JPH0356578B2 - - Google Patents

Info

Publication number
JPH0356578B2
JPH0356578B2 JP58003794A JP379483A JPH0356578B2 JP H0356578 B2 JPH0356578 B2 JP H0356578B2 JP 58003794 A JP58003794 A JP 58003794A JP 379483 A JP379483 A JP 379483A JP H0356578 B2 JPH0356578 B2 JP H0356578B2
Authority
JP
Japan
Prior art keywords
mol
reaction
urea
water
polyamide polyurea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58003794A
Other languages
Japanese (ja)
Other versions
JPS59129229A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP379483A priority Critical patent/JPS59129229A/en
Publication of JPS59129229A publication Critical patent/JPS59129229A/en
Publication of JPH0356578B2 publication Critical patent/JPH0356578B2/ja
Granted legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/54Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
    • D21H17/55Polyamides; Polyaminoamides; Polyester-amides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/14Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
    • D21H19/24Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H19/30Polyamides; Polyimides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/44Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
    • D21H19/62Macromolecular organic compounds or oligomers thereof obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は紙用塗工組成物の耐水化剤、インキ着
肉向上剤等として有用であり、しかも塗工紙の着
色がなく、耐ブリスター性に優れ、しかもホルム
アルデヒドの発生が全くない等の優れた性質を有
する新規な熱硬化性樹脂水溶液の製造方法に関す
るものである。 従来より、顔料と水性バインダーを主体とし、
更に耐水化剤などの補助剤を配合した紙用塗工組
成物を紙に塗工し、印刷適性に優れた塗工紙を製
造することは知られている。 近年、塗工紙製造技術の進歩は著しく、たとえ
ば生産性を増すために塗工組成物中の固型分濃度
を高めてブレードコーターで高速塗工することが
行なわれるため、塗工組成物の粘度の上昇がな
く、塗工性の良いことが要求されている。 また、印刷の高級化、高速化やオフセツト輪転
印刷の普及に伴ない、塗被層の耐水性、インキ転
移性、耐ブリスター性の向上が要求されている。 従来これらの性能向上のため、水性バインダー
成分の改質、補助剤成分の改良などの多くの提案
がなされている。たとえば耐水性は顔料に対する
水性バインダー量の増量などで改良されるが反
面、印刷時のインキ転移性が低下するため、一般
に補助剤成分として耐水化剤の配合による方法が
用いられている。 この場合の耐水化剤の代表的なものは水性バイ
ンダーの耐水化剤であるが、従来から使用又は提
案されている耐水化剤はいずれも有効な長所を有
するい反面、同時に重大な欠点を有し、実用上満
足しうるものではなかつた。 たとえばメラミン−ホルムアルデヒド初期縮合
物は、塗工紙のインキ転移性が不十分であり塗工
組成物のPHが高い場合には耐水性が不十分であ
り、また塗工紙からの遊離ホルムアルデヒドの発
生量が多い等の問題がある。また、ポリアミド尿
素とホルムアムデヒドとの反応生成物は、塗工紙
のインキ転移性向上効果にすぐれ、耐水性も良好
であるが、塗工紙からの遊離ホルムアルデヒドの
発生量が少ないものの皆無ではないという欠点を
有している。また、グリオキザール等のジアルデ
ヒドは、遊離ホルムアルデヒドは無いが、都工紙
のインキ転移性向上効果が劣つている。 このため、耐水性、インキ転移性にすぐれしか
も有害かつ刺激臭のあるホルマリンの発生が全く
ない塗工紙を与えることのできる耐水化剤の開発
が強く望まれている。 このような事情に鑑み、本発明者らは、耐水化
効果にすぐれ、有害なホルムアルデヒド発生が全
くなく、かつ印刷時のインキ転移性のすぐれた塗
工紙を与えることのできる耐水化剤を開発すべく
鋭意検討した結果、本発明に至つた。 すなわち本発明は、 (a) ポリアルキレンポリアミン、 (b) (a)のポリアルキレンポリアミン中のアミノ基
1モル当り、0.2〜1.0モルの尿素、および (c) (a)のポリアルキレンポリアミン1モルに対
し、0.3〜0.7モルの二塩基性カルボン酸 を原料として反応させて得られるポリアミドポリ
尿素を、更に (d) (b)の尿素1モルに対し、0.01〜2モルのグリ
オキザールおよびグルタルアルデヒドから選ば
れるジアルデヒド と反応させることを特徴とする熱硬化性樹脂水溶
液の製造方法である。 本発明に使用されるポリアルキレンポリアミン
としては、分子中に2個の第1級アミノ基および
少なくとも1個の第2級アミノ基を有するポリア
ルキレンポリアミンであり、例えばジエチレント
リアミン、トリエチレンテトラミン、テトラエチ
レンペンタミン、イミノビスプロピルアミン、3
−アザヘキサン−1,6−ジアミン、4,7−ジ
アザデカン−1,10−ジアミン等があげられる。
これらポリアルキレンポリアミンは一種のみなら
ず二種以上の混合物としても用いることができ
る。 本発明において使用される二塩基性カルボン酸
としてはコハク酸、グルタル酸、アジピン酸、セ
バシン酸、マレイン酸、フマール酸のような脂肪
族カルボン酸、イソフタル酸、テレフタル酸の如
き芳香族カルボン酸およびこれらの混合物があげ
られる。 本発明において使用されるジアルデヒドは、グ
