JPH0356253B2 - - Google Patents

Info

Publication number
JPH0356253B2
JPH0356253B2 JP57049978A JP4997882A JPH0356253B2 JP H0356253 B2 JPH0356253 B2 JP H0356253B2 JP 57049978 A JP57049978 A JP 57049978A JP 4997882 A JP4997882 A JP 4997882A JP H0356253 B2 JPH0356253 B2 JP H0356253B2
Authority
JP
Japan
Prior art keywords
polymer
reaction
solvent
present
azeotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57049978A
Other languages
Japanese (ja)
Other versions
JPS58167622A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4997882A priority Critical patent/JPS58167622A/en
Publication of JPS58167622A publication Critical patent/JPS58167622A/en
Publication of JPH0356253B2 publication Critical patent/JPH0356253B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyethers (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、新芏な芳銙族ポリ゚ヌテル系重合䜓
に関する。 二䟡プノヌルのゞアルカリ金属塩ず掻性化さ
れた芳銙族ゞハラむド類ずの反応により、線状の
芳銙族ポリ゚ヌテル系重合䜓を埗る方法は、良く
知られおいる䟋えばR.N.Johnson他、J.Polym
Sci.A− 23751967。 これらの芳銙族ポリ゚ヌテル系重合䜓は、比范
的高枩における機械的諞物性に優れ、しかも耐薬
品性、電気的特性も良奜であるため、すでに倚方
面で実甚に䟛されおいる。このように芳銙族゚ヌ
テル系重合䜓は、優れた性胜を有し、しかも加工
が容易である利点を有するが、近幎は、さらに高
床の耐熱性が芁求される甚途分野が倚くなり、芳
銙族ポリ゚ヌテル系重合䜓ずしおの優れた特性を
保持し、しかも耐熱性の倧な重合䜓が特に各方面
から望たれおいる。 本発明者らは、䞊蚘の芁郚に適合する、耐熱性
の特に優れた芳銙族ポリ゚ヌテル系重合䜓を埗る
目的で、皮々怜蚎を続けおきたが、䞋の構造を有
するものが、本発明の目的に適合するこずを芋い
出し、本発明を完成するに至぀た。 すなわち、本発明は  䞀般匏 匏䞭、は−CH2−たたは
The present invention relates to a novel aromatic polyether polymer. The method of obtaining linear aromatic polyether polymers by the reaction of dialkali metal salts of dihydric phenols with activated aromatic dihalides is well known (for example, RN Johnson et al., J. Polym.
Sci.A-1 5 2375 (1967)). These aromatic polyether polymers have excellent mechanical properties at relatively high temperatures, as well as good chemical resistance and electrical properties, so they have already been put to practical use in many fields. As described above, aromatic ether polymers have the advantage of having excellent performance and being easy to process. However, in recent years, there have been many application fields that require even higher heat resistance, and aromatic ether polymers have Polymers that maintain excellent properties as ether polymers and have high heat resistance are particularly desired from various fields. The present inventors have continued to conduct various studies for the purpose of obtaining an aromatic polyether polymer having particularly excellent heat resistance and meeting the above-mentioned main points. The inventors have found that the invention is compatible with the purpose of the invention, and have completed the present invention. That is, the present invention provides 1) General formula () (In the formula, A is -CH 2 - or

【匏】 を瀺し、は10〜1000を衚わす。で衚わされる
芳銙族ポリ゚ヌテル系重合䜓である。 本発明の芳銙族ポリ゚ヌテル系重合䜓は、重合
䜓䞭のビスプノヌル残基に、メチル基を有する
ものである。このようなメチル基をビスプノヌ
ル残基郚分に含むポリ゚ヌテル系重合䜓は、末眮
換の察応するポリ゚ヌテル系重合䜓ず比范しお物
性面で優れた耐熱性が向䞊するこずが明らかにな
぀た。 本発明の重合䜓ずしお、䟋えばビスプノヌル
残基の3′5′䜍にそれぞれメチル基が眮
換されたポリ゚ヌテル系重合䜓のガラス転移枩床
Tgは、未眮換のビスプノヌル残基を有する
ポリ゚ヌテル系重合䜓に比し、玄30〜40℃䞊昇し
おおり倧郚分の重合䜓が200℃以䞊のTgを瀺すこ
ずが確認された。 したが぀お、本発明の重合䜓は、機械的物性、
電気物性などの諞物性が、比范的高枩たで維持さ
れ、しかも寞法安定性が良奜であるため、圚来䜿
甚が困難であ぀た倚くの甚途に甚いるこずが可胜
ずな぀た。 しかも、このような耐熱性が優れおいる暹脂は
䞀般に加工が困難であるが、本発明のポリ゚ヌテ
ル系重合䜓は、溶融加工が可胜で粟床を芁求され
る郚品の成圢にも甚いるこずができる。 本発明の重合䜓は、䞀般匏で衚わされ
る。(1)匏䞭ので瀺される郚分は、−CH2−たた
は
[Formula] is shown, and n represents 10 to 1000. ) is an aromatic polyether polymer represented by: The aromatic polyether polymer of the present invention has a methyl group in the bisphenol residue in the polymer. It has been revealed that polyether polymers containing such methyl groups in the bisphenol residue have superior physical properties and improved heat resistance compared to terminally substituted corresponding polyether polymers. . As the polymer of the present invention, for example, the glass transition temperature (Tg) of a polyether polymer in which methyl groups are substituted at the 3, 3', 5, and 5' positions of bisphenol residues is It was confirmed that the temperature increased by about 30 to 40°C compared to the polyether-based polymer having residues, and that most of the polymers exhibited a Tg of 200°C or higher. Therefore, the polymer of the present invention has mechanical properties,
Since various physical properties such as electrical properties are maintained up to relatively high temperatures and dimensional stability is good, it has become possible to use it in many applications that were difficult to use conventionally. Moreover, resins with such excellent heat resistance are generally difficult to process, but the polyether polymer of the present invention can be melt-processed and can be used to mold parts that require precision. . The polymer of the present invention is represented by the general formula (). The part represented by A in formula (1) is -CH 2 - or

