JPH0355868A - Computing method of interwiring capacitance of electronic circuit - Google Patents

Computing method of interwiring capacitance of electronic circuit

Info

Publication number
JPH0355868A
JPH0355868A JP1191749A JP19174989A JPH0355868A JP H0355868 A JPH0355868 A JP H0355868A JP 1191749 A JP1191749 A JP 1191749A JP 19174989 A JP19174989 A JP 19174989A JP H0355868 A JPH0355868 A JP H0355868A
Authority
JP
Japan
Prior art keywords
wiring
capacitance
data
inter
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1191749A
Other languages
Japanese (ja)
Inventor
Takaya Sato
孝也 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1191749A priority Critical patent/JPH0355868A/en
Publication of JPH0355868A publication Critical patent/JPH0355868A/en
Pending legal-status Critical Current

Links

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To do without processing for fattening a wiring, restrict a region being an object for interwiring capacitance computation within a region smaller than the total region where the wiring is fattened, and reduce processing time, by extracting approximation part before interwiring capacitance computation processing. CONSTITUTION:A means A2 extracting approximation part of wiring is contained, and interwiring capacitance is computed based on the figure data of the approximation part extracted by the means A2. For example, at a step A1, pattern design data are inputted by application program operating on a processing executing means like a central processor: at a step A2, wiring nearer than the distance (d) wherein interwiring capacitance can not be neglected is found, and figure data corresponding to the region which is surrounded by the above-mentioned wiring and has an interwiring distance smaller than the distance (d) are generated. At a step 3, terminal information exhibiting the wiring, to which interwiring capacitance to be computed attributes, is assigned; at a step A4, interwiring capacitance is computed based on the figure data of the approximity part subjected to terminal information assignment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子回路のパターン設計時の遅延検証に関し
、特に電子回路のパターン設計データから配線間の寄生
容量を算出する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to delay verification during pattern design of electronic circuits, and particularly to a method of calculating parasitic capacitance between wirings from pattern design data of electronic circuits.

〔従来の技術〕[Conventional technology]

電子回路の高密度化、微細化に伴い、配線容量による信
号伝搬遅延やノイズ等の回路への影響が無視できなくな
ってきている。このため電子回路の設計では回路設計時
に回路シミュレーションや遅延シミュレーションで回路
動作の確認を行うばかりでなく、バタン設計時にもバタ
ン設計データから配線容量と回路接続を抽出し回路シミ
ュレーションや遅延シミュレーションをかけ遅延の検証
を行うようになってきている。
As electronic circuits become denser and more miniaturized, the effects of signal propagation delays and noise on circuits due to wiring capacitance cannot be ignored. For this reason, when designing electronic circuits, not only do circuit simulations and delay simulations be used to check the circuit operation, but also when designing a button, wiring capacitance and circuit connections are extracted from the button design data, and circuit simulation and delay simulation are performed to delay the delay. Increasingly, the verification of

従来、バタン設計データから配線容量を算出する場合、
配線と基板の間の容量だけを考慮していた.しかし電子
回路の高密度化、微細化がすすむにつれて、近接する配
線間の容量の大きさが配線と基板の間の容量と同等にな
ってきているため、近接する配線間の容量を求める必要
がでてきた。
Conventionally, when calculating wiring capacity from batan design data,
Only the capacitance between the wiring and the board was considered. However, as the density and miniaturization of electronic circuits progress, the capacitance between adjacent wires has become equal to the capacitance between the wire and the board, so it is necessary to find the capacitance between adjacent wires. It came out.

ここで図を用いて近接する配線間の容量について説明す
る。
Here, the capacitance between adjacent wiring lines will be explained using a diagram.

