JPH0355753B2 - - Google Patents

Info

Publication number
JPH0355753B2
JPH0355753B2 JP57081405A JP8140582A JPH0355753B2 JP H0355753 B2 JPH0355753 B2 JP H0355753B2 JP 57081405 A JP57081405 A JP 57081405A JP 8140582 A JP8140582 A JP 8140582A JP H0355753 B2 JPH0355753 B2 JP H0355753B2
Authority
JP
Japan
Prior art keywords
row
gap
evaporator
tubes
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57081405A
Other languages
Japanese (ja)
Other versions
JPS58198661A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8140582A priority Critical patent/JPS58198661A/en
Publication of JPS58198661A publication Critical patent/JPS58198661A/en
Publication of JPH0355753B2 publication Critical patent/JPH0355753B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 本発明は空気調和装置などに使用される水一臭
化リチウム系冷温水機の発生器に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a generator for a lithium monobromide water cooler/heater used in an air conditioner or the like.

従来のこの種発生器は第1図および第2図に示
すように、側部に燃焼器1が取付けられた燃焼室
2と、この燃焼室2の下流側すなわち排ガス吐出
側のほゞ鉛直に、かつ千鳥状に配列された蒸発管
群3と、前記燃焼室2を包囲し、かつ溶液流出口
6を有する液室4と、この液室4上に一体の形成
され、溶液流入口7および冷媒蒸気流出口8を有
する気液分離室5により構成されている。
As shown in Figs. 1 and 2, a conventional generator of this type has a combustion chamber 2 with a combustor 1 attached to the side thereof, and a combustion chamber 2 that is located almost vertically on the downstream side of this combustion chamber 2, that is, on the exhaust gas discharge side. , a group of evaporation tubes 3 arranged in a staggered manner, a liquid chamber 4 surrounding the combustion chamber 2 and having a solution outlet 6, and a solution inlet 7 and a solution inlet 7 integrally formed on the liquid chamber 4. It is composed of a gas-liquid separation chamber 5 having a refrigerant vapor outlet 8.

上記のような構造からなる蒸発気では、燃焼器
1で発生した燃焼ガスは放射および対流により液
室4の壁面と熱交換した後に、主として対流によ
り蒸発管群3と熱交換を行う。一方、溶液は液室
4の壁面および蒸発管群3で加熱され、冷媒蒸気
を発生して気液二相の上昇流となつて気液分離室
5に流入しこゝで冷媒蒸気と溶液に分離される。
その一方の冷媒蒸気は冷媒蒸気流出口8から流出
し、他方の冷媒蒸気を発生して濃縮された溶液は
溶液流出口6から流出すると共に、希溶液が溶液
流入口7より流入する。
In the evaporative gas having the above structure, the combustion gas generated in the combustor 1 exchanges heat with the wall surface of the liquid chamber 4 by radiation and convection, and then exchanges heat with the evaporator tube group 3 mainly by convection. On the other hand, the solution is heated on the wall surface of the liquid chamber 4 and the evaporation tube group 3, generates refrigerant vapor, and flows into the gas-liquid separation chamber 5 as a gas-liquid two-phase upward flow, where it is separated into refrigerant vapor and solution. separated.
One of the refrigerant vapors flows out from the refrigerant vapor outlet 8 , the other refrigerant vapor generated and concentrated solution flows out from the solution outlet 6 , and the diluted solution flows in from the solution inlet 7 .