【匏】である。は重合床を瀺す が、通垞10〜1000の範囲の敎数である。 本発明の重合䜓は、以䞋の瀺す補造方法によ぀
お埗るこずが可胜ずな぀たものである。 本発明の方法に甚いられるビスプノヌル類は
䞀般匏匏で瀺されるものである。具䜓的に
は、ビス−ゞメチル−−ヒドロキシフ
゚ニルメタン、−ビス−ゞメチ
ル−−ヒドロキシプニルプロパンなどを挙
げるこずができ、これらは単独たたは皮以䞊の
混合物ずしお䜿甚するこずができる。 本発明の方法に甚いられるハロゲン化合物ずし
おは、䞀般匏で衚わされるものが甚いられ
るが、具䜓的な䟋ずしおは、ビス−クロルフ
゚ニルケトン、ビフ−フルオロプニル
ケトン、ビス−ブロモプニルケトン、ビ
ス−ペヌドプニルケトンなどを挙げるこ
ずができ、これらは単独でも皮以䞊の混合物ず
しおも䜿甚するこずができる。 特に奜たしいハロゲン化合物ずしおは、ビス
−クロルプニルケトン、ビス−フル
オロプニルケトンを挙げるこずができる。 本発明の方法に甚いられるビスプノヌル化合
物のハロゲン化合物に察するモル比は0.7〜1.3の
範囲に入るこずが奜たしい。さらに奜たしくは
0.85〜1.15の範囲であり、特に高分子量の重合䜓
を埗る目的のためには、䞊蚘のモル比は付近に
なるようにするのが良い。 本発明の方法に甚いられるビスプノヌル類は
実際の反応においおは、ゞアルカリ金属塩ずしお
䜜甚する。したが぀お、ビスプノヌル類のゞア
ルカリ金属塩を別途に補造しお䜿甚するか重合反
応前たたは同時に塩を圢成しながら反応を進める
こずができる。アルカリ金属の皮類ずしおは、リ
チりム、ナトリりム、カリりム、ルビゞりムがあ
げられるが、特に奜たしいのは反応性が倧で、し
かも比范的安䟡に入手できる点でナトリりムおよ
びカリりムである。 アルカリ塩を圢成するために甚いられる金属化
合物ずしおは、氎酞化物、炭酞塩、炭酞氎玠塩が
挙げられ、特に反応性の面から氎酞化物および炭
酞塩が奜たしい。したが぀お、ビスプノヌル類
のゞアルカリ金属塩を調補するためには、氎酞化
ナトリりム、氎酞化カリりム、炭酞ナトリりム、
炭酞カリりム等の少くずも皮を䜿甚するのが特
に奜たしい。 本発明の方法では、必芁に応じお溶媒が䜿甚さ
れる。重合反応に奜たしい溶媒は、原料のビスフ
゚ノヌル類、ハロゲン化合物、および生成される
ポリ゚ヌテル系重合䜓のいずれもが高い溶解床を
瀺し、しかもビスプノヌル類アルカリ塩、アル
カリ金属化合物なども、溶解性をも぀ものである
こずが奜たしい。 このような目的に適する溶媒ずしおは、通垞極
性溶媒ず称される化合物が倚く䜿甚されるが、こ
れに限定されるものではない。本発明の方法に、
必芁に応じお䜿甚される溶媒の具䜓的な代衚䟋ず
しおは、ゞメチルスルホキシド、スルホランテ
トラメチレンスルホン、ゞプニルスルホン、
−ゞメチルホルムアミド、−ゞメチ
ルアセトアミド、−メチル−−ピロリトン、
ゞメチルスルホン、ゞ゚チルスルホン、ゞ゚チル
スルホキシドなどが挙げられる。 さらに、極性溶媒以倖に、ゞプニル゚ヌテ
ル、ビプニル、タヌプニル、プナントレ
ン、ナフタレン、ゞプニルメタン、トリプニ
ルメタンなども有利に䜿甚するこずができる。 本発明の方法で必芁に応じお甚いられる溶媒の
䜿甚量は甚いられるビスプノヌル類の重量を基
準ずしお0.05〜20倍の範囲で通垞䜿甚される。さ
らに奜たしくは、0.1〜10倍の範囲であり、その
䜿甚量は溶媒の皮類、甚いられるビスプノヌル
類、ハロゲン化合物の皮類、その他反応䞊の条件
等により異なる。䞊蚘範囲より、溶媒の䜿甚量が
少い堎合には、溶媒ずしおの効果が認められず、
特に生成した重合䜓が䜎分子量のものであ぀おも
析出しおしたうため、実甚性のある高分子量重合
䜓が埗られなくなる。䞀方、溶媒量を䞊蚘反応よ
り倚くするず、モノマヌ濃床が䜎䞋するため、分
子量を高めるためにはより高枩、長時間の反応を
芁し、奜たしい結果が埗られない。 本発明の方法における実際の重合反応は、䟋え
ば以䞋に瀺す皮々の圢匏で具䜓的に実斜するこず
ができる。䟋えば、(1)溶媒を䜿甚せずに、あらか
じめ別途調補しおおいたビスプノヌル類のアル
カリ塩無氎物ずハロゲン化合物を十分均䞀に混合
し撹拌しながら加熱しお反応させる方法、(2)ビス
プノヌル類にアルカリ金属化合物を反応させお
埗られた氎溶液に共沞溶媒を加えお共沞蒞留を行
ない、ビスプノヌル類のアルカリ塩が実質無氎
の状態にな぀た埌ハロゲン化合物を加え、反応溶
媒を䜿甚せず加熱反応させる方法、(3)ビスプノ
ヌル類をアルカリ金属化合物ず反応させお埗られ
た氎溶液たたはその濃瞮物ずハロゲン化合物を共
沞溶媒の存圚䞋に加熱し、共沞脱氎を実斜しなが
ら、重合反応を同時に開始させ、脱氎が完了埌は
無溶媒で加熱反応を行なう方法、(4)溶媒の存圚䞋
に、別途調補したビスプノヌル類のアルカリ塩
無氎物ずハロゲン化合物を反応させる方法、(5)溶
媒の存圚䞋にビスプノヌル類ずアルカリ金属化
合物ず反応させお埗られた氎溶液たたはその濃瞮
物に共沞溶媒を加え、共沞蒞留により脱氎を行な
い、ビスプノヌル類アルカリ塩が実質無氎にな
぀た埌、ハロゲン化合物を加え、溶媒の存圚䞋に
加熱反応を実斜する方法この際、溶媒は共沞溶
媒より高沞点のものを䜿甚する。、(6)溶媒の存圚
䞋に、ビスプノヌル類のアルカリ塩含氎物たた
は氎溶液、ハロゲン化合物および共沞溶媒を加
え、加熱しお共沞脱氎を実斜しながら、重合反応
を開始させ、脱氎が完了しお共沞溶媒が留去され
た埌は、反応溶媒の存圚䞋に加熱反応を実斜
する方法、(7)ビスプノヌル類、ハロゲン化合物
およびアルカリ金属炭酞塩たたは炭酞氎玠塩ずの
混合物を溶媒および共沞溶媒の存圚䞋に加熱する
こずにより、ビスプノヌル類のアルカリ塩を生
成させ、同時に生成する氎を共沞蒞留し぀぀、た
たは共沞蒞留した埌に、重合反応を進行させる方
法などを挙げるこずができ、ビスプノヌル類お
よびハロゲン化合物の反応性物性等に応じ最適な
ものを遞ぶこずができる。 䞊蚘の重合方法の䟋で明らかなように、ビスフ
゚ノヌル類のアルカリ塩を無氎の状態で反応させ
るために、氎ず共沞する共沞溶媒が必芁に応じお
甚いられる。具䜓的な共沞溶媒の代衚䟋ずしおは
ベンれン、トル゚ン、キシレン類などの芳銙族炭
化氎玠、クロルベンれン、−ゞクロルベンれン
などのハロゲン化合物を挙げるこずができるが、
その他の化合物を䜿甚される。 たた共沞溶媒の䜿甚量は、反応系に存圚する氎
分の量および共沞組成などから決定するこずがで
きる。共沞溶媒を䜿甚した脱氎においおは、氎を
共沞溶媒ずずもに留出させ、留出物は冷华されお
濃瞮し、氎ず共沞溶媒は二局に分離する。分離し
た共沞溶媒局は反応系に還流するようにしおおけ
ば共沞溶媒が有効に䜿甚されるため、倧過剰の共
沞溶媒を䜿甚せずに脱氎を完了するこずができる 共沞脱氎に芁する時間も、反応系に存圚する氎
分の量、䜿甚する共沞溶媒の量などによ぀お異な
るが、実甚面からは10時間以内で行なわれるこず
が奜たしく、さらに時間以内で完了するこずが
䞀局奜たしい。 本発明の方法における実際の重合反応の枩床は
反応原料成分の皮類、重合反応の圢匏などにより
倉化するが、通垞50〜450℃の範囲であり、奜た
しくは100〜400℃の範囲で実斜される。䞊蚘の枩
床範囲より反応枩床が䜎い堎合は、目的ずする重
合反応は殆んど実甚に耐える速床で進行せず、必
芁ずする分子量の重合䜓を埗るこずは困難であ
る。䞀方、䞊蚘の範囲より反応枩床が高い堎合
は、目的ずする重合反応以倖の副反応が無芖でき
なくなり、埗られる重合䜓の着色も著しくなる。
たた反応は䞀定の枩床で実斜しおもよいし、枩床
を埐々に倉化させるかたたは枩床を段階的に倉化
させおもよい。 本発明の方法においお、反応に芁する時間は反
応原料成分の皮類、重合反応の圢匏、反応枩床の
皮類などにより倧幅に倉化するが、通垞は10分〜
100時間の範囲であり、奜たしくは30分〜24時間
の範囲で実斜される。 本発明の方法においお反応を実斜する際の反応
雰囲気ずしおは、酞玠が存圚しないこずが奜たし
く、窒玠もしくはその他の䞍掻性ガス䞭で行なう
ず良い結果が埗られる。ビスプノヌル類のアル
カリ塩は、酞玠の存圚䞋で加熱するず酞化され易
く、目的ずする重合反応が劚げられ、高分子量が
困難になる他、重合䜓が着色の原因ずもなる。 本発明の方法においお、重合反応を停止させる
には、通垞反応物を冷华すればよい。しかしなが
ら、重合䜓の末端に存圚する可胜性のあるプノ
キサむド基を安定化させるために、脂肪族ハロゲ
ン化物、芳銙族ハロゲン化物などを添加反応させ
るこずも必芁に応じ実斜される。䞊蚘ハロゲン化
物の具䜓的な䟋ずしおは、メチルクロラむド、゚
チルクロラむド、メチルブロマむド、−クロル
ゞプニルスルホン、−クロルベンゟプノ
ン、4′−ゞクロルゞプニルスルホン、−
クロルニトロベンれンなどを挙げるこずができ
る。 たた重合反応を停止しお、宀枩に反応物を冷华
するず反応物の粘床が著しく高くなり、無溶媒反
応や䜿甚した反応溶媒の皮類によ぀おは反応物が
固化する堎合があるため、冷华前たたは冷华䞭に
䞍掻性な溶媒で皀釈するこずも、堎合によ぀おは
有効である。䞊蚘の目的のためには、生成するア
ルカリハラむドが䞍溶なものが望たしく、そのよ
うなものはたた以䞋に蚘す重合䜓の分離のために
有利である。溶媒反応の堎合、適切な皀釈溶媒が
ないずきは、反応に䜿甚した溶媒でさらに皀釈し
おもよい。 重合反応終了埌の重合䜓の分離および粟補は、
芳銙族ポリ゚ヌテル系重合䜓に぀いおの公知の方
法を適甚できる。䟋えば、目的ずする重合䜓が可
溶で、しかも生成するアルカリハラむドが䞍溶で
ある溶媒を反応混合物䞭に加えお、析出する塩
アルカリハラむドを濟別する。この目的の溶
媒の䟋ずしおは、クロルベンれン、sym−テトラ
クロル゚タンなどを挙げるこずができる。 塩を分離した埌の溶液を、通垞は、重合䜓の非
溶媒に滎䞋するか、逆に重合䜓の非溶媒を重合䜓
溶液䞭に加えるこずにより、目的ずする重合䜓を
析出させるこずができる。重合䜓の非溶媒ずしお
通垞甚いられるものの䟋ずしおは、メタノヌル、
゚タノヌル、む゜プロパノヌル、アセトン、メチ
ル゚チルケトン、氎などが挙げられるが、これら
は単独でもたた二皮以䞊の混合物ずしおも䜿甚さ
れる。 析出された重合䜓は垞圧たたは枛圧䞋に加熱也
燥され、皮々の加工法に甚いられる重合䜓が粉末
状、フレヌク状、薄膜状など、析出方法により
皮々の圢態で埗るこずができる。 以䞊の操䜜により玔床の高い重合䜓を埗るこず
ができるが、さらに高玔床の重合䜓が芁求される
堎合は、䟋えば埗られた重合䜓を溶媒に再溶解し
䞊蚘の非溶媒を甚いた析出操䜜を繰り返すこずな
どになり、さらに粟補を行なうこずができる。 たた、氎に䞍溶な溶媒を䜿甚した重合䜓の溶液
を、重合䜓が析出しない割合の氎ず十分に混合し
お、掗浄分液した埌に重合䜓を析出させお粟補を
行うこずもできる。 本発明の方法で埗られる重合䜓は、通垞の成圢
加工法および条件にお成圢加工し望たしい補品ず
するこずができる。即ち、圧瞮成圢、抌出し成
圢、射出成圢がそれぞれ䞀般の成圢機の胜力範囲
で十分可胜であり、しかも目的ずする補品を望た
しい状態で埗るこずができる。 重合䜓の代衚的な成圢加工条件を抌出しおよび
射出成圢の堎合の䟋で瀺すず、成圢枩床は200〜
400℃、奜たしくは250〜380℃たでの範囲である。
たた、溶融粘床を䜎䞋させる化合物、安定剀など
の添加によ぀おは、成圢枩床を䞊蚘範囲よりさら
に䜎䞋させるこずが可胜である。たた成圢品のサ
むズ、圢状等に制玄はなく、通垞の成圢物の他フ
むルム、シヌト状物、粟密埮现構造を有する郚品
などを䞀般的な成圢法により容易に成圢するこず
ができる。 本発明の方法で埗られる重合䜓を成圢加工する
際は、甚途に応じお充填剀成分を含むこずができ
る。充填材成分の代衚的な䟋ずしおはガラス繊
維、炭玠繊維、芳銙族ポリアミド系繊維、炭玠、
酞化マグネシりム、酞化カルシりム、ステアリン
酞、ステアリン酞マグネシりム、ステアリン酞カ
ルシりム、酞化モリブデン、タルク、アルミナ、
シリカ、アスベストなどを挙げるこずができ、単
独たたは皮類以䞊の混合物ずしお甚いるこずが
できる。これらの充填材の䜿甚量は、本発明の重
合䜓の重量を基準ずしお0.5〜15であり、奜た
しくは〜120の範囲である。 たた、通垞、暹脂の加工に際しお添加されおい
る垯電防止剀、着色剀、難燃剀、滑剀、加工改良
剀、安定剀なども、単独たたは皮以䞊の混合物
ずしお本発明の重合䜓に添加するこずができる。
添加量は、本発明の重合䜓の重量を基準ずしお
10-4〜60の範囲で、奜たしくは10-3〜40の範
囲である。 本発明の方法で埗られる重合䜓の有機溶媒溶液
よりキダステむング法によるフむルム補造も可胜
であり、抌出しフむルムず同様、透明、匷靭で耐
熱性の倧なものが埗られる。 以䞊のようにしお成圢された本発明の重合䜓は
電気、電子分野の各皮郚品、ハりゞング類、自動
車郚品、航空機甚内装材、摺動郚品、ギダヌ、絶
瞁材料、歯科甚材料、蒞気殺菌容噚などの広範な
分野に甚いるこずができる。 本発明を以䞋の実斜䟋および比范䟋にお詳现に
説明する。 実斜䟋䞭に瀺す粘床ηredは、25℃は、25℃に
おいお溶媒100ml䞭のポリマヌ0.2を溶解した溶
液を甚い粘床蚈によ぀お枬定し、䞋匏で算出した
倀である。 ηredts−t0・t0 ここで t0玔溶媒の流出時間 ts重合䜓溶液の流出時間 重合䜓溶液䞭の重合䜓濃床dl 実斜䟋  撹拌噚、枩床蚈、冷华噚および留出物分液噚、
滎䞋ロヌトおよび窒玠導入管を備えた300mlのフ
ラスコに、ビス−ゞメチル−−ヒドロ
キシプニルメタン25.60.1モル、クロル
ベンセン100mlおよびゞメチルスルホキシド45ml
をずり、撹拌しながら窒玠ガスを液䞭に通じ、反
応系をすべお窒玠で眮換した。窒玠ガスを通じな