リオキザールまたはグルタルアルデヒドであり、
それぞれ単独で用いてもよいし、また両者を混合
して用いてもよい。これらのなかでは、グリオキ
ザールが特に好ましい。 本発明にいうポリアミドポリ尿素は、例えば尿
素とポリアルキレンポリアミンを脱アンモニア反
応させ、次いで二塩性カルボン酸と脱水縮合させ
更に尿素と脱アンモニア反応させて得られるポリ
アミドポリ尿素(以下ポリアミドポリ尿素〔A〕
と称する)又はポリアルキレンポリアミンと二塩
基性カルボン酸を脱水縮合させ、次いで尿素と脱
アンモニア反応させて得られるポリアミドポリ尿
素(以下ポリアミドポリ尿素〔B〕と称する)等
である。 ポリアミドポリ尿素〔A〕において、尿素とポ
リアルキレンポリアミンのモル比はおよそ1:2
付近で実施することが好ましい。反応温度は100
〜200℃、好ましくは120〜170℃が適当であり、
発生するアンモニアを系外に除去しつつ、2〜5
時間反応させる。次いでポリアルキレンポリアミ
ン1モルに対し、0.3〜0.7モルの二塩基性カルボ
ン酸と脱水縮合させる。反応温度120〜250℃、好
ましくは140〜200℃にて生成する水を系外に除去
しながら、2〜10時間反応を行う。このようにし
て得られた縮合反応物を更に尿素と反応させる。
尿素の量は、原料ポリアルキレンポリアミン中の
第二級アミノ基1モル当り0.2〜1.5モル、好まし
くは0.5〜1.1モルである。反応温度は100〜180
℃、好ましくは120〜150℃であり、この温度で1
〜5時間、発生するアンモニアを系外に除去しな
がら反応を行う。このようにしてポリアミドポリ
尿素〔A〕が得られる。 ポリアミドポリ尿素〔B〕において、ポリアル
キレンポリアミンと二塩基性カルボン酸との反応
は、温度120〜250℃、好ましくは140〜200℃に
て、生成する水を系外に除去しながら2〜10時間
行われる。二塩基性カルボン酸1モルに対し、ポ
リアルキレンポリアミン1.4〜3.0モル、好ましく
は1.8〜2.5モルのモル比で反応を行う。このよう
にして得られた脱水縮合反応生成物を次いで尿素
と反応させる。尿素の使用量は原料ポリアルキレ
ンポリアミン中のアミノ基1モル当り、0.2〜1.0
モル、好ましくは0.4〜0.8モルである。反応温度
は100〜180℃であるが、120〜150℃が好適であ
る。この温度で1〜5時間発生するアンモニアを
系外に除去しつつ反応を行う。尿素の仕込方法と
して所要量を一括して仕込み反応させることもま
た所要量の一部を仕込み、脱アンモニア反応を完
結させた後、残りの尿素を仕込み再度脱アンモニ
ア反応を行うことも可能でる。このようにしてポ
リアミドポリ尿素〔B〕が得られる。 上記のようにして得られたポリアミドポリ尿素
を水に溶解させ、ジアルデヒドと反応させる。反
応はポリアミドポリ尿素の濃度20〜70重量%、好
ましくは30〜60%の水溶液中で、PH8以下、好ま
しくはPH4以下となるように酸、例えば塩酸、硫
酸、りん酸、ギ酸、酢酸等により調整した後、反
応温度40〜80℃で1〜10時間行われる。ジアルデ
ヒドの量はポリアミドポリ尿素を合成するために
使用した全尿素1モルに対し、0.01〜2モル、好
ましくは0.05〜1モルが適当である。 反応終了後、必要ならば、反応生成物のPHを6
〜9に調整する。 このようにして、本発明の方法により製造され
た熱硬化性樹脂は、紙用塗工組成物の耐水化剤、
インキ着肉向上剤として有用であり、しかも、こ
れを用いた紙用塗工組成物、カラーシヨツク(組
成物の著しい増粘、顔料の凝集など)もなく、塗
工液の安定性に優れ、これを紙基体上に塗布して
得た塗工紙は塗被層の耐水性に優れ、ホルムアル
デヒドの発生が全くなく、インキ転送性の向上に
優れるとともに、着色も認められず、オフセツト
輪転写印刷での耐ブリスター性の向上にも有効で
あるという種々のすぐれた特徴を有する。 以下に本発明を実施例、参考例により説明す
る。文中、%は特記しない限り重量%を表わす。 実施例 1 温度計、還流冷却器、撹拌棒を備えた四ツ口フ
ラスコにトリエチレンテトラミン292g(2モル)
と尿素60g(1モル)を仕込み、145〜150℃で発
生するアンモニアを系外に除去しながら4時間反
応を行い、次いでアジピン酸146g(1モル)を
加え、150〜155℃で5時間縮合反応を行つた。
120℃まで冷却し後、尿素240g(4モル)を加え
125〜130℃で2時間脱アンモニア反応を行つた。
その後、水380gを徐々に加え、ポリアミドポリ
尿素の水溶液を得た。次に40%グリオキザール水
溶液290g(2モル)を加え、50%硫酸にてPHを
3.0に調整した後、70℃にて5時間保温撹拌した。
反応液を25℃まで冷却し、固形分50%の熱硬化性
樹脂水溶液を得た。 実施例 2 実施例1と同様の装置にジエチレントリアミン
206g(2モル)と尿素60g(1モルを仕込み、
140〜145℃で5時間脱アンモニア反応を行い、次
いでアジピン酸146g(1モル)を加え、160〜
170℃で2時間脱水縮合させた。120℃まで冷却し
た後、尿素120g(2モル)を加え、130〜140℃
で1.5時間脱アンモニア反応を行つた。次いで水
250gを徐々に加え、ポリアミドポリ尿素の水溶
液を得た。次に40%グリオキザールが水溶液290
g(2モル)を加え、37%塩酸にてPHを3.5に調
整した後、70℃にて4時間保温撹拌した。反応液
を冷却し、固形分50%の熱硬化性樹脂水溶液を得
た。 実施例 3 実施例1と同様の装置にトリエチレンテトラミ
ン365g(2.5モル)、水20g及びアジピン酸146g
(1モル)を仕込み、155〜160℃で4時間脱水縮
合させた。ついで尿素60g(1モル)を仕込み、
145〜150℃で3時間脱アンモニア反を行つた後、
130℃まで冷却し、更に尿素240g(4モル)を仕
込み、130〜140℃で3時間脱アンモニア反応を行
つた。水230gを徐々に加え、ポリアミドポリ尿
素の水溶液を得た。次いで40%グリオキザール水
溶液580g(4モル)を加え50%硫酸にてPHを3.5
に調整した後、65℃にて5時間保温撹拌し固形分
40%の熱硬化性樹脂水溶液を得た。 実施例 4 実施例1と全く同様にしてポリアミドポリ尿素
の水溶液を得た。 次に25%のグルタルアルデビド水溶液600g
(1.5モル)を加え、50%硫酸にてPH=3.0に調整
した後、70℃にて5時間保温撹拌し固形分36%の
熱硬化性樹脂水溶液を得た。 参考例 1 実施例1〜4の本発明による熱硬化性樹脂水溶
液及び、比較としてスミレーズレジン613(住友化
学工業社商品名:メラミン−ホルムアルデヒド樹
脂)、スミレーズレジン636(住友化学工業社商品
名:ポリアミドポリ尿素とホルムアルデヒドとの
反応生成物)およびグリオキザールをそれぞれ耐
水化剤として第1表に示す割合で配合(いずれも
固形分重量比)し、濃度が55%となるように巣を
加えて紙用塗工組成物を調整した。