このような発生器では、燃焼ガスが燃焼室2か
ら蒸発管群3に流れ込む場合、第3図に示すよう
に蒸発管群3における第1列目の相隣る蒸発管3
a,3a間の間隙9で絞られて流速を増加し、燃
焼ガスの最大流速を有する中央部分が第2列目の
蒸発管3bの前面3b1に直接に衝突する。このた
め前面部分3b1はよどみ部となるので、熱伝達率
が増加して最大熱流速を発生するから局部過熱を
起すばかりでなく、この局部過熱により腐食の進
行が促進される。したがつて機器の寿命が短命と
なり、かつ不凝縮ガスの発生量が増大し、凝縮器
および吸収器の熱伝達率が低下する恐れがある。
In such a generator, when the combustion gas flows from the combustion chamber 2 into the evaporator tube group 3, the adjacent evaporator tubes 3 in the first row in the evaporator tube group 3 as shown in FIG.
The flow rate is increased through the gap 9 between the combustion gases a and 3a, and the central portion having the maximum flow rate of the combustion gas directly collides with the front surface 3b1 of the second row of evaporation tubes 3b. For this reason, the front surface portion 3b1 becomes a stagnation portion, which increases the heat transfer coefficient and generates the maximum heat flow velocity, which not only causes local overheating, but also accelerates the progress of corrosion. Therefore, the life of the equipment will be shortened, the amount of non-condensable gas generated will increase, and the heat transfer coefficient of the condenser and absorber may decrease.

上記欠点を解消するために、従来の上記蒸発管
3a,3a間の間隙9を拡大することにより、燃
焼ガスの流速を小さくしていたから機器が大型化
する恐れがあつた。このような機器を大型化して
全体のガス流速を低下させ、蒸発管の熱伝達率は
低下するので、伝熱面積を増加させる必要がある
から、発生器はさらに大型化する欠点がある。
In order to eliminate the above-mentioned drawbacks, the conventional evaporator tubes 3a, 3a have had their gaps 9 enlarged to reduce the flow velocity of the combustion gas, which may lead to an increase in the size of the equipment. The disadvantage of increasing the size of such equipment is that the overall gas flow rate is reduced, and the heat transfer coefficient of the evaporator tube is reduced, so the heat transfer area must be increased, making the generator even larger.

本発明は上記にかんがみ、蒸発管群の局部過熱
を防止し、全体の平均熱流速を増大して小型化を
はかるのに好適な吸収式冷温水機の発生器を提供
することを目的とする。
In view of the above, an object of the present invention is to provide a generator for an absorption type water chiller/heater that is suitable for preventing local overheating of a group of evaporator tubes, increasing the overall average heat flow velocity, and achieving downsizing. .

上記目的は、蒸発管群における第1列目の相隣
る蒸発管の間隙の中心線に対し、この間隙に対向
する第2列目の蒸発管の中心を偏倚させることに
よつて、達成される。
The above object is achieved by offsetting the center of the evaporator tubes in the second row facing the gap with respect to the center line of the gap between adjacent evaporator tubes in the first row in the evaporator tube group. Ru.

上記構成により、第1列目の相隣る蒸発管の間
隙で絞されて増速した燃焼ガスが第2列目の蒸発
管の中心からずれた前面部に直接に衝突するた
め、よどみの発生が阻止され、局部過熱が防止さ
れる。
With the above configuration, the combustion gas, which has been throttled and accelerated by the gap between adjacent evaporator tubes in the first row, directly collides with the off-center front surface of the evaporator tubes in the second row, resulting in stagnation. This prevents local overheating.

以下本発明の実施例を図面について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第4図において、1は燃焼室2の側部に取付け
られた燃焼器、3は燃焼室2の下流側すなわち排
ガス吐出側にほゞ鉛直、かつ千鳥状に配列された
蒸発管群で、この蒸発管群3は第5図に示すよう
に、その第1列目の相隣る蒸発管3a,3aの間
隙9の中心線Aに対し、第2列目の前記間隙9に
対向する蒸発管3bの中心Oを一方向(図では上
方向)に距離aだけ偏倚するように配設されてい
る。前記距離aは下記条件を満足するように設定
されている。
In Fig. 4, 1 is a combustor attached to the side of the combustion chamber 2, and 3 is a group of evaporator tubes arranged almost vertically in a staggered manner on the downstream side of the combustion chamber 2, that is, on the exhaust gas discharge side. As shown in FIG. 5, the evaporator tube group 3 includes evaporator tubes facing the gap 9 in the second row with respect to the center line A of the gap 9 between adjacent evaporator tubes 3a, 3a in the first row. It is arranged so that the center O of 3b is offset by a distance a in one direction (upward in the figure). The distance a is set to satisfy the following conditions.