がら、60℃迄埐々に加枩し、滎䞋ロヌトより44.8
氎酞化カリりム氎溶液25.05を10分かけお滎
䞋し、さらにmlの玔氎で滎䞋ロヌト内を掗浄し
反応液䞭に加えた。反応枩床は85℃たで䞊昇し、
さらに還流が開始される迄加熱した。反応系内の
氎をクロルベンれンずの共沞で陀去し、クロルベ
ンれンは反応系に戻しながら共沞脱氎を続けるず
内枩は120℃付近から140℃付近たで䞊昇し、145
℃付近で氎の留出は認められなくな぀た。さらに
加熱を続けお、クロルベンれンを殆んど留出させ
お、癜色のスラリヌを埗た。 反応液の枩床を130℃付近たで冷华し、ビス
−クロルプニルケトンの粉末21.8を加
えるず粘皠の反応液の枩床は150℃たで䞊昇した
が、その埌135℃にお時間反応させた。反応終
了埌は反応液をメタノヌルの入぀た撹拌されたホ
モミキサヌ䞭に泚ぎ、重合䜓を析出させ、さらに
氎掗しお也燥し、淡灰色の重合䜓を埗た。
これをポリマヌず称す。 ポリマヌの分析倀は次のずおり。 粘床ηred0.316クロロホルム IRKBrcm-17608459201160
123012801310136013801480、
15051600165529603020 1HNMRCDCl3Ύ1.69
[Formula]. n indicates the degree of polymerization, and is usually an integer in the range of 10 to 1000. The polymer of the present invention can be obtained by the production method shown below. The bisphenols used in the method of the present invention are represented by the general formula (). Specifically, bis(3,5-dimethyl-4-hydroxyphenyl)methane, 2,2-bis(3,5-dimethyl-4-hydroxyphenyl)propane, etc. can be mentioned, and these may be used alone. Or it can be used as a mixture of two or more types. As the halogen compound used in the method of the present invention, those represented by the general formula () are used, and specific examples include bis(4-chlorophenyl)ketone, bif(4-fluorophenyl)
Ketone, bis(4-bromophenyl)ketone, bis(4-iodophenyl)ketone, etc. can be mentioned, and these can be used alone or as a mixture of two or more types. Particularly preferred halogen compounds include bis(4-chlorophenyl)ketone and bis(4-fluorophenyl)ketone. The molar ratio of the bisphenol compound to the halogen compound used in the method of the present invention is preferably in the range of 0.7 to 1.3. More preferably
The molar ratio is in the range of 0.85 to 1.15, and the above molar ratio is preferably around 1, especially for the purpose of obtaining a high molecular weight polymer. The bisphenols used in the method of the present invention act as dialkali metal salts in the actual reaction. Therefore, the dialkali metal salt of bisphenols can be prepared separately and used, or the reaction can proceed while forming the salt before or at the same time as the polymerization reaction. Examples of alkali metals include lithium, sodium, potassium, and rubidium, but sodium and potassium are particularly preferred because they have high reactivity and are available at relatively low prices. The metal compound used to form the alkali salt includes hydroxide, carbonate, and hydrogen carbonate, and hydroxide and carbonate are particularly preferred from the viewpoint of reactivity. Therefore, in order to prepare dialkali metal salts of bisphenols, sodium hydroxide, potassium hydroxide, sodium carbonate,
It is particularly preferred to use at least one such as potassium carbonate. In the method of the present invention, a solvent is used as necessary. A preferable solvent for the polymerization reaction is one in which all of the raw material bisphenols, halogen compounds, and the polyether polymer to be produced have high solubility, and bisphenol alkali salts and alkali metal compounds have high solubility. It is preferable that the As solvents suitable for such purposes, compounds commonly referred to as polar solvents are often used, but the solvent is not limited thereto. The method of the invention includes:
Specific representative examples of solvents used as necessary include dimethyl sulfoxide, sulfolane (tetramethylene sulfone), diphenyl sulfone,
N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolitone,
Examples include dimethyl sulfone, diethyl sulfone, diethyl sulfoxide, and the like. Furthermore, in addition to polar solvents, diphenyl ether, biphenyl, terphenyl, phenanthrene, naphthalene, diphenylmethane, triphenylmethane, etc. can be advantageously used. The amount of the solvent used if necessary in the method of the present invention is usually in the range of 0.05 to 20 times the weight of the bisphenols used. More preferably, it is in the range of 0.1 to 10 times, and the amount used varies depending on the type of solvent, the bisphenols used, the type of halogen compound, and other reaction conditions. If the amount of solvent used is less than the above range, the effect as a solvent will not be recognized,
In particular, even if the produced polymer has a low molecular weight, it will precipitate, making it impossible to obtain a practical high molecular weight polymer. On the other hand, if the amount of solvent is greater than the amount of the above reaction, the monomer concentration will decrease, and in order to increase the molecular weight, a higher temperature and longer reaction time will be required, making it impossible to obtain favorable results. The actual polymerization reaction in the method of the present invention can be concretely carried out, for example, in the various formats shown below. For example, (1) a method in which anhydrous alkali salts of bisphenols prepared separately in advance and a halogen compound are sufficiently uniformly mixed and heated while stirring to react without using a solvent; An azeotropic solvent is added to the aqueous solution obtained by reacting phenols with an alkali metal compound to perform azeotropic distillation, and after the alkali salt of bisphenols becomes substantially anhydrous, a halogen compound is added and the reaction solvent is removed. (3) A method in which an aqueous solution obtained by reacting bisphenols with an alkali metal compound or its concentrate and a halogen compound are heated in the presence of an azeotropic solvent to perform azeotropic dehydration. (4) In the presence of a solvent, a separately prepared alkali salt anhydride of bisphenols is reacted with a halogen compound. (5) An azeotropic solvent is added to the aqueous solution or its concentrate obtained by reacting bisphenols with an alkali metal compound in the presence of a solvent, and dehydration is performed by azeotropic distillation, so that the alkali salts of bisphenols are substantially