The present invention is useful as a water resistance agent, ink adhesion improver, etc. for paper coating compositions, and has other advantages such as no coloring of coated paper, excellent blister resistance, and no generation of formaldehyde. The present invention relates to a method for producing a novel thermosetting resin aqueous solution having such properties. Traditionally, pigments and water-based binders have been the main ingredients,
It is known to produce coated paper with excellent printability by coating paper with a paper coating composition containing an adjuvant such as a waterproofing agent. In recent years, there has been significant progress in coated paper manufacturing technology. For example, in order to increase productivity, the solid concentration in the coating composition is increased and coating is performed at high speed with a blade coater. It is required that there is no increase in viscosity and that coating properties are good. Furthermore, as printing becomes more sophisticated and faster, and offset rotary printing becomes more widespread, improvements in the water resistance, ink transferability, and blister resistance of the coating layer are required. In order to improve these performances, many proposals have been made in the past, such as modification of the aqueous binder component and improvement of the auxiliary component. For example, water resistance can be improved by increasing the amount of aqueous binder relative to the pigment, but on the other hand, ink transferability during printing decreases, so a method is generally used in which a water resistance agent is added as an auxiliary component. A typical example of a water-resistant agent in this case is a water-based binder water-resistant agent, but while all of the previously used or proposed water-resistant agents have effective advantages, they also have serious drawbacks. However, it was not practically satisfactory. For example, melamine-formaldehyde initial condensates have insufficient ink transfer properties on coated paper and insufficient water resistance when the pH of the coating composition is high, and free formaldehyde is generated from coated paper. There are problems such as large amounts. In addition, the reaction product of polyamide urea and formaldehyde has an excellent effect on improving the ink transfer properties of coated paper and has good water resistance, but it is said that although the amount of free formaldehyde generated from coated paper is small, it is not completely absent. It has drawbacks. Furthermore, although dialdehydes such as glyoxal do not contain free formaldehyde, they have a poor effect on improving the ink transfer properties of Miyako paper. Therefore, there is a strong demand for the development of a water-resistant agent that can provide coated paper with excellent water resistance and ink transfer properties, and which does not generate formalin, which has a harmful and irritating odor. In view of these circumstances, the present inventors have developed a waterproofing agent that can provide coated paper with