JPH035608B2 - - Google Patents
Info
- Publication number
- JPH035608B2 JPH035608B2 JP11211783A JP11211783A JPH035608B2 JP H035608 B2 JPH035608 B2 JP H035608B2 JP 11211783 A JP11211783 A JP 11211783A JP 11211783 A JP11211783 A JP 11211783A JP H035608 B2 JPH035608 B2 JP H035608B2
- Authority
- JP
- Japan
- Prior art keywords
- hot water
- temperature
- mixing
- passage
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 68
- 238000010586 diagram Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 230000005669 field effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/01—Control of temperature without auxiliary power
- G05D23/13—Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures
- G05D23/1393—Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures characterised by the use of electric means
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Electrically Driven Valve-Operating Means (AREA)
- Multiple-Way Valves (AREA)
- Control Of Temperature (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は高湯温と水とを自動的に混合し所望温
度の混合湯を得るための湯水混合装置に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a hot water mixing device for automatically mixing high temperature hot water and water to obtain mixed hot water at a desired temperature.
従来例の構成とその問題点
従来この種の湯水混合装置は第1図に示すよう
に湯通路1、水通路2、及び混合通路3を有する
混合弁本体4の中で、湯側弁体5及び水側弁体が
弁軸7に固定され、ネジ送り機構8、減速器9を
介して直流サーボモータ10で駆動される。混合
湯温は混合湯温検出器11で検出され、温度設定
器12の信号と比較され、その誤差信号が増幅回
路13で増幅され、直流サーボモータ10(以後
単にモータ10という)を駆動する。Configuration of Conventional Example and Its Problems As shown in FIG. A water side valve body is fixed to a valve shaft 7 and driven by a DC servo motor 10 via a screw feed mechanism 8 and a speed reducer 9. The mixed water temperature is detected by a mixed water temperature detector 11 and compared with a signal from a temperature setting device 12, and the error signal is amplified by an amplifier circuit 13 to drive a DC servo motor 10 (hereinafter simply referred to as motor 10).
第2図aは従来例の温度誤差とモータ速度の関
係である。温度誤差を増幅した値がモータの起動
電圧になる点1でモータは回転を始め、温度誤差
が大きくなるとそれに比例してモータ速度が増し
増幅回路の電源電圧等で決まる点2で最高速度と
なる。1から2の間が比例動作域でありこの傾斜
が速度ゲインである。温度誤差が負の場合モータ
方向が逆になり同様の動作をする。 FIG. 2a shows the relationship between temperature error and motor speed in the conventional example. The motor starts rotating at point 1, where the amplified value of the temperature error becomes the motor starting voltage, and as the temperature error increases, the motor speed increases in proportion to it, reaching the maximum speed at point 2, which is determined by the power supply voltage of the amplifier circuit, etc. . The range between 1 and 2 is the proportional operating range, and this slope is the speed gain. If the temperature error is negative, the motor direction is reversed and the same operation occurs.