removed. After becoming anhydrous, a halogen compound is added and a heating reaction is carried out in the presence of a solvent (in this case, a solvent with a higher boiling point than the azeotropic solvent is used); (6) In the presence of a solvent. , a hydrated alkali salt of bisphenols or an aqueous solution, a halogen compound, and an azeotropic solvent are added, and the polymerization reaction is started while heating to perform azeotropic dehydration, and the dehydration is completed and the azeotropic solvent is distilled off. After that, (reaction) a method of conducting a heating reaction in the presence of a solvent, (7) a method of carrying out a heating reaction in the presence of a solvent, and (7) a method of carrying out a heating reaction in the presence of a solvent and an azeotropic solvent. Examples include a method in which an alkali salt of bisphenols is produced by heating, and the polymerization reaction is proceeded while or after the azeotropic distillation of the water produced at the same time. The most suitable one can be selected depending on the reactivity properties of the halogen compound. As is clear from the above example of the polymerization method, in order to react the alkali salt of bisphenols in an anhydrous state, an azeotropic solvent that is azeotropic with water is used as necessary. Representative examples of specific azeotropic solvents include aromatic hydrocarbons such as benzene, toluene, and xylenes, and halogen compounds such as chlorobenzene and o-dichlorobenzene.
Other compounds are used. Further, the amount of the azeotropic solvent to be used can be determined based on the amount of water present in the reaction system, the azeotropic composition, etc. In dehydration using an azeotropic solvent, water is distilled out together with the azeotropic solvent, the distillate is cooled and concentrated, and the water and azeotropic solvent are separated into two layers. If the separated azeotropic solvent layer is allowed to reflux into the reaction system, the azeotropic solvent will be used effectively, so dehydration can be completed without using a large excess of azeotropic solvent.Azeotropic dehydration The time required also varies depending on the amount of water present in the reaction system, the amount of azeotropic solvent used, etc., but from a practical standpoint, it is preferable to conduct the reaction within 10 hours, and it is possible to complete the reaction within 5 hours. More preferred. The actual temperature of the polymerization reaction in the method of the present invention varies depending on the type of reaction raw material components, the type of polymerization reaction, etc., but is usually in the range of 50 to 450°C, preferably carried out in the range of 100 to 400°C. . If the reaction temperature is lower than the above-mentioned temperature range, the desired polymerization reaction will hardly proceed at a rate that can be used practically, and it will be difficult to obtain a polymer with the required molecular weight. On the other hand, when the reaction temperature is higher than the above range, side reactions other than the desired polymerization reaction cannot be ignored, and the resulting polymer becomes significantly colored.
Further, the reaction may be carried out at a constant temperature, or the temperature may be gradually changed or the temperature may be changed stepwise. In the method of the present invention, the time required for the reaction varies greatly depending on the types of reaction raw materials, the type of polymerization reaction, the type of reaction temperature, etc., but is usually 10 minutes to
It is carried out for a period of 100 hours, preferably from 30 minutes to 24 hours. The reaction atmosphere in which the reaction is carried out in the method of the present invention is preferably free of oxygen, and good results are obtained when the reaction is carried out in nitrogen or other inert gas. Alkaline salts of bisphenols are easily oxidized when heated in the presence of oxygen, hindering the desired polymerization reaction, making it difficult to achieve a high molecular weight, and also causing coloration of the polymer. In the method of the present invention, in order to stop the polymerization reaction, it is usually sufficient to cool the reactants. However, in order to stabilize phenoxide groups that may be present at the ends of the polymer, an aliphatic halide, aromatic halide, etc. may be added and reacted as necessary. Specific examples of the halides include methyl chloride, ethyl chloride, methyl bromide, 4-chlorodiphenylsulfone, 4-chlorobenzophenone, 4,4'-dichlorodiphenylsulfone, p-
Examples include chlornitrobenzene. In addition, when the polymerization reaction is stopped and the reactants are cooled to room temperature, the viscosity of the reactants increases significantly, and depending on the solventless reaction or the type of reaction solvent used, the reactants may solidify. Alternatively, diluting with an inert solvent during cooling may be effective in some cases. For the above purpose, it is desirable that the alkali halide produced is insoluble, and such is also advantageous for the separation of the polymer described below. In the case of a solvent reaction, if a suitable diluting solvent is not available, further dilution may be performed with the solvent used in the reaction. Separation and purification of the polymer after the polymerization reaction is completed.
Known methods for aromatic polyether polymers can be applied. For example, a solvent in which the desired polymer is soluble and the alkali halide produced is insoluble is added to the reaction mixture, and the precipitated salt (alkali halide) is filtered off. Examples of solvents for this purpose include chlorobenzene, sym-tetrachloroethane, and the like. The desired polymer can be precipitated by dropping the solution after separating the salt into the polymer non-solvent, or conversely by adding the polymer non-solvent to the polymer solution. . Examples of commonly used non-solvents for polymers include methanol,