第4図は、集積回路の配線の一部分を示している。第4
図において1,2はアルミニウム配線である。第5図は
、第4図におけるAA’線にに於ける断面図である。4
,5はアルミニウム配線、6は絶縁膜、7はシリコン基
板、8はアルミニウム配線4,5の側面間にできる寄生
容量、9,10はアルミニウム配線4,5の底面とシリ
コン基板70間にできる寄生容量を表している。
FIG. 4 shows a portion of the wiring of an integrated circuit. Fourth
In the figure, 1 and 2 are aluminum wiring. FIG. 5 is a sectional view taken along line AA' in FIG. 4. 4
, 5 is an aluminum wiring, 6 is an insulating film, 7 is a silicon substrate, 8 is a parasitic capacitance formed between the side surfaces of the aluminum wirings 4 and 5, and 9 and 10 are parasitic capacitances formed between the bottom surfaces of the aluminum wirings 4 and 5 and the silicon substrate 70. It represents capacity.

図のようにアルミニウム配線4,5の間隔がアルミニウ
ム配線4,5の高さと同等か、それより小さくなる場合
は、アルミニウム配線4,5の側面間にできる寄生容量
が無視できなくなってくる。
As shown in the figure, when the distance between the aluminum wires 4 and 5 is equal to or smaller than the height of the aluminum wires 4 and 5, the parasitic capacitance formed between the side surfaces of the aluminum wires 4 and 5 cannot be ignored.

このような近接する配線の側面間の容量は、平行平板容
量に近似して求めることができる。アルミニウム配線の
高さが一定と仮定すると、近接する配線間の容量の値は
、配線の隣接部分の長さに比例し、間隔の広さに反比例
する。配線間容量は、全ての配線の間につくが、容量値
の小さなものを無視することにすれば実用上は、ある一
定の距離よりも近接している配線同士についてだけ計算
すればよい。
The capacitance between the side surfaces of such adjacent wirings can be determined by approximating the parallel plate capacitance. Assuming that the height of the aluminum wires is constant, the value of capacitance between adjacent wires is proportional to the length of adjacent portions of the wires and inversely proportional to the width of the spacing. Inter-wiring capacitance occurs between all wirings, but if we ignore those with small capacitance values, in practice it is only necessary to calculate the wirings that are closer to each other than a certain distance.

従来このような近接配線間容量の算出は、容量を求めた
い配線をある一定の長さだけ太らせた領域を設定し、そ
の領域と交差する配線を近接配線とし、それらの配線間
の容量を求めていた。
Conventionally, to calculate the capacitance between adjacent wires, one sets a region where the wire whose capacitance is to be calculated is thickened by a certain length, the wires that intersect with that region are considered adjacent wires, and the capacitance between those wires is calculated by I was looking for it.

以下図面を用いて従来の配線間容量算出方法をについて
説明する。
A conventional method for calculating inter-wiring capacitance will be described below with reference to the drawings.

第3図に示すように従来の配線間容量算出方法は、パタ
ーン設計データを入力するステップC1と、容量を求め
たい配線をある一定の長さだけ太らせた領域を設定する
ステップC2と、C2で求めた領域と交差する配線を近
接配線として認識するステップC3と、近接配線との位
置関係や領域の形状を考慮しながら領域を分割するステ
ップC4と、分割領域ごとに配線間容量を算出するステ
ップC5の、四つのステップから構或される。
As shown in FIG. 3, the conventional inter-wire capacitance calculation method includes step C1 of inputting pattern design data, step C2 of setting a region in which the wire whose capacitance is to be calculated is thickened by a certain length, and C2. Step C3: Recognize the wiring that intersects the area obtained in Step C3 as a neighboring wiring; Step C4: divide the area while taking into account the positional relationship with the neighboring wiring and the shape of the area; and calculate the inter-wiring capacitance for each divided area. It consists of four steps, step C5.