S/2<a<D−S/2(D:蒸発管3bの直径) ……(1) その他の構造は第1図および第2図に示す従来
例と同一であるから、説明および図面を省略す
る。
S/2<a<D-S/2 (D: diameter of evaporation tube 3b) ...(1) Since the other structures are the same as the conventional example shown in FIGS. 1 and 2, the explanation and drawings are Omitted.

本実施例は上記のように構成したので、燃焼ガ
スは第1列目の相隣る蒸発管3a,3a間の間隙
9を流通する際に絞られて流速が増加する。この
増速された燃焼ガスは第2列目の蒸発管3bの前
面中央部3b1から距離aだけずれた前面部3b2
直接に衝突するため、よどみ部を発生しないから
局部過熱を防止し、全体の平均熱伝達率の低下を
阻止することができる。
Since the present embodiment is configured as described above, the combustion gas is throttled when flowing through the gap 9 between the adjacent evaporator tubes 3a in the first row, and the flow velocity increases. This accelerated combustion gas directly collides with the front part 3b 2 of the second row of evaporator tubes 3b, which is shifted by a distance a from the front central part 3b 1 , so that no stagnation occurs and local overheating is prevented. , it is possible to prevent a decrease in the overall average heat transfer coefficient.

例えば溶液温度が約150℃、蒸発管群3に流入
する燃焼ガスの温度が約1000℃の場合、従来例
(第3図)では、第2列目の蒸発管3bの前面中
央部3b1の温度は溶液温度よりも30〜50℃高温と
なり、腐食進行の限度温度である180℃に達する。
これに対し本実施例(第4,5図)によれば、蒸
発管3bの前面中央部3b1よりずれた前面部3b2
の温度は、溶液温度よりも20℃程度高くなるだけ
である。このため不凝縮ガスの発生が多量となる
ので、上記前面部3b2の温度は腐食の急速に進行
し始める限界温度である180℃よりも低温に保持
されるから、前面部3b2の過熱を防止することが
できる。
For example, when the solution temperature is about 150°C and the temperature of the combustion gas flowing into the evaporator tube group 3 is about 1000°C, in the conventional example (Fig. 3), the front central part 3b 1 of the evaporator tube 3b in the second row The temperature is 30 to 50°C higher than the solution temperature, reaching 180°C, which is the limit temperature for corrosion progression.
On the other hand, according to the present embodiment (FIGS. 4 and 5), the front surface portion 3b 2 is shifted from the front center portion 3b 1 of the evaporation tube 3b.
The temperature of is only about 20°C higher than the solution temperature. As a result, a large amount of non-condensable gas is generated, and the temperature of the front section 3b2 is kept lower than 180°C, which is the limit temperature at which corrosion begins to rapidly progress, so overheating of the front section 3b2 is prevented. It can be prevented.

第6図に示す他の実施例は、第2列目の蒸発管
3bを中央に寄せることにより、その蒸発管3b
の中心Oを第1列目の相隣る蒸発器3a,3aの
間隙9中の相対向する間隙の中心線Aからずらし
て配設した点が第4図に示す実施例と異なり、そ
の他の構造は同一であるから説明を省略する。
In another embodiment shown in FIG. 6, by moving the second row of evaporation tubes 3b to the center, the evaporation tubes 3b
The difference from the embodiment shown in FIG. 4 is that the center O of the evaporators 3a, 3a in the first row is shifted from the center line A of the opposing gap in the gap 9 between the adjacent evaporators 3a, 3a. Since the structure is the same, the explanation will be omitted.

このように構成すれば、第1列目の相燐る蒸発
管3a,3a間の間隙9で絞られて流速の増大し
た燃焼ガスは、第2列目の蒸発管3bの前面中央
部よりはずれた部分に直接に衝突するので、よど
みを発生しないから局部過熱を防ぐと共に、全体
の平均熱伝達率の低下を防止することができる。
With this configuration, the combustion gas whose flow velocity has been increased by being throttled in the gap 9 between the phosphor-containing evaporator tubes 3a in the first row is removed from the center of the front surface of the evaporator tubes 3b in the second row. Since it directly collides with the affected area, no stagnation occurs, which prevents local overheating and reduces the overall average heat transfer coefficient.