Examples include ethanol, isopropanol, acetone, methyl ethyl ketone, water, etc., and these may be used alone or as a mixture of two or more. The precipitated polymer is heated and dried under normal pressure or reduced pressure, and the polymer used in various processing methods can be obtained in various forms such as powder, flake, and thin film depending on the precipitation method. A polymer with high purity can be obtained by the above operation, but if a polymer with even higher purity is required, for example, the obtained polymer is redissolved in a solvent and precipitated using the above non-solvent. can be repeated for further purification. Further, purification can also be carried out by thoroughly mixing a polymer solution using a water-insoluble solvent with water in a proportion that does not cause the polymer to precipitate, washing and separating the solution, and then precipitating the polymer. The polymer obtained by the method of the present invention can be molded into a desired product using conventional molding methods and conditions. That is, compression molding, extrusion molding, and injection molding are all possible within the capabilities of general molding machines, and the desired product can be obtained in a desired state. Typical molding processing conditions for polymers are shown as examples for extrusion and injection molding.
The temperature ranges from 400°C, preferably from 250 to 380°C.
Furthermore, by adding compounds that lower the melt viscosity, stabilizers, etc., it is possible to further lower the molding temperature than the above range. Further, there are no restrictions on the size, shape, etc. of the molded product, and in addition to ordinary molded products, films, sheet-like products, parts with precision microstructures, etc. can be easily molded by general molding methods. When molding the polymer obtained by the method of the present invention, a filler component may be included depending on the intended use. Typical examples of filler components include glass fiber, carbon fiber, aromatic polyamide fiber, carbon,
Magnesium oxide, calcium oxide, stearic acid, magnesium stearate, calcium stearate, molybdenum oxide, talc, alumina,
Examples include silica and asbestos, which can be used alone or as a mixture of two or more types. The amount of these fillers used ranges from 0.5 to 15%, preferably from 3 to 120%, based on the weight of the polymer of the invention. In addition, antistatic agents, colorants, flame retardants, lubricants, processing improvers, stabilizers, etc. that are usually added during resin processing may be added to the polymer of the present invention either alone or as a mixture of two or more. I can do it.
The amount added is based on the weight of the polymer of the present invention.
It is in the range of 10 -4 to 60%, preferably in the range of 10 -3 to 40%. It is also possible to produce a film by a casting method from an organic solvent solution of the polymer obtained by the method of the present invention, and a film that is transparent, tough, and highly heat resistant can be obtained like an extruded film. The polymer of the present invention molded as described above can be used for various electrical and electronic parts, housings, automobile parts, aircraft interior materials, sliding parts, gears, insulating materials, dental materials, steam sterilization containers, etc. It can be used in a wide range of fields. The present invention will be explained in detail in the following examples and comparative examples. The viscosity ηred shown in the examples is a value calculated using the following formula, measured at 25°C with a viscometer using a solution of 0.2 g of polymer dissolved in 100 ml of solvent at 25°C. ηred=t s −t 0 /c・t 0 where t 0 = outflow time of pure solvent t s = outflow time of polymer solution c=polymer concentration in polymer solution (g/dl) Example 1 Stirring containers, thermometers, coolers and distillate separators,
In a 300 ml flask equipped with a dropping funnel and nitrogen inlet tube, 25.6 g (0.1 mol) of bis(3,5-dimethyl-4-hydroxyphenyl)methane, 100 ml of chlorobenzene and 45 ml of dimethyl sulfoxide.
The reaction system was completely replaced with nitrogen by passing nitrogen gas into the solution while stirring. Gradually warm up to 60℃ while passing nitrogen gas, and drop to 44.8℃ from the dropping funnel.
% potassium hydroxide aqueous solution was added dropwise over 10 minutes, and the inside of the dropping funnel was further washed with 5 ml of pure water and added to the reaction solution. The reaction temperature rose to 85℃,
The mixture was further heated until reflux started. When water in the reaction system is removed azeotropically with chlorobenzene and chlorobenzene is returned to the reaction system while azeotropic dehydration continues, the internal temperature rises from around 120°C to around 140°C, and 145
Distillation of water was no longer observed around ℃. Heating was continued to distill off most of the chlorobenzene, yielding a white slurry. When the temperature of the reaction solution was cooled to around 130℃ and 21.8g of bis(4-chlorophenyl)ketone powder was added, the temperature of the viscous reaction solution rose to 150℃, but the reaction was then continued at 135℃ for 6 hours. Ta. After the reaction was completed, the reaction solution was poured into a stirred homomixer containing methanol to precipitate a polymer, which was further washed with water and dried to obtain 4 g of a pale gray polymer.
(This is referred to as Polymer A.) The analytical values of the polymer are as follows. Viscosity ηred = 0.316 (chloroform) IR (KBr, cm -1 ): 760, 845, 920, 1160,
1230, 1280, 1310, 1360, 1380, 1480,
1505, 1600, 1655, 2960, 3020 1 HNMR (CDCl 3 ): ÎŽ = 1.69