次に、図面を用いて従来の配線間容量算出方法の具体的
な動きを説明する。第6図において11は容量を求めた
い配線、12は配線11とは層の違う近接配線、13は
配線11を一定の長さだけ太らせた領域である。第7図
において14〜23は、近接配線との位置関係、形状に
よって決まる電気力線の分布を考慮して第6図の領域1
3を分割したときの部分分割領域である。ステップC2
において容量を求めたい配線11(第6図)をある一定
の長さだけ太らせて領域l3を得る。太らせ量は、対象
の電子回路の製造プロセスにおいて、それ以上配線間隔
がせまくなると配線と基板の間の容量に対して配線の側
面間にできる寄生容量が無視できなくなる長さである。
Next, the specific operation of the conventional inter-wiring capacitance calculation method will be explained using the drawings. In FIG. 6, 11 is a wiring whose capacitance is to be determined, 12 is an adjacent wiring in a different layer from the wiring 11, and 13 is a region where the wiring 11 is thickened by a certain length. In FIG. 7, areas 14 to 23 are designated as areas 1 in FIG.
This is a partial divided area when 3 is divided. Step C2
Then, the wiring 11 (FIG. 6) whose capacitance is to be determined is made thicker by a certain length to obtain a region 13. The amount of thickening is such that, in the manufacturing process of the target electronic circuit, if the wiring spacing becomes narrower, the parasitic capacitance created between the side surfaces of the wiring cannot be ignored compared to the capacitance between the wiring and the substrate.

ステップc3において、配線l2は領域13と交差する
ので配線11の近接配線であると認識される。次に、ス
テップC4において近接配線との位置関係、形状によっ
て決まる電気力線の分布を考慮して領域13を分割する
。次に、ステップc4において分割領域ごとに配線間容
量を算出する。部分領域18.20では、配線間容量は
、平行平板容量として計算できる。その他の部分領域で
は、その部分領域においてラプラス(Laplace)
方程式の境界値問題を数値解法により解くか、または予
め数値解決により求めておいた数値テーブルを参照する
ことにより容量値を求めている。
In step c3, since the wiring 12 intersects the area 13, it is recognized as a neighboring wiring to the wiring 11. Next, in step C4, the region 13 is divided in consideration of the distribution of electric lines of force determined by the positional relationship with adjacent wiring and the shape. Next, in step c4, the inter-wiring capacitance is calculated for each divided region. In the subregion 18.20, the inter-wiring capacitance can be calculated as a parallel plate capacitance. In other partial areas, Laplace is applied in that partial area.
The capacitance value is determined by solving a boundary value problem of the equation using a numerical solution method, or by referring to a numerical table determined in advance by numerical solution.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

電子回路、特に集積回路の大規模化に伴い、配線間容量
算出処理で扱うべきデータ量も大規模化している。とこ
ろが、上述した従来の配線間容量算出方法では、近接配
線の認識を、データの太らせと、太らせた領域と他の配
線の重なりを見るという2つの図形処理ステップで行な
っているので大量のパターン設計データを入力すると処
理時間が長くかかるという欠点がある。また、近接配線
の認識のために太らせた領域全域にわたって配線間容量
算出処理を行なうため、第7図の部分領域16.23の
ように本来配線間容量の無視できる部分も処理対象にな
り、配線間容量算出処理に余計な処理時間がかかる、と
いう問題点がある。
As the scale of electronic circuits, especially integrated circuits, increases, the amount of data that must be handled in inter-wiring capacitance calculation processing also increases. However, in the conventional inter-wire capacitance calculation method described above, recognition of adjacent wires is performed in two graphic processing steps: thickening the data and looking at the overlap between the thickened area and other wires, which requires a large amount of data. The disadvantage is that inputting pattern design data takes a long time to process. In addition, since inter-wire capacitance calculation processing is performed over the entire region thickened to recognize adjacent wires, parts where inter-wire capacitance can be ignored, such as partial regions 16 and 23 in FIG. 7, are also subject to processing. There is a problem in that extra processing time is required to calculate the inter-wiring capacitance.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の配線間容量算出方法は、配線同士の近接部分を
図形データとして抽出する手段と、抽出した近接部分の
図形データに対し端子情報付けをする手段と、端子情報
付けされた近接部分の図形データを基に配線間容量を算
出する手段とを有する。
The inter-wire capacitance calculation method of the present invention includes means for extracting adjacent portions between wires as graphic data, means for attaching terminal information to the extracted graphic data of the adjacent portions, and graphic data of the adjacent portions to which terminal information has been attached. and means for calculating inter-wiring capacitance based on the data.