第2図bは従来例の動作の時間的変化を示すも
のである。3で設定温度を変更するとモータ10
は高速で回転して弁位置を補正し湯と水の混合比
が変化する。混合湯温が設定温度に近くなるほど
モータ10は速度を減少していき、温度誤差がな
くなつたところでモータ10は停止する。ここで
速度ゲインが大きい程応答が速くなり速かに設定
温度の混合湯が得られるが、反面安定性が悪くな
りオーバーシユートやハンチングを起こしやすく
なる。従つて速度ゲインは応答性と安定性の両面
から制約される。混合湯出湯流量の大きい範囲で
速度ゲインを最適な値に設定すると流量の小さい
範囲では同様に4で設定温度を変更するとオーバ
ーシユートが大きくなりついには定常的なハンチ
ングを起こし始める。設定温度変更だけでなく流
量変更、湯及び水の圧力変動等の過渡時にも同様
である。これは、弁位置から混合湯温検出器ま
での時間遅れが流量に逆比例して大きくなり、ム
ダ時間要素が大きくなる。弁変位に対する流量
変化の感度が高くなる。等の原因によるもので、
広い流量範囲にわたつて、応答が速くかつ安定な
湯水混合装置を実現することが難しかつた。 FIG. 2b shows temporal changes in the operation of the conventional example. When the set temperature is changed in step 3, motor 10
rotates at high speed to correct the valve position and change the mixing ratio of hot water and water. The speed of the motor 10 decreases as the mixed water temperature approaches the set temperature, and the motor 10 stops when the temperature error disappears. Here, the larger the speed gain, the faster the response and the faster the mixed water at the set temperature can be obtained, but on the other hand, the stability becomes worse and overshoot and hunting are more likely to occur. Therefore, speed gain is restricted from both responsiveness and stability. If the speed gain is set to the optimum value in a range where the flow rate of mixed hot water is large, and if the set temperature is similarly changed by 4 in a range where the flow rate is small, the overshoot becomes large and eventually steady hunting begins to occur. The same applies not only to changes in set temperature, but also to changes in flow rate, changes in pressure of hot water and water, etc. This is because the time delay from the valve position to the mixed water temperature detector increases inversely to the flow rate, and the wasted time element increases. The sensitivity of flow rate changes to valve displacement increases. This is due to reasons such as
It has been difficult to realize a hot water mixing device that responds quickly and stably over a wide flow rate range.
発明の目的
本発明は、かかる従来の目的を解決するもので
広い出湯流量範囲にわたつて、応答が速くかつ出
湯々量の安定な湯水混合装置を実現することを目
的とするものである。OBJECTS OF THE INVENTION The present invention solves the above-mentioned conventional objects, and aims to realize a hot water mixing device that has a quick response and a stable amount of hot water discharged over a wide range of hot water flow rates.
発明の構成
この目的を達成するために本発明は、水通路と
湯通路の開度を差動的に調節する混合弁と、駆動
部と、混合湯温検出器と、温度設定器と、さらに
混合湯量検出器と、これに連動してゲインを調節
する温度誤差増幅器とを設け、温度誤差増幅器の
出力で駆動部のモータを動かすようにしたもので
ある。Structure of the Invention In order to achieve this object, the present invention includes a mixing valve that differentially adjusts the opening degrees of a water passage and a hot water passage, a driving section, a mixing hot water temperature detector, a temperature setting device, and A mixed water amount detector and a temperature error amplifier that adjusts the gain in conjunction with the detector are provided, and the output of the temperature error amplifier is used to drive the motor of the drive unit.
この構成により、混合湯量の大小に応じて温度
誤差に対するモータ速度のゲインが変化し、広い
流量範囲にわたつて、応答性と安定性のバランス
が保たれるという作用がある。 With this configuration, the gain of the motor speed relative to the temperature error changes depending on the amount of mixed hot water, and the balance between responsiveness and stability is maintained over a wide flow rate range.
実施例の説明
以下、本発明の実施例を第3図、第4図を用い
て説明する。DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to FIGS. 3 and 4.