【匏】2.11栞眮換 CH3、6.82H2、J2.3Hz、6.98
H1、7.75H3、J3.2Hz 匷床比 実斜䟋  −ビス−ゞメチル−−ヒドロ
キシプニルメタンの代りにビス−ゞ
メチル−−ヒドロキシプニルメタンを25.6
を䜿甚する他は実斜䟋ず同様に反応および埌
凊理を実斜し、無色の也燥粉末を41.3埗たこ
れをポリマヌず称する。 ポリマヌの分析倀は次のずおり。 粘床ηred0.86クロロホルム IRKBrcm-17608509201160
123012801310138014201480
1500160016602920 1HNMRCDCl3Ύ2.12栞眮換CH3、
3.87、CH2、6.84H2、J2.3
Hz、6.98H1、7.78、J3.2
Hz 匷床比 実斜䟋 、 実斜䟋およびで埗られたポリマヌおよび
ポリマヌの粉末を甚い、それぞれ衚に瀺した
条件で、厚さ0.2〜0.3mmのプレスシヌを䜜成し、
シヌトの性状を衚に瀺す。
[Formula] 2.11 (s, nuclear substitution CH 3 ), 6.82 (d, H 2 ), J 2.3 =9Hz, 6.98
(s, H 1 ), 7.75 (d, H 3 ), J 3.2 = 9Hz Intensity ratio = 3:6:2:2:2 Example 2 Bis(3,5-dimethyl-4-hydroxyphenyl)methane was used instead of 2,2-bis(3,5-dimethyl-4-hydroxyphenyl)methane at 25.6
The reaction and post-treatment were carried out in the same manner as in Example 1, except that 41.3 g of colorless dry powder was obtained (this was referred to as Polymer B). The analytical values of Polymer B are as follows. Viscosity ηred = 0.86 (chloroform) IR (KBr, cm -1 ): 760, 850, 920, 1160,
1230, 1280, 1310, 1380, 1420, 1480,
1500, 1600, 1660, 2920, 1 HNMR (CDCl 3 ): ÎŽ=2.12 (s, nuclear substitution CH 3 ),
3.87 (S, CH 2 ), 6.84 (d, H 2 ), J 2.3 = 8
Hz, 6.98 (s, H 1 ), 7.78 (d, H), J 3.2 =
8Hz intensity ratio = 6:1:2:2:2 Examples 3 and 4 Using the powders of Polymer A and Polymer B obtained in Examples 1 and 2, press sheets with a thickness of 0.2 to 0.3 mm were created under the conditions shown in Table 1, respectively.
Table 1 shows the properties of the sheet.