本発明においては、配線間容量算出処理の前に、配線近
接部分の抽出を行なうことにより、配線を太らせる処理
をしないですむようになり、また、配線間容量算出の対
象となる領域を、配線を太らせた領域全体よりも小さな
領域に限定できるようになる。
In the present invention, by extracting the adjacent portion of the wiring before the inter-wiring capacitance calculation process, it is possible to avoid the process of thickening the wiring, and the area targeted for inter-wiring capacitance calculation is It becomes possible to limit the area to a smaller area than the entire thickened area.

〔実施例〕〔Example〕

次に、本発明の一実施例について図面を参照して説明す
る。
Next, an embodiment of the present invention will be described with reference to the drawings.

第2図に示すように、本発明の一実施例に用いる情報処
理システムは、電子回路のパターン設計データを入力す
るための磁気テープ装置等のデータ入力手段Blと、ア
プリケーションプログラムが走る中央処理装置等の処理
実行手段B2と、磁気ディスク等の補助記憶手段3と、
実行結果を印刷するラインプリンター等のデータ出力手
段B4とから構成される。
As shown in FIG. 2, the information processing system used in one embodiment of the present invention includes data input means Bl such as a magnetic tape device for inputting pattern design data of an electronic circuit, and a central processing unit running an application program. A processing execution means B2 such as, and an auxiliary storage means 3 such as a magnetic disk,
It consists of a data output means B4 such as a line printer that prints the execution results.

第1図に示すように本発明の一実施例は、第2図の処理
実行手段B2上で走るアプリケーションプログラムで、
データ入力ステップA1と、配線の近接部分を図形デー
タとして抽出するステップA2と、抽出した近接部分の
図形データに対し端子情報付けをするステップA3と、
端子情報付けされた近接部分の図形データを基に配線間
容量を算出するステップA4の、四つのステップから構
或される。
As shown in FIG. 1, one embodiment of the present invention is an application program running on the processing execution means B2 in FIG.
a data input step A1, a step A2 of extracting the adjacent portion of the wiring as graphic data, and a step A3 of attaching terminal information to the extracted graphic data of the adjacent portion,
It consists of four steps, including step A4, which calculates the inter-wiring capacitance based on the graphic data of the adjacent portion to which terminal information has been attached.

ステップA1でパターン設計データを入力する。In step A1, pattern design data is input.

この入力ステップでは、回路接続抽出も行い、素子を構
成する図形データには素子番号を、配線を構成する図形
データにはネット番号を付属情報として付加する。ステ
ップA2で、配線間容量を無視できない距離dより近づ
いている配線を見つげそれらの配線に囲まれていて配線
間距離が距離dより小さな領域に相当する図形データを
発生する。
In this input step, circuit connections are also extracted, and an element number is added to the graphic data configuring an element, and a net number is added as attached information to the graphic data configuring the wiring. In step A2, the wirings that are closer than the distance d where the capacitance between the wirings cannot be ignored are looked at, and graphic data corresponding to an area surrounded by these wirings and where the distance between the wirings is smaller than the distance d is generated.