excellent waterproofing effects, no generation of harmful formaldehyde, and excellent ink transfer properties during printing. As a result of intensive research, we have arrived at the present invention. That is, the present invention provides (a) a polyalkylene polyamine, (b) 0.2 to 1.0 mole of urea per mole of amino groups in the polyalkylene polyamine (a), and (c) 1 mole of the polyalkylene polyamine (a). (d) A polyamide polyurea obtained by reacting 0.3 to 0.7 mol of dibasic carboxylic acid as a raw material, and (d) 0.01 to 2 mol of glyoxal and glutaraldehyde per 1 mol of urea in (b). This is a method for producing an aqueous thermosetting resin solution, which is characterized by reacting it with a selected dialdehyde. The polyalkylene polyamine used in the present invention is a polyalkylene polyamine having two primary amino groups and at least one secondary amino group in the molecule, such as diethylene triamine, triethylene tetramine, tetraethylene Pentamine, iminobispropylamine, 3
-Azahexane-1,6-diamine, 4,7-diazadecane-1,10-diamine, and the like.
These polyalkylene polyamines can be used not only alone but also as a mixture of two or more. Dibasic carboxylic acids used in the present invention include aliphatic carboxylic acids such as succinic acid, glutaric acid, adipic acid, sebacic acid, maleic acid, and fumaric acid; aromatic carboxylic acids such as isophthalic acid and terephthalic acid; Examples include mixtures of these. The dialdehyde used in the present invention is glyoxal or glutaraldehyde,
Each may be used alone or a mixture of the two may be used. Among these, glyoxal is particularly preferred. The polyamide polyurea referred to in the present invention is a polyamide polyurea (hereinafter referred to as polyamide polyurea [ A]
) or a polyamide polyurea (hereinafter referred to as polyamide polyurea [B]) obtained by dehydration condensation of a polyalkylene polyamine and a dibasic carboxylic acid, followed by a deammonia reaction with urea. In polyamide polyurea [A], the molar ratio of urea and polyalkylene polyamine is approximately 1:2
It is preferable to conduct it nearby. The reaction temperature is 100
-200℃, preferably 120-170℃,
While removing the generated ammonia from the system,
Allow time to react. Next, 1 mole of polyalkylene polyamine is subjected to dehydration condensation with 0.3 to 0.7 mole of dibasic carboxylic acid. The reaction is carried out at a reaction temperature of 120 to 250°C, preferably 140 to 200°C, for 2 to 10 hours while removing generated water from the system. The condensation reaction product thus obtained is further reacted with urea.
The amount of urea is 0.2 to 1.5 mol, preferably 0.5 to 1.1 mol, per mol of secondary amino groups in the raw material polyalkylene polyamine. Reaction temperature is 100-180
℃, preferably 120-150℃, and at this temperature 1
