, the mode of the reaction in the present invention will be explained using a reaction formula. The reaction in the present invention proceeds in the form of the following formulas and formulas in combination or in the form of each alone depending on the type and amount of the carboxyl group-containing compound used.

(ここにR1、R2及びR3は前記と同じ意味であ
り、Rはカルボキシル基含有化合物等のカルボキ
シル基もしくはアンモニウムカルボキシレート基
を除いた残基であり、aは通常1,2又は3であ
る。) 即ち、(a)カルボキシル基含有化合物をジシラザ
ン化合物に対し当量比1以上用いた場合は副生す
るアンモニアが全量中和されてしまう式の反
応、(b)カルボキシル基含有化合物をジシラザン化
合物に対する当量比が1に満たない範囲の量用い
る場合はカルボキシル基含有化合物のアンモニウ
ム塩が副生する式と該アンモニウム塩が触媒と
なりアンモニアを副生しながら反応が進行する
式の反応の組合せ、及び(c)カルボキシル基含有化
合物のアンモニウム塩が触媒となりアンモニアを
副生しながら反応が進行する式の反応である。
(Here, R 1 , R 2 and R 3 have the same meanings as above, R is a carboxyl group of a carboxyl group-containing compound or the like or a residue excluding an ammonium carboxylate group, and a is usually 1, 2 or 3 (a) When the carboxyl group-containing compound is used in an equivalent ratio of 1 or more to the disilazane compound, the entire amount of by-produced ammonia is neutralized, (b) The carboxyl group-containing compound is used as the disilazane compound When using an amount in which the equivalent ratio to the compound is less than 1, a combination of a reaction formula in which an ammonium salt of a carboxyl group-containing compound is produced as a by-product and a formula in which the ammonium salt acts as a catalyst and the reaction proceeds while producing ammonia as a by-product, and (c) a reaction in which the ammonium salt of a carboxyl group-containing compound acts as a catalyst and the reaction proceeds while producing ammonia as a by-product.

〔実施例〕〔Example〕

以下、実施例により本発明を説明するが、本発
明はこれらに限定されるものではない。
The present invention will be explained below with reference to Examples, but the present invention is not limited thereto.

実施例 1 攪拌機付きの1反応器にヘキサメチルジシラ
ザン161g(1モル)と水180gを仕込み、これに25
重量%酢酸水溶液60gを滴下反応させた(ヘキサ
メチルジシラザンに対する酢酸の当量比0.25)。
反応液は発熱により20℃から60℃まで昇温した。
1時間後に攪拌を止め、分液により上層の有機層
180gを得た。これをガスクロマトグラフイーで
分析したところ、トリメチルシラノールであるこ
とが判明した。その純度はほぼ100重量%であり
ヘキサメチルジシロキサンは検出されなかつた。
Example 1 161 g (1 mole) of hexamethyldisilazane and 180 g of water were charged in one reactor equipped with a stirrer, and 25 g of water was charged.
60 g of a wt % acetic acid aqueous solution was added dropwise to react (equivalent ratio of acetic acid to hexamethyldisilazane: 0.25).
The temperature of the reaction solution was raised from 20°C to 60°C due to exothermic heat.
After 1 hour, stop stirring and separate the upper organic layer.
Got 180g. When this was analyzed by gas chromatography, it was found to be trimethylsilanol. Its purity was approximately 100% by weight, and no hexamethyldisiloxane was detected.