本ステップは、電子回路パターン設計のデザインルール
チェックにおける配線間隔チェックに相当する処理であ
る。デザインルールチェックについては、既に高速化技
術が確立しているので、デザインルールチェックを流用
すれば、本ステップの処理は、高速に実行することがで
きる。特にここでは、図形のまわり一定距離内に他の図
形が存在するかどうかチェックすることは、図形同士に
重なりがあるかどうかチェックするのと同等な処理時間
で実行できることに注意する。このことから、従来の配
線容量算出方法における近接配線認識処理に比べて、配
線の太らせ処理のぶんだけ処理時間が短くてすむことが
わかる。ここで、本ステップで抽出した近接部分の図形
データの意味を説明する。本ステップで抽出した近接部
分の図形データで示される部分が求める配線間容量の誘
電体部分(集積回路の場合は、層間絶縁膜)であり、そ
こを囲む配線が導電体部分である、と考える。その他の
部分では、配線間容量は、無視できるとみなす。
This step corresponds to the wiring spacing check in the design rule check for electronic circuit pattern design. As for the design rule check, the speed-up technology has already been established, so if the design rule check is utilized, the process of this step can be executed at high speed. In particular, note here that checking whether another shape exists within a certain distance around a shape can be executed in the same processing time as checking whether the shapes overlap. From this, it can be seen that the processing time required for the wiring thickening process is shorter than the adjacent wiring recognition process in the conventional wiring capacitance calculation method. Here, the meaning of the graphic data of the adjacent portion extracted in this step will be explained. Consider that the part indicated by the graphic data of the adjacent part extracted in this step is the dielectric part (in the case of integrated circuits, the interlayer insulating film) of the desired inter-wiring capacitance, and the wiring surrounding it is the conductive part. . In other parts, the inter-wiring capacitance is considered negligible.

ステップA3では、算出する配線間容量が、どの配線と
どの配線の間に付くかを示す端子情報付けを行なう。ス
テップA2で抽出した近接部分の図形データと配線の接
する辺と一致する線分データを発生しこれを端子図形と
する。端子図形には、端子図形と接する配線と同じネッ
ト番号を持たせる。また、互いに接する端子図形と、近
接部分図形には、同一の素子番号を付ける。このような
端子情報付けにより、どの配線間容量がどのネットの間
に付くかが認識できるようになる。
In step A3, terminal information indicating which wire and which wire the calculated inter-wire capacitance is attached to is attached. Line segment data that coincides with the side where the wiring is in contact with the graphic data of the adjacent portion extracted in step A2 is generated, and this data is used as a terminal graphic. The terminal figure should have the same net number as the wiring that touches the terminal figure. In addition, the same element number is given to terminal figures that are in contact with each other and adjacent partial figures. By attaching terminal information in this manner, it becomes possible to recognize which inter-wiring capacitance is attached between which nets.

ステップA4では、端子情報付けされた近接部分の図形
データを基に配線間容量を算出する。配線間容量の算出
には、求められる精度と処理スピードに応じていくつか
の方法が考えられる。ラブラス(Laplace)方程
式の境界値問題を数値解法により解く方法は、最も精度
が高いが、非常に処理スピードの遅い方法である。本実
施例においては、パターン設計終了後の大規模なデータ
に対し高速で処理を行なうことを想定する。この場合精
度に対する要求は、それほど高くないので、本実施例で
は、高速に算出可能な簡易手法をとる。即ち、近接部分
図形を、平行平板容量と見なせる部分と、そうでない部
分に分割する。平行平板容量と見なせない部分に関して
は、形状により分散して平行平板容量に近似するか、ま
たはあらかじめ数値解法によって用意した数値テーブル
を参照して、容量値を求める。
In step A4, the inter-wiring capacitance is calculated based on the graphic data of the adjacent portion to which terminal information has been attached. Several methods can be considered for calculating the inter-wiring capacitance depending on the required accuracy and processing speed. The method of solving the boundary value problem of the Laplace equation by numerical solution has the highest accuracy, but it is a method with a very slow processing speed. In this embodiment, it is assumed that a large amount of data after pattern design is completed is processed at high speed. In this case, the requirement for accuracy is not so high, so in this embodiment, a simple method that can be calculated quickly is used. That is, the proximate partial figure is divided into a portion that can be regarded as a parallel plate capacitor and a portion that is not. For portions that cannot be regarded as parallel plate capacitances, the capacitance value is determined by approximating the parallel plate capacitance by distributing it depending on the shape, or by referring to a numerical table prepared in advance using a numerical solution method.