【衚】 実斜䟋 、 実斜䟋、で埗られたシヌトクロロホルムに
再溶解した結果、いずれも可溶であ぀た。たたプ
レスシヌトの䞀郚をクロロホルムに溶解しお、
ηredを枬定した結果を衚に瀺す。 加熱プレス成圢䞭に架橋、網状化等の反応は進
行しおおらずプレス加工によ぀おもηredに倉化
がない。このこずはポリマヌ、はいずれもプ
レス加工できるこずを瀺し、抌出し、射出などの
溶融加工がいずれも可胜であるこずが分かる。
[Table] Examples 5 and 6 The sheets obtained in Examples 3 and 4 were redissolved in chloroform, and both were found to be soluble. Also, a part of the press sheet was dissolved in chloroform,
Table 2 shows the results of measuring ηred. Reactions such as crosslinking and reticulation did not proceed during hot press molding, and there was no change in ηred even after press processing. This shows that both polymers A and B can be press-processed, and it can be seen that melt processing such as extrusion and injection is possible.

【衚】 実斜䟋 、 実斜䟋、で埗られたシヌトを180℃に保持
したオヌブン䞭で時間加熱反応凊理したものの
ガラス転移枩床TgをTMA法Perkin
Elmer瀟補熱物理詊隓機TMS−型により
Penetration Modeで枬定、荷重50、昇枩速床
10℃分、枬定雰囲気He気流䞭40〜50c.c.分で
枬定した。その結果、ポリマヌのTgは207℃、
ポリマヌのTgは217℃であ぀た。 比范䟋  実斜䟋における−ビス−ゞメ
チル−−ヒドロキシプニルプロパンの代か
わりに−ビス−ヒドロキシプニル
プロパン0.1モル22.8を䜿甚し、実斜䟋
ず同様の反応および埌凊理を行ないポリマヌを
埗た。 これらのポリマヌは、IR、1HNMR、元玠分析
等により䞋蚘の繰返し単䜍を有するこずを確認し
た。 埗られたポリマヌを実斜䟋、ず同様の条
件でプレスシヌトを䜜成し、このシヌトを倫々実
斜䟋、ず同䞀の凊理および枬定条件で、ガラ
ス転移枩床を枬定した。その結果、ポリマヌの
Tgは155℃であ぀た。
[Table] Examples 7 and 8 The glass transition temperature (Tg) of the sheets obtained in Examples 3 and 4 was heat-reacted in an oven maintained at 180°C for 1 hour using the TMA method (Perkin
Using Elmer's thermophysical tester TMS-1 model
Measured in Penetration Mode, load 50g, temperature increase rate
Measurement was performed at 10°C/min (40 to 50 c.c. min) in a measurement atmosphere of He gas flow. As a result, the Tg of Polymer A was 207℃,
The Tg of Polymer B was 217°C. Comparative Example 1 2,2-bis(4-hydroxyphenyl) instead of 2,2-bis(3,5-dimethyl-4-hydroxyphenyl)propane in Example 1
Example 1 using 0.1 mol (22.8 g) of propane
Polymer C was obtained by carrying out the same reaction and post-treatment. These polymers were confirmed to have the following repeating units by IR, 1 HNMR, elemental analysis, etc. A pressed sheet was prepared from the obtained polymer C under the same conditions as in Examples 3 and 4, and the glass transition temperature of this sheet was measured under the same processing and measurement conditions as in Examples 7 and 8, respectively. As a result, polymer C
Tg was 155°C.