実施例 2 実施例1と同じ反応器を用い、ヘキサメチルジ
シラザン161g(1モル)と水180gを仕込み、これ
に25重量%酢酸水溶液360gを滴下反応させた
(ヘキサメチルジシラザンに対する酢酸の当量比
1.5)。反応液は発熱により20℃から60℃まで昇温
した。1時間後に攪拌を止め、分液により上層の
有機層180gを得た。これをガスクロマトグラフ
イーで分析したところ、トリメチルシラノールで
あることが判明した。その純度はほぼ100重量%
でありヘキサメチルジシロキサンは検出されなか
つた。
Example 2 Using the same reactor as in Example 1, 161 g (1 mol) of hexamethyldisilazane and 180 g of water were charged, and 360 g of a 25% by weight acetic acid aqueous solution was added dropwise to react (equivalent of acetic acid to hexamethyldisilazane). ratio
1.5). The temperature of the reaction solution was raised from 20°C to 60°C due to exothermic heat. Stirring was stopped after 1 hour, and 180 g of the upper organic layer was obtained by liquid separation. When this was analyzed by gas chromatography, it was found to be trimethylsilanol. Its purity is almost 100% by weight
No hexamethyldisiloxane was detected.

実施例 3 攪拌機とガス排出管連結の還流冷却器を付した
1反応器にヘキサメチルジシラザン161g(1モ
ル)と水250gを仕込み、これに25重量%酢酸水
溶液24gを滴下反応させた(ヘキサメチルジシラ
ザンに対する酢酸の当量比0.10)。反応の進行と
共にアンモニアが気泡となつて発生し、この間反
応液は発熱により20℃から33℃まで昇温した。5
時間後に攪拌を止め、分液により上層の有機層
178gを得た。これをガスクロマトグラフイーで
分析したところ、主成分はトリメチルシラノール
であることが判明した。その純度は99重量%以上
でありヘキサメチルジシロキサンは1重量%未満
であつた。
Example 3 161 g (1 mol) of hexamethyldisilazane and 250 g of water were charged into a reactor equipped with a stirrer and a reflux condenser connected to a gas discharge pipe, and 24 g of a 25% by weight acetic acid aqueous solution was dropped into the reactor (hexamethyldisilazane). Equivalent ratio of acetic acid to methyldisilazane 0.10). As the reaction progressed, ammonia was generated in the form of bubbles, and during this time the temperature of the reaction solution rose from 20°C to 33°C due to heat generation. 5
After a period of time, stop stirring and separate the upper organic layer.
Obtained 178g. Analysis of this by gas chromatography revealed that the main component was trimethylsilanol. Its purity was greater than 99% by weight and less than 1% by weight of hexamethyldisiloxane.

実施例 4 実施例3と同じ反応器を用い、ヘキサメチルジ
シラザン161g(1モル)と水250gを仕込み、これ
に25重量%酢酸アンモニウム水溶液25gを滴下反
応させた(ヘキサメチルジシラザンに対する酢酸
アンモニウムの当量比0.081)。反応の進行と共に
アンモニアが気泡となつて発生し、この間反応液
は発熱により20℃から30℃まで昇温した。5時間
後に攪拌を止め、分液により上層の有機層178g
を得た。これをガスクロマトグラフイーで分析し
たところ、主成分はトリメチルシラノールである
ことが判明した。その純度は99重量%以上であり
ヘキサメチルジシロキサンは1重量%未満であつ
た。
Example 4 Using the same reactor as in Example 3, 161 g (1 mol) of hexamethyldisilazane and 250 g of water were charged, and 25 g of a 25% by weight ammonium acetate aqueous solution was added dropwise to react (ammonium acetate relative to hexamethyldisilazane). equivalent ratio of 0.081). As the reaction progressed, ammonia was generated in the form of bubbles, and during this time the temperature of the reaction solution rose from 20°C to 30°C due to heat generation. After 5 hours, stirring was stopped and 178g of the upper organic layer was separated.
I got it. Analysis of this by gas chromatography revealed that the main component was trimethylsilanol. Its purity was greater than 99% by weight and less than 1% by weight of hexamethyldisiloxane.