次に、従来の配線間容量算出方法の説明で用いた第6図
の例を用いて本実施例の具体的な動き説明する。第8図
の斜線で示される領域24は、第6図の例について、デ
ザインルールチェックを流用した本実施例の配線近接部
分抽出を実行して得られた配線近接部分の図形データで
ある。領域24を第6図の配線を太らせた領域13と比
べるとかなり小さくなっていることがわかる。太線25
.26が端子図形を示している。
Next, the specific operation of this embodiment will be explained using the example of FIG. 6 used in the explanation of the conventional inter-wiring capacitance calculation method. The shaded area 24 in FIG. 8 is the graphic data of the wiring adjacent portion obtained by executing the wiring adjacent portion extraction of this embodiment using the design rule check for the example shown in FIG. It can be seen that the region 24 is considerably smaller than the region 13 in FIG. 6 where the wiring is thickened. Thick line 25
.. 26 indicates a terminal figure.

次に第8図に示す配線近接部分の図形データと端子図形
とから配線間容量の値を求める方法について説明する。
Next, a method for determining the value of the inter-wiring capacitance from the graphic data of the adjacent portion of the wiring and the terminal graphic shown in FIG. 8 will be explained.

まず、近接配線間の電気力線の方向を求める。これは、
各々の端子図形の中点を結ぶ直線の方向を水平または垂
直方向に近似して求める。次に、端子の折れ曲がってい
る頂点から、電気力線の方向に平行な分割線をひいて近
接部分図形を分割する。更に第8図に示すような端子図
形同士の接点27がある場合は、接点から一定の距離だ
け電気力線に垂直は方向にシフトした点から電気力線に
平行に分割線をひいて分割する。
First, the direction of electric lines of force between adjacent wirings is determined. this is,
Find the direction of the straight line connecting the midpoints of each terminal figure by approximating it to the horizontal or vertical direction. Next, a dividing line parallel to the direction of the electric force lines is drawn from the bent vertex of the terminal to divide the adjacent partial figure. Furthermore, if there is a point of contact 27 between the terminal shapes as shown in Figure 8, it is divided by drawing a dividing line parallel to the lines of electric force from a point shifted in a direction perpendicular to the lines of electric force by a certain distance from the point of contact. .