The reaction is carried out for ~5 hours while removing generated ammonia from the system. In this way, polyamide polyurea [A] is obtained. In the polyamide polyurea [B], the reaction between the polyalkylene polyamine and the dibasic carboxylic acid is carried out at a temperature of 120 to 250°C, preferably 140 to 200°C, while removing the water produced from the system. Time is done. The reaction is carried out at a molar ratio of 1.4 to 3.0 mol, preferably 1.8 to 2.5 mol, of polyalkylene polyamine per mol of dibasic carboxylic acid. The dehydration condensation reaction product thus obtained is then reacted with urea. The amount of urea used is 0.2 to 1.0 per mole of amino group in the raw material polyalkylene polyamine.
mol, preferably 0.4 to 0.8 mol. The reaction temperature is 100-180°C, preferably 120-150°C. The reaction is carried out at this temperature for 1 to 5 hours while removing the generated ammonia from the system. As a method of charging urea, it is possible to charge the required amount all at once and perform the reaction, or it is also possible to charge a part of the required amount and complete the deammonification reaction, and then charge the remaining urea and perform the deammonification reaction again. In this way, polyamide polyurea [B] is obtained. The polyamide polyurea obtained as described above is dissolved in water and reacted with dialdehyde. The reaction is carried out in an aqueous solution of polyamide polyurea with a concentration of 20 to 70% by weight, preferably 30 to 60%, using an acid such as hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, etc. to a pH of 8 or less, preferably 4 or less. After adjustment, the reaction is carried out at a temperature of 40 to 80°C for 1 to 10 hours. The appropriate amount of dialdehyde is 0.01 to 2 mol, preferably 0.05 to 1 mol, per 1 mol of total urea used to synthesize the polyamide polyurea. After the reaction is complete, if necessary, lower the pH of the reaction product to 6.
Adjust to ~9. In this way, the thermosetting resin produced by the method of the present invention can be used as a water resistant agent for paper coating compositions,
It is useful as an ink adhesion improver, and the coating composition for paper using it has no color shock (significant thickening of the composition, aggregation of pigments, etc.), and has excellent stability of the coating solution. The coated paper obtained by coating this on a paper base has excellent water resistance in the coating layer, no formaldehyde generation, excellent ink transfer properties, no coloration, and is suitable for offset wheel transfer printing. It has various excellent features such as being effective in improving blister resistance. The present invention will be explained below using Examples and Reference Examples. In the text, % represents weight % unless otherwise specified. Example 1 292 g (2 moles) of triethylenetetramine in a four-necked flask equipped with a thermometer, reflux condenser, and stirring bar.
and 60 g (1 mol) of urea were charged, and the reaction was carried out for 4 hours while removing ammonia generated from the system at 145-150°C. Next, 146 g (1 mol) of adipic acid was added and condensation was carried out at 150-155°C for 5 hours. The reaction was carried out.