Claims (1)

【特蚱請求の範囲】  䞀般匏 匏䞭、は−CH2−たたは【匏】 を瀺し、は10〜1000を衚わすで衚わされる芳
銙族ポリ゚ヌテル系重合䜓。
[Claims] 1 General formula () An aromatic polyether polymer represented by (wherein A represents -CH 2 - or [Formula], and n represents 10 to 1000).
JP4997882A 1982-03-30 1982-03-30 Aromatic polyether-based polymer and its preparation Granted JPS58167622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4997882A JPS58167622A (en) 1982-03-30 1982-03-30 Aromatic polyether-based polymer and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4997882A JPS58167622A (en) 1982-03-30 1982-03-30 Aromatic polyether-based polymer and its preparation

Publications (2)

Publication Number Publication Date
JPS58167622A JPS58167622A (en) 1983-10-03
JPH0356253B2 true JPH0356253B2 (en) 1991-08-27

Family

ID=12846100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4997882A Granted JPS58167622A (en) 1982-03-30 1982-03-30 Aromatic polyether-based polymer and its preparation

Country Status (1)

Country Link
JP (1) JPS58167622A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373298A (en) * 1976-12-10 1978-06-29 Hitachi Chem Co Ltd Preparation of polyarylene polyether
JPS58101113A (en) * 1981-12-11 1983-06-16 Mitsui Toatsu Chem Inc Manufacture of polyether polymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373298A (en) * 1976-12-10 1978-06-29 Hitachi Chem Co Ltd Preparation of polyarylene polyether
JPS58101113A (en) * 1981-12-11 1983-06-16 Mitsui Toatsu Chem Inc Manufacture of polyether polymer

Also Published As

Publication number Publication date
JPS58167622A (en) 1983-10-03

Similar Documents

Publication Publication Date Title
US3647751A (en) Polyarylether-sulphones
JPH04213330A (en) Aromatic polysulfone ether ketone and its manufacture
EP0192177B1 (en) Copolymer and process for producing the same
JPH0356252B2 (en)
JPH0356253B2 (en)
JPH0428733B2 (en)
JPH0456047B2 (en)
JPH0475251B2 (en)
JPH0237933B2 (en) HOKOZOKUHORIEETERUKEIJUGOTAIOYOBISONOSEIZOHOHO
JPS6228810B2 (en)
JPH07116288B2 (en) Novel aromatic polyether sulfone copolymer and method for producing the same
JPS61159420A (en) Aromatic polyether copolymer
JPH0551013B2 (en)
JPH0433294B2 (en)
JPH0531573B2 (en)
JP3126214B2 (en) Aromatic polysulfone film
JPH0417971B2 (en)
JP2551455B2 (en) Novel aromatic polysulfone and method for producing the same
JP2516046B2 (en) Novel aromatic polysulfone and method for producing the same
EP0225194B1 (en) Thermoplastic linear aromatic polyetherdiketones and process for obtaining the same
JP2552169B2 (en) Novel aromatic polysulfone and method for producing the same
JPH0558013B2 (en)
JPH0277426A (en) Novel crystalline aromatic polysulfone and production thereof
JPS62151421A (en) Thermoplastic aromatic polyether ketone copolymer and production thereof
JPH0433293B2 (en)