第3図において、湯通路1、水通路2、混合通
路3とを有する混合弁本体4の中で、湯通路1の
開度を調節する湯側弁体5と水通路2の開度を調
節する水側弁体6とが弁軸7にばね31で付勢さ
れ止メ輪15に当接されて連結されている。弁体
5,6は弁軸7に対して摺動自由であり、ばね3
1は各弁体の全閉当接時の逃げを作る。弁軸7は
ねじ送り機構8、減速器9を介して直流サーボモ
ータ10(以下、モータという)で直線的に駆動
される。混合通路3には混合湯量検出器14とサ
ーミスタ11とが設けられている。混合湯量検出
器14は混合湯の流動を受けて回転する翼車15
と翼車の一方の先端に付けられた磁石16及び磁
石に対向して混合弁本体4の外側に取付けられた
磁石検出素子17とで構成され、混合湯量に比例
したパルス出力が得られる。サーミスタ11は温
度設定ボリユーム18、基準抵抗19,20とと
もにブリツジ回路21を構成し、混合湯温と設定
温度の差に比例した電圧が温度誤差増幅器22に
加えられる。温度誤差増幅器22は演算増幅器2
3とその反転入力端子に接続された入力抵抗24
および負帰還回路の電圧効果トランジスタ25演
算増幅器の出力を電流増幅するトランジスタ2
6,27とで構成され、その出力でモータ10を
駆動する。一方磁気検出素子で得られた流量パル
スは、F/V変換回路28で周波数に比例した負
の電圧に変換され、電界効果トランジスタ25の
ゲート入力端子に接続される。リミツトスイツチ
29,30は弁体5,6の移動範囲を規制するリ
ミツトスイツチであるが、ここでは詳しくは説明
しない。 In FIG. 3, in a mixing valve body 4 having a hot water passage 1, a water passage 2, and a mixing passage 3, a hot water side valve body 5 that adjusts the opening of the hot water passage 1 and an opening of the water passage 2 are adjusted. The water side valve body 6 is urged by a spring 31 to the valve shaft 7 and is connected to the retaining ring 15 by contacting the same. The valve bodies 5 and 6 are free to slide on the valve shaft 7, and the spring 3
1 creates a relief when each valve body is in fully closed contact. The valve shaft 7 is linearly driven by a DC servo motor 10 (hereinafter referred to as a motor) via a screw feed mechanism 8 and a speed reducer 9. The mixing passage 3 is provided with a mixing water amount detector 14 and a thermistor 11. The mixed hot water amount detector 14 is connected to an impeller 15 that rotates in response to the flow of mixed hot water.
It consists of a magnet 16 attached to one tip of the impeller, and a magnet detection element 17 attached to the outside of the mixing valve body 4 facing the magnet, and a pulse output proportional to the amount of mixed hot water can be obtained. The thermistor 11 constitutes a bridge circuit 21 together with a temperature setting volume 18 and reference resistors 19 and 20, and a voltage proportional to the difference between the mixed water temperature and the set temperature is applied to a temperature error amplifier 22. Temperature error amplifier 22 is operational amplifier 2
3 and an input resistor 24 connected to its inverting input terminal.
and a voltage effect transistor 25 in the negative feedback circuit; a transistor 2 for current amplifying the output of the operational amplifier;
6 and 27, and the motor 10 is driven by the output thereof. On the other hand, the flow pulse obtained by the magnetic detection element is converted into a negative voltage proportional to the frequency by the F/V conversion circuit 28 and connected to the gate input terminal of the field effect transistor 25. The limit switches 29 and 30 are limit switches that restrict the movement range of the valve bodies 5 and 6, but will not be described in detail here.
以上の構成により、モータ10には温度誤差に
比例した電圧が印加されるが、混合湯量が大きい
時は翼車の回転が速く電界効果トランジスタ25
のゲートGに加えられる電圧は負の大きな値とな
り、演算増幅器23の負帰還回路に入れられた電
界効果トランジスタのソースSとドレインDの間
の抵抗値が大きくなり、よつて電界効果トランジ
スタのソース・ドレイン間抵抗値R25と抵抗2
4の抵抗値R24の比(R25/R24)で決ま
る電圧ゲインが大きくなる。逆に混合湯量が小さ
い時は反対に電圧ゲイン小さくなる。温度誤差に
対してモータ速度の特性は第4図のように、モー
タの起動電圧による不感帯1の両側で混合湯量に
応じて速度ゲインが自動調節される。 With the above configuration, a voltage proportional to the temperature error is applied to the motor 10, but when the amount of mixed hot water is large, the impeller rotates quickly and the field effect transistor 25
The voltage applied to the gate G of the operational amplifier 23 becomes a large negative value, and the resistance value between the source S and the drain D of the field effect transistor connected to the negative feedback circuit of the operational amplifier 23 becomes large.・Drain resistance value R25 and resistance 2
The voltage gain determined by the ratio (R25/R24) of the resistance value R24 of 4 increases. Conversely, when the amount of mixed hot water is small, the voltage gain becomes small. As shown in FIG. 4, the motor speed characteristic with respect to temperature error is such that the speed gain is automatically adjusted in accordance with the amount of mixed hot water on both sides of the dead zone 1 due to the motor starting voltage.