After cooling to 120℃, add 240g (4 moles) of urea.
Deammonification reaction was carried out at 125-130°C for 2 hours.
Thereafter, 380 g of water was gradually added to obtain an aqueous solution of polyamide polyurea. Next, add 290g (2 mol) of 40% glyoxal aqueous solution and adjust the pH with 50% sulfuric acid.
After adjusting the temperature to 3.0, the mixture was stirred for 5 hours at 70°C.
The reaction solution was cooled to 25°C to obtain a thermosetting resin aqueous solution with a solid content of 50%. Example 2 Diethylenetriamine was added to the same apparatus as in Example 1.
Prepare 206g (2 moles) and 60g (1 mole) of urea,
Ammonia removal reaction was carried out at 140-145°C for 5 hours, then 146 g (1 mol) of adipic acid was added, and 160-145°C
Dehydration condensation was carried out at 170°C for 2 hours. After cooling to 120℃, add 120g (2 moles) of urea and heat to 130-140℃.
The deammoniation reaction was carried out for 1.5 hours. Then water
250 g was gradually added to obtain an aqueous solution of polyamide polyurea. Next, 40% glyoxal is an aqueous solution of 290%
After adjusting the pH to 3.5 with 37% hydrochloric acid, the mixture was stirred at 70° C. for 4 hours while keeping it warm. The reaction solution was cooled to obtain a thermosetting resin aqueous solution with a solid content of 50%. Example 3 In an apparatus similar to Example 1, 365 g (2.5 moles) of triethylenetetramine, 20 g of water, and 146 g of adipic acid were added.
(1 mol) was charged and subjected to dehydration condensation at 155 to 160°C for 4 hours. Next, add 60g (1 mol) of urea,
After removing ammonia at 145-150℃ for 3 hours,
After cooling to 130°C, 240g (4 moles) of urea was added, and ammonia removal reaction was carried out at 130-140°C for 3 hours. 230 g of water was gradually added to obtain an aqueous solution of polyamide polyurea. Next, 580 g (4 mol) of 40% glyoxal aqueous solution was added and the pH was adjusted to 3.5 with 50% sulfuric acid.
After adjusting to
A 40% thermosetting resin aqueous solution was obtained. Example 4 In exactly the same manner as in Example 1, an aqueous solution of polyamide polyurea was obtained. Next, 600g of 25% glutaraldebide aqueous solution
(1.5 mol) was added, the pH was adjusted to 3.0 with 50% sulfuric acid, and the mixture was stirred at 70° C. for 5 hours to obtain an aqueous thermosetting resin solution with a solid content of 36%. Reference Example 1 The thermosetting resin aqueous solutions according to the present invention of Examples 1 to 4 and, for comparison, Sumireze Resin 613 (Sumitomo Chemical Co., Ltd. trade name: melamine-formaldehyde resin), Sumitomo Chemical Co., Ltd. trade name: Sumiraze Resin 636 (Sumitomo Chemical Co., Ltd. trade name) : reaction product of polyamide polyurea and formaldehyde) and glyoxal as water resistant agents in the proportions shown in Table 1 (both solid content weight ratio), and nests were added so that the concentration was 55%. A paper coating composition was prepared.