こうして得られた部分領域が第9図の部分分割図形28
,29,30である。第7図で示される従来方法の分割
図形数が10個であるのに対し、本実施例で得られる分
割図形数は3個に減っている。このうち部分分割図形2
8.29に関しては、平行平板容量に近似してこの部分
の配線間容量の値を求める。部分分割図形3oでは、予
め数値計算によって求めておいた数値テーブルを参照し
て容量値をもとめる。
The partial area obtained in this way is the partial divided figure 28 in FIG.
, 29, 30. While the number of divided figures in the conventional method shown in FIG. 7 is ten, the number of divided figures obtained in this embodiment is reduced to three. Partially divided figure 2
Regarding 8.29, find the value of the inter-wiring capacitance in this part by approximating the parallel plate capacitance. In the partial divided figure 3o, the capacitance value is determined by referring to a numerical table determined in advance by numerical calculation.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、配線間容量算出処理の前
に、配線近接部分の抽出を行なうことにより、配線を太
らせる処理をしないですむようになり、また、配線間容
量算出の対象となる領域を、配線を太らせた領域全体よ
りも小さな領域に限定できるようになるため、従来の配
線間容量算出方法よりも、処理時間を短縮できる効果が
ある。
As explained above, the present invention extracts the adjacent portion of the wire before the inter-wire capacitance calculation process, thereby eliminating the need for the process of thickening the wire, and also improving the area that is the target of inter-wire capacitance calculation. can be limited to a smaller area than the entire area where the wiring is thickened, which has the effect of shortening the processing time compared to the conventional inter-wiring capacitance calculation method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の配線間容量算出処理フロー
図、第2図は第1図に示す一実施例に用いる情報処理シ
ステムの機器構成図、第3図は従来の配線間容量算出処
理フロー図、第4図は集積回路の配線の一部分の例を示
す平面図、第5図は第4図のAA’線断面図、第6図は
集積回路の配線の一部分の例及びそのうちの1つの配線
を太らせた領域を説明する図、第7図は従来の配線間容
量算出処理において第6図の配線を太らせた領域を分割
した後の状態を説明する図、第8図は本発明の一実施例
の配線近接部分抽出ステップにより抽出される図形デー
タを示す図、第9図は本発明の一実施例の配線間容量算
出ステップにおける近接部分図形データの分割を説明す
る図である。 1〜2・・・・・・アルミニウム配線、4〜5・・・・
・・アルミニウム配線、6・・・・・・絶縁膜、7・・
・・・・シリコン基板、8・・・・・・アルミニウム配
線の側面間にできる寄生容量、9〜10・・・・・・ア
ルミニウム配線の底面とシリコン基板の間にできる寄生
容量、11〜l2・・・・・・アルミニウム配線、l3
・・・・・・配線1lを太らせて出来る領域、14〜2
3・・・・・・従来の配線間容量算出処理で領域l3を
分割した後の部分分割領域、24・・・・・・本発明の
一実施例の配線近接部分抽出ステップにより抽出される
図形データ、25〜26・・・・・・端子図形、27・
・・・・・端子図形の接点、28〜30・・・・・・本
発明の一実施例の配線間容量算出ステップにおける近接
部分図形データの分割後の部分分割図形。
Figure 1 is a process flow diagram for calculating inter-wire capacitance according to an embodiment of the present invention, Fig. 2 is an equipment configuration diagram of an information processing system used in the embodiment shown in Fig. 1, and Fig. 3 is a conventional inter-wiring capacitance calculation process flow diagram. Calculation processing flowchart, FIG. 4 is a plan view showing an example of a part of the wiring of an integrated circuit, FIG. 5 is a cross-sectional view taken along the line AA' in FIG. 4, and FIG. FIG. 7 is a diagram explaining a region in which one wiring is made thicker in the conventional wiring capacitance calculation process, and FIG. 8 is a diagram explaining the state after dividing the region in which one wiring in FIG. 9 is a diagram illustrating graphic data extracted by the wiring adjacent portion extracting step according to an embodiment of the present invention, and FIG. It is. 1-2... Aluminum wiring, 4-5...
...Aluminum wiring, 6...Insulating film, 7...
...Silicon substrate, 8... Parasitic capacitance formed between the sides of aluminum wiring, 9-10... Parasitic capacitance formed between the bottom surface of aluminum wiring and silicon substrate, 11-12・・・・・・Aluminum wiring, l3
・・・・・・Area created by thickening the wiring 1L, 14-2
3...Partial division area after dividing the area l3 by the conventional inter-wire capacitance calculation process, 24...Figure extracted by the wiring adjacent portion extraction step of an embodiment of the present invention Data, 25-26...Terminal figure, 27.
. . . Contact points of terminal figure, 28 to 30 . . . Partially divided figures after dividing adjacent partial figure data in the inter-wiring capacitance calculation step of an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims]  配線の近接部分を抽出する手段を含み、前記手段によ
り抽出した近接部分の図形データを基に配線間容量算出
を行なうことを特徴とする、電子回路のパターン設計デ
ータからの配線間容量算出方法。
A method for calculating inter-wiring capacitance from pattern design data of an electronic circuit, comprising means for extracting an adjacent portion of the wiring, and calculating inter-wiring capacitance based on graphic data of the adjacent portion extracted by the means.
JP1191749A 1989-07-24 1989-07-24 Computing method of interwiring capacitance of electronic circuit Pending JPH0355868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1191749A JPH0355868A (en) 1989-07-24 1989-07-24 Computing method of interwiring capacitance of electronic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1191749A JPH0355868A (en) 1989-07-24 1989-07-24 Computing method of interwiring capacitance of electronic circuit