よつて、混合湯量の大きい時は、モータ10を
速く駆動して応答性を速くでき、混合湯量が小さ
く温度検出のムダ時間が大きくなる範囲では、モ
ータ10をゆつくり回して安定性を確保できるの
である。 Therefore, when the amount of mixed hot water is large, the motor 10 can be driven quickly to increase the response, and when the amount of mixed hot water is small and the wasted time of temperature detection is large, the motor 10 can be rotated slowly to ensure stability. It is.
発明の効果
以上のように本発明の湯水混合装置によれば、
次の効果が得られる。Effects of the Invention As described above, according to the hot water mixing device of the present invention,
The following effects can be obtained.
(1) 水通路と湯通路の開度を差動的に調節する混
合弁と駆動部と、混合通路に混合湯温検出器と
混合湯量検出器と混合湯量に応じてゲインを自
動調節する制御回路とを設けた構成により、混
合湯量に応じたゲインで弁を駆動でき、広い流
量範囲にわたつて応答が速く、混合湯温安定性
の良い湯水混合装置を実現できる。(1) A mixing valve and a drive unit that differentially adjust the opening degrees of the water passage and the hot water passage, a mixing passage temperature detector, a mixing water quantity detector, and a control that automatically adjusts the gain according to the mixing quantity. With the configuration provided with the circuit, the valve can be driven with a gain according to the amount of mixed hot water, and a hot water mixing device with quick response over a wide flow rate range and good temperature stability of mixed hot water can be realized.
(2) 流量が大きい時はゲインを大きく、流量が小
さい時はゲインを小さく設定する様構成したこ
とにより、小流量時の温度検出ムダ時間の影響
を除いて、広い流量範囲にわたつて混合湯温安
定性の良い湯水混合装置を実現できる。(2) By setting the gain to be large when the flow rate is large and to be small when the flow rate is small, the influence of temperature detection waste time at small flow rates can be removed, and the mixed hot water can be adjusted over a wide flow rate range. A hot water mixing device with good temperature stability can be realized.
第1図は、従来の湯水混合装置の構成図、第2
図は従来例の動作特性図で、第2図aは温度誤差
対モータ速度の関係を示す特性図、第2図bは時
間に対する設定温度、混合湯温の変化特性図、第
3図は本発明の一実施例の構成図、第4図は本発
明の一実施例の温度誤差に対するモータ速度の特
性図である。
1……湯通路、2……水通路、3……混合通
路、4……混合弁本体、5……湯側弁体、6……
水側弁体、7……弁軸、10……直流サーボモー
タ、11……混合湯温検出器(サーミスタ)、1
4……混合湯量検出器、18……温度設定器(ボ
リユーム)、22……温度誤差増幅器、25……
電界効果トランジスタ、28……F/V変換器。
Figure 1 is a configuration diagram of a conventional hot water mixing device;
The figure shows the operating characteristics of a conventional example. Figure 2a is a characteristic diagram showing the relationship between temperature error and motor speed, Figure 2b is a characteristic diagram of changes in set temperature and mixed water temperature over time, and Figure 3 is a diagram showing the relationship between temperature error and motor speed. FIG. 4 is a block diagram of an embodiment of the present invention, and is a characteristic diagram of motor speed with respect to temperature error in an embodiment of the present invention. 1...Hot water passage, 2...Water passage, 3...Mixing passage, 4...Mixing valve body, 5...Hot water side valve body, 6...
Water side valve body, 7... Valve stem, 10... DC servo motor, 11... Mixed water temperature detector (thermistor), 1
4...Mixing water amount detector, 18...Temperature setting device (volume), 22...Temperature error amplifier, 25...
Field effect transistor, 28...F/V converter.