【表】 (1) 塗工紙の作成 上記の方で得られた組成物を、コーテイング
ロツドを用いて米坪量85g/m2のコート原紙に
乾燥固型分で片面で約15g/m2となるように両
面塗工し、120℃で30秒間熱風乾燥を行なつた。
次いでこの塗工紙をスーパーカレンダーにかけ
(ロール温度60℃、ロール線圧60Kg/cm、2回
通し)、20℃、65%RH中で調湿したものを試
験用試料とし、各種試験に供した。結果を第2
表に示した。 (2) 各種試験法 (A) 塗工液物性 塗工液のPH ガラス電極PH計使用、測定温度20℃ 塗工液の粘度 B型粘度計使用、回転数60rpm、測定温
度20℃ (B) 塗工紙物性 塗膜の耐水性 (イ) Wet Rub法 コート紙面上にイオン交換水を約0.1
ml滴下し、指先で7回摩擦し、溶出分を
黒紙に移行させて溶出量を肉眼で判定し
た。 判定基準は次のように行なつた。 耐水性(劣)1〜5(優) (ロ) Wet Pick法 RI試験機(明製作所製)を使用して、
塗被面を給水ロールにて湿潤したのち印
刷し、塗被面の脱落、損傷状態を肉眼観
察し、判定した。判定基準はWet Rub
法と同様である。 塗工紙からのホルムアルデヒドの定量
JIS L−1041溶相抽出法(2)アセチルアセト
ン法に準拠 なおホルムアルデヒド量の測定は、ポリ
エチレン袋に密封するなどして他からの移
行、発散を防止して測定に供した。 塗工紙のインキ転移性 RI試験機を用いて下記の方法で印刷し、
インキ転移性を肉眼で観察、判定した。 判定基準は、(優)5〜1(劣)とし (イ) A法 練り込み中のインキに、水を滴下した
後に印刷する。 (ロ) B法 塗被面を給水ロールにて湿潤させた後
に印刷する。 (ハ) C法 上記、A、B法の組み合せ方法により
印刷する。 塗工紙の白度および耐熱白度 150℃で30分間熱風乾燥機で熱処理する
前後の塗工紙の白度を、JISP−8128に準
拠し、ハンター反射率計のB値を測定する
ことにより試験した。 数字の大きいもの程白度が良好である。 耐ブリスター性 RI試験機を用いてオフ輪用インキを使
用し、両面塗工紙に両面印刷を行ない、調
湿後、加熱したシリコンオイル浴中に浸
し、ブリスターが発生する時の最低温度を
示す。
[Table] (1) Preparation of coated paper The composition obtained in the above manner was applied to coated base paper with a basis weight of 85 g/m 2 using a coating rod, with a dry solid content of approximately 15 g/m on one side. 2 , and dried with hot air at 120°C for 30 seconds.
This coated paper was then supercalendered (roll temperature 60°C, roll linear pressure 60Kg/cm, 2 passes), and the humidity conditioned at 20°C and 65% RH, which was used as a test sample and subjected to various tests. . Second result
Shown in the table. (2) Various test methods (A) Physical properties of coating liquid PH of coating liquid Using glass electrode PH meter, measurement temperature 20℃ Viscosity of coating liquid Using B-type viscometer, rotation speed 60 rpm, measurement temperature 20℃ (B) Physical properties of coated paper Water resistance of coating film (a) Wet Rub method Approx.
ml was dropped, rubbed 7 times with a fingertip, the eluted amount was transferred to black paper, and the eluted amount was determined visually. The evaluation criteria were as follows. Water resistance (poor) 1-5 (excellent) (b) Wet Pick method Using an RI tester (manufactured by Mei Seisakusho),
After the coated surface was moistened with a water supply roll, it was printed, and the peeling off and damage on the coated surface were observed and judged with the naked eye. Judgment criteria is Wet Rub
Same as law. Determination of formaldehyde from coated paper
Compliant with JIS L-1041 solution phase extraction method (2) acetylacetone method The amount of formaldehyde was measured after sealing it in a polyethylene bag to prevent it from migrating or escaping. Ink transfer properties of coated paper: Printed using an RI tester using the following method.
Ink transferability was visually observed and judged. The evaluation criteria are (excellent) and 5 to 1 (poor). (a) Method A Printing is performed after water is dripped into the ink that is being mixed. (b) Method B: Print after moistening the surface to be coated with a water supply roll. (c) Method C: Print using a combination of methods A and B above. Whiteness and heat-resistant whiteness of coated paper The whiteness of coated paper before and after heat treatment in a hot air dryer at 150℃ for 30 minutes was determined by measuring the B value of a Hunter reflectance meter in accordance with JISP-8128. Tested. The larger the number, the better the whiteness. Blister resistance: Print on both sides of coated paper using off-circle ink using an RI tester, and after adjusting the humidity, immerse it in a heated silicone oil bath to show the lowest temperature at which blisters occur. .