実施例 5 実施例3と同じ反応器を用い、ヘキサメチルジ
シラザン161g(1モル)、トルエン100g及び水
250gを仕込み、これに25重量%酢酸水溶液2.5gを
添加して10時間攪拌した(ヘキサメチルジシラザ
ンに対する酢酸の当量比0.010)。反応の進行と共
にアンモニアが気泡となつて発生し、この間反応
液は発熱により20℃から30℃まで昇温した。分液
後上層の有機層をガスクロマトグラフイーで分析
したところ、溶媒を除いた後の成分はトリメチル
シラノールが98重量%、ヘキサメチルジシロキサ
ンが2重量%存在することが判明し、トリメチル
シラノールの収率は97.5モル%と計算された。
Example 5 Using the same reactor as in Example 3, 161 g (1 mol) of hexamethyldisilazane, 100 g of toluene, and water were added.
To this was added 2.5 g of a 25% by weight acetic acid aqueous solution and stirred for 10 hours (equivalent ratio of acetic acid to hexamethyldisilazane: 0.010). As the reaction progressed, ammonia was generated in the form of bubbles, and during this time the temperature of the reaction solution rose from 20°C to 30°C due to heat generation. After the separation, the upper organic layer was analyzed by gas chromatography, and it was found that the components after the solvent was removed contained 98% by weight of trimethylsilanol and 2% by weight of hexamethyldisiloxane. The percentage was calculated to be 97.5 mol%.

比較例 1 実施例3と同じ反応器を用い、ヘキサメチルジ
シラザン161g(1モル)と水250gを仕込み、これ
に25重量%酢酸ナトリウム水溶液25gを添加して
20時間攪拌した(ヘキサメチルジシラザンに対す
る酢酸ナトルウムの当量比0.076)。反応の進行と
共にアンモニアが気泡となつて発生したが、この
間反応液の温度は20℃で温度の上昇はほとんど認
められなかつた。分液により上層の有機層173g
を得、これをガスクロマトグラフイーで分析した
ところ、トリメチルシラノールが64重量%存在し
大量のヘキサメチルジシロキサンを副生してい
た。
Comparative Example 1 Using the same reactor as in Example 3, 161 g (1 mol) of hexamethyldisilazane and 250 g of water were charged, and 25 g of a 25% by weight aqueous sodium acetate solution was added thereto.
The mixture was stirred for 20 hours (equivalent ratio of sodium acetate to hexamethyldisilazane: 0.076). As the reaction progressed, ammonia was generated in the form of bubbles, but during this time the temperature of the reaction solution was 20°C, with almost no increase in temperature observed. 173g of upper organic layer by liquid separation
When analyzed by gas chromatography, it was found that 64% by weight of trimethylsilanol was present and a large amount of hexamethyldisiloxane was produced as a by-product.

実施例 6 実施例3と同じ反応器を用い、ヘキサメチルジ
シラザン161g(1モル)と水250gを仕込み、これ
に25重量%クエン酸水溶液30gを添加して5時間
攪拌した(ヘキサメチルジシラザンに対するクエ
ン酸の当量比0.12)。反応の進行と共にアンモニ
アが気泡となつて発生し、この間反応液は発熱に
より20℃から26℃まで昇温した。分液により上層
の有機層179gを得、これをガスクロマトグラフ
イーで分析したところ、トリメチルシラノールが
99重量%以上存在しヘキサメチルジシロキサンが
微量存在することが判明した。
Example 6 Using the same reactor as in Example 3, 161 g (1 mol) of hexamethyldisilazane and 250 g of water were charged, and 30 g of a 25% by weight citric acid aqueous solution was added thereto and stirred for 5 hours (hexamethyldisilazane). equivalent ratio of citric acid to 0.12). As the reaction progressed, ammonia was generated in the form of bubbles, and during this time the temperature of the reaction solution rose from 20°C to 26°C due to heat generation. 179g of the upper organic layer was obtained by liquid separation, and analysis of this by gas chromatography revealed that trimethylsilanol was detected.
It was found that 99% by weight or more of hexamethyldisiloxane was present and a trace amount of hexamethyldisiloxane was present.