Publications (1)

Publication Number Publication Date
JPH0355868A true JPH0355868A (en) 1991-03-11

Family

ID=16279865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1191749A Pending JPH0355868A (en) 1989-07-24 1989-07-24 Computing method of interwiring capacitance of electronic circuit

Country Status (1)

Country Link
JP (1) JPH0355868A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19630927A1 (en) * 1995-07-31 1997-02-06 Nec Corp Method for calculating an interference load in a semiconductor integrated circuit
US8683765B2 (en) 2009-07-17 2014-04-01 Stone Treuhand Ag Wall structure for a building

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130279A (en) * 1987-11-16 1989-05-23 Fujitsu Ltd Calculating method for wiring capacity of mask pattern
JPH02310944A (en) * 1989-05-26 1990-12-26 Hitachi Ltd Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130279A (en) * 1987-11-16 1989-05-23 Fujitsu Ltd Calculating method for wiring capacity of mask pattern
JPH02310944A (en) * 1989-05-26 1990-12-26 Hitachi Ltd Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19630927A1 (en) * 1995-07-31 1997-02-06 Nec Corp Method for calculating an interference load in a semiconductor integrated circuit
US8683765B2 (en) 2009-07-17 2014-04-01 Stone Treuhand Ag Wall structure for a building

Similar Documents

Publication Publication Date Title
US5801959A (en) Integrated circuit layout
US6240542B1 (en) Poly routing for chip interconnects with minimal impact on chip performance
US6243653B1 (en) Methods and apparatus for extracting parasitic capacitance values from a physical design of an integrated circuit
US6865727B2 (en) Method for calculating the capacity of a layout of an integrated circuit with the aid of a computer, and application of the method to integrated circuit fabrication
US6574782B1 (en) Decoupled capacitance calculator for orthogonal wiring patterns
JP2002149739A (en) Device and method for extracting parasitic device of semiconductor circuit
KR100255891B1 (en) Method of calculating a parasitic load in a semiconductor integrated circuit
JP3762866B2 (en) Method and apparatus for verifying the layout of an integrated circuit by a computer and use of the method for manufacturing an integrated circuit
JPH05120373A (en) Design verifying device
US7185296B2 (en) Method of extraction of wire capacitances in LSI device having diagonal wires and extraction program for same
JP4195821B2 (en) Semiconductor integrated circuit design method
JPH0355868A (en) Computing method of interwiring capacitance of electronic circuit
JP2638276B2 (en) Calculation method of wiring capacitance of electronic circuit
JP4929437B2 (en) Integrated circuit wiring layout method
JPH04239977A (en) Design device for electronic circuit pattern
JP3175812B2 (en) Semiconductor integrated circuit wiring method
JP2671823B2 (en) Delay time calculation device
US7228512B2 (en) Method of generating capacitance value rule table for extraction of wiring capacitance and capacitance value rule table generation program
JP3065285B2 (en) Automatic placement and routing apparatus and automatic placement and routing method
JP7506115B2 (en) Circuit board analysis device and analysis method
JPH07182405A (en) Crosstalk analyzing method
JPH09319789A (en) Network capacity estimate method and device
JPH1065007A (en) Apparatus and method for designing semiconductor integrated circuit
JP2006294707A (en) Semiconductor integrated circuit and method of wiring the same
JP3139400B2 (en) Layout method of semiconductor integrated circuit