【表】【table】

Claims (1)

【特許請求の範囲】 1 (a) ポリアルキレンポリアミン、 (b) (a)のポリアルキレンポリアミン中のアミノ基
1モル当り、0.2〜1.0モルの尿素、および (c) (a)のポリアルキレンポリアミン1モルに対
し、0.3〜0.7モルの二塩基性カルボン酸 を原料として反応させて得られるポリアミドポリ
尿素を、更に (d) (b)の尿素1モルに対し、0.01〜2モルのグリ
オキザールおよびグルタルアルデヒドから選ば
れるジアルデヒド と反応させることを特徴とする熱硬化性樹脂水溶
液の製造方法。 2 ポリアミドポリ尿素と反応させるジアルデヒ
ドの割合が、ポリアミドポリ尿素を製造する際に
用いた全尿素1モルに対して0.05〜1モルである
特許請求の範囲第1項記載の方法。 3 ジアルデヒドがグリオキザールである特許請
求の範囲第1項記載の方法。
[Scope of Claims] 1 (a) a polyalkylene polyamine, (b) 0.2 to 1.0 mol of urea per mol of amino group in the polyalkylene polyamine of (a), and (c) the polyalkylene polyamine of (a) 1 mole of polyamide polyurea obtained by reacting 0.3 to 0.7 mole of dibasic carboxylic acid as a raw material; A method for producing an aqueous thermosetting resin solution, which comprises reacting with a dialdehyde selected from aldehydes. 2. The method according to claim 1, wherein the proportion of dialdehyde to be reacted with the polyamide polyurea is 0.05 to 1 mole per mole of total urea used in producing the polyamide polyurea. 3. The method according to claim 1, wherein the dialdehyde is glyoxal.
JP379483A 1983-01-12 1983-01-12 Production of aqueous solution of thermosetting resin Granted JPS59129229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP379483A JPS59129229A (en) 1983-01-12 1983-01-12 Production of aqueous solution of thermosetting resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP379483A JPS59129229A (en) 1983-01-12 1983-01-12 Production of aqueous solution of thermosetting resin

Publications (2)

Publication Number Publication Date
JPS59129229A JPS59129229A (en) 1984-07-25
JPH0356578B2 true JPH0356578B2 (en) 1991-08-28

Family

ID=11567093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP379483A Granted JPS59129229A (en) 1983-01-12 1983-01-12 Production of aqueous solution of thermosetting resin

Country Status (1)

Country Link
JP (1) JPS59129229A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0220960B1 (en) * 1985-10-28 1992-08-26 Sumitomo Chemical Company, Limited Production of urea-polyamine resins for paper coating compositions
JPS62121727A (en) * 1985-11-21 1987-06-03 Sumitomo Chem Co Ltd Production of thermosetting resin
JP2555793B2 (en) * 1991-03-28 1996-11-20 豊田合成株式会社 Fuyer Cap
CN100465374C (en) * 2006-10-19 2009-03-04 上海东升新材料有限公司 Epoxy polyurethane resin wet-strengthening agent and method for preparing same
CN100419158C (en) * 2006-10-19 2008-09-17 上海东升新材料有限公司 Coated waterproof agent, and preparation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582331A (en) * 1981-06-30 1983-01-07 Dick Hercules Kk Preparation of aqueous solution of thermosetting resin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582331A (en) * 1981-06-30 1983-01-07 Dick Hercules Kk Preparation of aqueous solution of thermosetting resin

Also Published As

Publication number Publication date
JPS59129229A (en) 1984-07-25

Similar Documents

Publication Publication Date Title
US4246153A (en) Process for producing aqueous solution of polyureapolyamide thermosetting resin
JPS5932597B2 (en) Coating composition for paper
JPH0356578B2 (en)
JPS6142931B2 (en)
EP0081994B1 (en) Preparation of thermosetting resins and of pigmented compositions thereof for coating on paper
JP3351105B2 (en) Coating composition for paper
US4464505A (en) Coating composition for providing water and blister resistant, ink-receptive paper
CA1187225A (en) Paper coating composition
JPH0260798B2 (en)
JPH0323679B2 (en)
JPS59137597A (en) Paper coating composition
JPS6259732B2 (en)
CN101798777B (en) Resin for paper spread coating and composition for paper spread coating
JPS58180695A (en) Paper coating composition
JPH0380920B2 (en)
JPH09286856A (en) Water-soluble polyamide/polyurea resin and its use
JPH0457796B2 (en)
JPH0250936B2 (en)
JP3465475B2 (en) Water-soluble resin and its use for paper coating
JPH0326214B2 (en)
JPH0525890B2 (en)
JP2601269B2 (en) Printability improver for paper and coating composition
JPH0131771B2 (en)
JPH064956B2 (en) Coating composition for paper
JPS62121727A (en) Production of thermosetting resin