比較例 2 実施例3と同じ反応器を用い、ヘキサメチルジ
シラザン161g(1モル)と水250gを仕込み、これ
に25重量%クエン酸ナトリウム水溶液40gを添加
して24時間攪拌した(ヘキサメチルジシラザンに
対するクエン酸ナトリウムの当量比0.12)。この
間反応液の温度は20℃の温度の上昇はほとんど認
められず、アンモニアの発生も認められなかつ
た。また分液後上層の有機層をガスクロマトグラ
フイーで分析したところ、ヘキサメチルジシラザ
ンがほとんど加水分解されていないことが判明し
た。
Comparative Example 2 Using the same reactor as in Example 3, 161 g (1 mol) of hexamethyldisilazane and 250 g of water were charged, and 40 g of a 25% by weight aqueous sodium citrate solution was added thereto and stirred for 24 hours (hexamethyldisilazane). Equivalent ratio of sodium citrate to silazane 0.12). During this period, the temperature of the reaction solution hardly increased by 20°C, and no ammonia was generated. Furthermore, when the upper organic layer after separation was analyzed by gas chromatography, it was found that hexamethyldisilazane was hardly hydrolyzed.

実施例 7 実施例3と同じ反応器を用い、ヘキサメチルジ
シラザン161g(1モル)と水250gを仕込み、これ
にマレイン酸10gを添加して5時間攪拌した(ヘ
キサメチルジシラザンに対するマレイン酸の当量
比0.17)。反応の進行と共にアンモニアが気泡と
なつて発生し、この間反応液は発熱により20℃か
ら28℃まで昇温した。分液により上層の有機層
180gを得、これをガスクロマトグラフイーで分
析したところ、トリメチルシラノールが99重量%
以上存在しヘキサメチルジシロキサンが1重量%
未満存在することが判明した。
Example 7 Using the same reactor as in Example 3, 161 g (1 mol) of hexamethyldisilazane and 250 g of water were charged, and 10 g of maleic acid was added thereto and stirred for 5 hours (the ratio of maleic acid to hexamethyldisilazane was Equivalence ratio 0.17). As the reaction progressed, ammonia was generated in the form of bubbles, and during this time the temperature of the reaction solution rose from 20°C to 28°C due to heat generation. The upper organic layer is separated by liquid separation.
180g was obtained and analyzed by gas chromatography, and it was found that trimethylsilanol was 99% by weight.
1% by weight of hexamethyldisiloxane
It was found that there are less than

実施例 8 実施例3と同じ反応器を用い、ヘキサメチルジ
シラザン161g(1モル)、トルエン100g及び水
100gを仕込み、これに25重量%酢酸水溶液5gを
添加して10時間攪拌した(ヘキサメチルジシラザ
ンに対する酢酸の当量比0.021)。反応の進行と共
にアンモニアが気泡となつて発生し、この間反応
液は発熱により20℃から32℃まで昇温した。分液
後上層の有機層をガスクロマトグラフイーで分析
したところ、溶媒を除いた後の成分にはトリメチ
ルシラノールが97重量%、ヘキサメチルジシロキ
サンが3重量%存在することが判明し、収率は
96.5モル%と計算された。
Example 8 Using the same reactor as in Example 3, 161 g (1 mol) of hexamethyldisilazane, 100 g of toluene, and water were added.
To this was added 5 g of 25% by weight acetic acid aqueous solution and stirred for 10 hours (equivalent ratio of acetic acid to hexamethyldisilazane: 0.021). As the reaction progressed, ammonia was generated in the form of bubbles, and during this time the temperature of the reaction solution rose from 20°C to 32°C due to exothermic heat. After separation, the upper organic layer was analyzed by gas chromatography, and it was found that the components after removing the solvent contained 97% by weight of trimethylsilanol and 3% by weight of hexamethyldisiloxane, and the yield was
It was calculated to be 96.5 mol%.