Claims (1)
節する混合弁と、この混合弁を駆動する駆動部
と、前記水通路と湯通路とを合流して混合湯を得
る混合通路と、この混合通路に設けられた流量検
出器と、前記混合通路に設けられた混合湯温検出
器と、混合湯温を設定する温度設定器と、前記混
合湯温検出器と温度設定器の信号により温度誤差
に比例した速度で前記駆動部を運転する制御回路
とを有し、前記湯量検出器の信号に応じて前記制
御回路の速度ゲインを調節するように構成した湯
水混合装置。 2 流量が大きいときはゲインを大きく、流量が
小いときはゲインを小さく設定するように構成し
た特許請求の範囲第1項記載の湯水混合装置。[Scope of Claims] 1. A mixing valve that differentially adjusts the opening degree of the water passage and the hot water passage, a drive unit that drives the mixing valve, and a unit that merges the water passage and the hot water passage. a mixing passage for obtaining mixed hot water, a flow rate detector provided in the mixing passage, a mixed water temperature detector provided in the mixing passage, a temperature setting device for setting the mixed water temperature, and a temperature setting device for setting the mixed water temperature; The control circuit includes a detector and a control circuit that operates the drive unit at a speed proportional to the temperature error based on a signal from a temperature setting device, and is configured to adjust a speed gain of the control circuit in accordance with a signal from the hot water amount detector. A hot water mixing device. 2. The hot water mixing device according to claim 1, wherein the gain is set to be large when the flow rate is large, and the gain is set to be small when the flow rate is small.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11211783A JPS603720A (en) | 1983-06-21 | 1983-06-21 | Mixing device of hot water and cold water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11211783A JPS603720A (en) | 1983-06-21 | 1983-06-21 | Mixing device of hot water and cold water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS603720A JPS603720A (en) | 1985-01-10 |
JPH035608B2 true JPH035608B2 (en) | 1991-01-28 |
Family
ID=14578595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11211783A Granted JPS603720A (en) | 1983-06-21 | 1983-06-21 | Mixing device of hot water and cold water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS603720A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01501490A (en) * | 1986-02-04 | 1989-05-25 | ベロイト・コーポレイション | Control valve for steam box |
JPH089774Y2 (en) * | 1988-05-07 | 1996-03-21 | オージー技研株式会社 | Temperature control device |
JP2012136147A (en) * | 2010-12-27 | 2012-07-19 | Tgk Co Ltd | Vehicle air conditioner |
JP2012163259A (en) * | 2011-02-07 | 2012-08-30 | Tgk Co Ltd | Control valve |
JP6573274B2 (en) * | 2015-07-31 | 2019-09-11 | リンナイ株式会社 | Gas stove device |
-
1983
- 1983-06-21 JP JP11211783A patent/JPS603720A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS603720A (en) | 1985-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3985467A (en) | Constant pressure pump | |
JPH0377523B2 (en) | ||
JPH035608B2 (en) | ||
JPH02105167U (en) | ||
JPH0118671B2 (en) | ||
JPH0129866Y2 (en) | ||
US3573591A (en) | Proportional speed floating controller | |
JPH0449689Y2 (en) | ||
US4660993A (en) | Calibration warning device | |
JPS6223278Y2 (en) | ||
KR0146893B1 (en) | Auto-variable resistance circuit | |
JPS60175885A (en) | Flow rate control device | |
US3555388A (en) | Motor speed control | |
JPS6037601Y2 (en) | Servo amplifier | |
JPS627987Y2 (en) | ||
JPS6213879A (en) | Water flow control valve | |
JPS5828446Y2 (en) | Load overheating prevention circuit | |
JPH086269Y2 (en) | Flow sensor drive circuit | |
JPH0564366B2 (en) | ||
KR860001123Y1 (en) | Damper control circuit of a refrigerator | |
KR900000663B1 (en) | Flow control device | |
JP3095755B2 (en) | Proportional valve with closed loop control amplifier | |
JPH079395Y2 (en) | Piezoelectric element drive control circuit | |
JP2747094B2 (en) | Engine speed control device | |
JPS6345050Y2 (en) |