実施例 9 攪拌機とガス排出管連結の還流冷却器を付した
200ml反応器に1,3−ジビニル−1,1,3−
テトラメチルジシラザン25g(0.135モル)と水25g
を仕込み、これに25重量%酢酸水溶液2gを滴下
後攪拌を続けて反応させた(1,3−ジビニル−
1,1,3,3−テトラメチルジシラザンに対す
る酢酸の当量比0.062)。反応の進行と共にアンモ
ニアが気泡となつて発生し、この間反応液は20℃
から30℃の間を推移した。5時間後に攪拌を止
め、上層の有機層についてガスクロマトグラフイ
ーで分析したところ、ビニルジメチルシラノール
が99重量%存在し、1,3ージビニル−1,1,
3,3−テトラメチルジシロキサンが1重量%存
在することが判明した。
Example 9 Equipped with a reflux condenser connected to a stirrer and a gas discharge pipe
1,3-divinyl-1,1,3- in a 200ml reactor
25 g (0.135 mol) of tetramethyldisilazane and 25 g of water
2 g of 25% by weight acetic acid aqueous solution was added dropwise to this, and the reaction was continued with stirring (1,3-divinyl-
The equivalent ratio of acetic acid to 1,1,3,3-tetramethyldisilazane is 0.062). As the reaction progresses, ammonia is generated as bubbles, and during this time the reaction solution is kept at 20℃.
The temperature ranged between 30℃ and 30℃. After 5 hours, stirring was stopped, and the upper organic layer was analyzed by gas chromatography, and it was found that 99% by weight of vinyldimethylsilanol was present, and 1,3-divinyl-1,1,
1% by weight of 3,3-tetramethyldisiloxane was found to be present.

実施例 10 実施例9と同じ反応器を用い、1,3−ジフエ
ニル−1,1,3,3−テトラメチルジシラザン
25g(0.0876モル)と水25gを仕込み、これに25重
量%酢酸水溶液2gを滴下後攪拌を続けて反応さ
せた(1,3−ジフエニル−1,1,3,3−テ
トラメチルジシラザンに対する酢酸の当量比
0.095)。反応の進行と共にアンモニアが気泡とな
つて発生し、この間反応液は20℃から30℃の間を
推移した。5時間後に攪拌を止め、上層の有機層
についてガスクロマトグラフイーで分析したとこ
ろ、フエニルジメチルシラノールが99重量%以上
存在し、1,3ージフエニル−1,1,3,3−
テトラメチルジシロキサンが1重量%未満存在す
ることが判明した。
Example 10 Using the same reactor as in Example 9, 1,3-diphenyl-1,1,3,3-tetramethyldisilazane
25 g (0.0876 mol) and 25 g of water were charged, and 2 g of a 25 wt% acetic acid aqueous solution was added dropwise thereto, followed by a reaction with continued stirring (acetic acid relative to 1,3-diphenyl-1,1,3,3-tetramethyldisilazane). equivalence ratio of
0.095). As the reaction progressed, ammonia was generated in the form of bubbles, and during this time the temperature of the reaction solution remained between 20°C and 30°C. After 5 hours, stirring was stopped and the upper organic layer was analyzed by gas chromatography, and it was found that 99% by weight or more of phenyldimethylsilanol was present, and 1,3-diphenyl-1,1,3,3-
Less than 1% by weight of tetramethyldisiloxane was found to be present.

実施例 11 実施例9と同じ反応器を用い、1,3−ビス
(クロロメチル)−1,1,3,3−テトラメチル
ジシラザン25g(0.109モル)と水25gを仕込み、こ
れにクエン酸アンモニウム1gを添加して反応さ
せた(1,3−ビス(クロロメチル)−1,1,
3,3−テトラメチルジシラザンに対するクエン
酸アンモニウムの当量比0.057)。反応の進行と共
にアンモニアが気泡となつて発生し、この間反応
液は20℃から30℃の間を推移した。5時間後に攪
拌を止め、上層の有機層についてガスクロマトグ
ラフイーで分析したところ、クロロメチルジメチ
ルシラノールが98重量%存在し、1,3−ビス
(クロロメチル)−1,1,3,3−テトラメチル
ジシロキサンが2重量%存在することが判明し
た。
Example 11 Using the same reactor as in Example 9, 25 g (0.109 mol) of 1,3-bis(chloromethyl)-1,1,3,3-tetramethyldisilazane and 25 g of water were charged, and citric acid was added to this. 1 g of ammonium was added to react (1,3-bis(chloromethyl)-1,1,
The equivalent ratio of ammonium citrate to 3,3-tetramethyldisilazane is 0.057). As the reaction progressed, ammonia was generated in the form of bubbles, and during this time the temperature of the reaction solution remained between 20°C and 30°C. After 5 hours, stirring was stopped, and the upper organic layer was analyzed by gas chromatography, and it was found that 98% by weight of chloromethyldimethylsilanol was present, and 1,3-bis(chloromethyl)-1,1,3,3-tetra It was found that 2% by weight of methyldisiloxane was present.

〔発明の効果〕〔Effect of the invention〕

本発明によつて、簡単な設備及び操作によつて
シラノール化合物を製造することができ、反応時
間、容積効率或は精製工程のどの項目を重視する
にしても、単にカルボキシル基含有化合物等と水
の使用量を加減するだけで目的を達成できる。こ
れはカルボキシル基含有化合物等を用いるときは
触媒量でもジシラザン化合物の加水分解が可能で
あることの顕著な効果である。また副生するアン
モニアを系外で、反応に影響を与えることなく中
和することができることも大きな利点である。な
おまた、本発明によればジシロキサン化合物の副
生がほとんど無いか或は非常に少ないので特に水
洗工程や蒸留工程などの精製をすることなく次工
程の原料として使用することができる。
According to the present invention, silanol compounds can be produced using simple equipment and operations, and regardless of whether priority is given to reaction time, volumetric efficiency, or purification process, it is possible to simply produce a silanol compound by simply combining a carboxyl group-containing compound and water. The purpose can be achieved simply by adjusting the amount of . This is a remarkable effect of the fact that when a carboxyl group-containing compound or the like is used, the disilazane compound can be hydrolyzed even in a catalytic amount. Another great advantage is that by-product ammonia can be neutralized outside the system without affecting the reaction. Furthermore, according to the present invention, there is little or very little by-product of the disiloxane compound, so it can be used as a raw material for the next step without any purification such as washing with water or distillation.

Claims (1)

【特許請求の範囲】 1 一般式〔A〕 (ここにR1、R2、R3は水素原子、炭素数1〜
18のアルキル基、炭素数2〜7の脂肪族二重結合
含有基、炭素数1〜10のハロゲン化アルキル基、
フエニル基より選ばれる基を表わす。)で表わさ
れるジシラザン化合物を加水分解して一般式
〔B〕R1R2R3Si−OH(ここにR1、R2、及びR3
前記と同じ意味を表わす。)で表わされるシラノ
ール化合物を製造するに際し、水溶性のカルボキ
シル基含有化合物又はカルボキシル基含有化合物
のアンモニウム塩で水溶性のもの(以下これらを
「カルボキシル基含有化合物等」という。)の存在
下に前記加水分解反応を行うことを特徴とするシ
ラノール化合物の製造方法。 2 カルボキシル基含有化合物等の使用量がジシ
ラザン化合物に対して当量比0.005〜2であるこ
とを特徴とする特許請求の範囲第1項に記載のシ
ラノール化合物の製造方法。 3 前記カルボキシル基含有化合物等のアンモニ
ウム塩の使用量がジシラザン化合物に対して当量
比0.01〜0.2であることを特徴とする特許請求の
範囲第1項に記載のシラノール化合物の製造方
法。
[Claims] 1 General formula [A] (Here, R 1 , R 2 , and R 3 are hydrogen atoms, with 1 to 1 carbon atoms.
18 alkyl groups, aliphatic double bond-containing groups having 2 to 7 carbon atoms, halogenated alkyl groups having 1 to 10 carbon atoms,
Represents a group selected from phenyl groups. ) is hydrolyzed to produce a silanol represented by the general formula [B] R 1 R 2 R 3 Si-OH (where R 1 , R 2 and R 3 have the same meanings as above). When producing a compound, the hydrolysis reaction is carried out in the presence of a water-soluble carboxyl group-containing compound or a water-soluble ammonium salt of a carboxyl group-containing compound (hereinafter referred to as "carboxyl group-containing compound, etc."). A method for producing a silanol compound, characterized by: 2. The method for producing a silanol compound according to claim 1, wherein the amount of the carboxyl group-containing compound, etc. used is in an equivalent ratio of 0.005 to 2 with respect to the disilazane compound. 3. The method for producing a silanol compound according to claim 1, wherein the amount of ammonium salt such as the carboxyl group-containing compound used is in an equivalent ratio of 0.01 to 0.2 with respect to the disilazane compound.
JP6069087A 1987-03-16 1987-03-16 Production of silanol compound Granted JPS63227591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6069087A JPS63227591A (en) 1987-03-16 1987-03-16 Production of silanol compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6069087A JPS63227591A (en) 1987-03-16 1987-03-16 Production of silanol compound

Publications (2)

Publication Number Publication Date
JPS63227591A JPS63227591A (en) 1988-09-21
JPH0357111B2 true JPH0357111B2 (en) 1991-08-30

Family

ID=13149547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6069087A Granted JPS63227591A (en) 1987-03-16 1987-03-16 Production of silanol compound

Country Status (1)

Country Link
JP (1) JPS63227591A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106279233B (en) * 2016-07-18 2018-10-19 浙江新安化工集团股份有限公司 A method of preparing trialkyl silanol

Also Published As

Publication number Publication date
JPS63227591A (en) 1988-09-21

Similar Documents

Publication Publication Date Title
JPH04180926A (en) Production of polyorganosiloxane resin
JP4219438B2 (en) Method for producing octaphenylcyclotetrasiloxane
EP1052262B1 (en) Preparation of silanol-containing organosilicon compounds
JP2003226692A (en) Method for producing silicone compound
JPS6136827B2 (en)
JPH0357111B2 (en)
JPH10237177A (en) Production of network polysilane
JPH08113649A (en) Production of low-molecular-weight silanolated organosiloxane
JPH09165449A (en) Production of diorganopolysiloxane
JP3069297B2 (en) Polyester production method
JP3606613B2 (en) Low polymerization degree organopolysiloxane production method
JPH0366300B2 (en)
JP3864648B2 (en) Process for producing 1,3-bis (carboxyalkyl) tetraalkyldisiloxane
JP4147115B2 (en) Method for producing silanol-terminated oligomeric material
JPH0212469B2 (en)
JP4379968B2 (en) Method for producing binuclear dimethylol compound
JP2002030005A5 (en)
JP3915872B2 (en) Method for producing tetrakis (trimethylsilyl) silane and tris (trimethylsilyl) silane
JP3874073B2 (en) Method for producing chlorosilane compound having texyl group
JPH1095745A (en) Production of sorbic acid
JP3815692B2 (en) Method for producing dibenzyl phosphate alkali metal salt or alkaline earth metal salt
JP2002069050A (en) Method for producing hydrazocarbonamide
JP3298020B2 (en) Method for producing glycidyl quaternary ammonium salt
JP4212821B2 (en) Method for producing high-purity 4,4'-dihydroxydiphenylsulfone monoether or a derivative thereof
JPH0224263B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term