上記実施例では、蒸発管群3の各管3a,3b
……は同一直径のものを用いたが、第7図に示す
他の実施例では、蒸発管群3のうち第2列目の蒸
発管3bは第1列目の蒸発管3aより大きい直径
のものを用いることにより、第2列目の蒸発管3
bの中心を第1列目の相隣る蒸発管3a,3aの
間の間隙9の中心線からずらして配設したもので
ある。このように構成した本実施例によれば、上
記実施例と同様な効果を発揮するはもちろん、第
2列目の蒸発管3bの直径が太いため、前面にお
ける熱伝達率が細い蒸発管に比べて小さくなるの
で、より一層の局部過熱を防止することができる
効果がある。
In the above embodiment, each tube 3a, 3b of the evaporation tube group 3
. . . used the same diameter, but in the other embodiment shown in FIG. By using a
b is arranged such that the center thereof is shifted from the center line of the gap 9 between adjacent evaporation tubes 3a, 3a in the first row. According to this embodiment configured in this way, it not only exhibits the same effect as the above embodiment, but also has a larger diameter of the second row of evaporator tubes 3b, so the heat transfer coefficient at the front surface is higher than that of thin evaporation tubes. This has the effect of further preventing local overheating.

以上説明したように本発明によれば、第1列目
の相隣る蒸発管の間隙で絞られて増速した燃焼ガ
スが第2列目の蒸発管の中心からずれた前面部に
直接に衝突するため、よどみの発生を阻止して局
部過熱を防止し、全体の平均熱流速を大きくする
ことができるので、発生器の小形化をはかること
が可能である。
As explained above, according to the present invention, the combustion gas, which has been throttled and accelerated by the gap between adjacent evaporator tubes in the first row, is directly directed to the front surface of the evaporator tubes in the second row, which is offset from the center. Because of the collision, it is possible to prevent the occurrence of stagnation, prevent local overheating, and increase the overall average heat flow rate, making it possible to downsize the generator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の吸収式冷温水機の発生器の横断
面図、第2図は第1図の−線における断面
図、第3図は第1図の蒸発管の配列を説明する
図、第4図は本発明の吸収式冷温水機の発生器の
一実施例を示す横断面図、第5図は同実施例の蒸
発管の配列を説明する図、第6図および第7図は
本発明に係わる他の実施例を示す横断面図であ
る。 1……燃焼器、2……燃焼室、3……蒸発管
群、3a,3b……蒸発管、9……間隙。
FIG. 1 is a cross-sectional view of a generator of a conventional absorption type water chiller/heater, FIG. 2 is a cross-sectional view taken along the - line in FIG. 1, and FIG. 3 is a diagram explaining the arrangement of the evaporation tubes in FIG. FIG. 4 is a cross-sectional view showing one embodiment of the generator of the absorption type water chiller/heater of the present invention, FIG. 5 is a diagram explaining the arrangement of the evaporation tubes of the same embodiment, and FIGS. FIG. 7 is a cross-sectional view showing another embodiment according to the present invention. 1... Combustor, 2... Combustion chamber, 3... Evaporator tube group, 3a, 3b... Evaporator tube, 9... Gap.

Claims (1)

【特許請求の範囲】 1 燃焼器を有する燃焼室と、この燃焼室の下流
側に千鳥状に配列した蒸発管群と、前記燃焼室を
包囲する液室と、この液室上に設けた気液分離室
とからなる発生器において、前記蒸発管群におけ
る第1列目の相隣る蒸発管の間隙の中心線に対
し、この間隙に対向する第2列目の蒸発管の中心
を偏倚させたことを特徴とする吸収式冷温水機の
発生器。 2 蒸発管群における第1列目の相隣る蒸発管の
間隙をS、第2列目の蒸発管の直径をD、この蒸
発管の中心と前記間隙の中心線との距離をaとす
ると、この距離aは S/2<a<D−S/2 を満足するように設定することを特徴とする特許
請求の範囲第1項記載の吸収式冷温水機の発生
器。
[Claims] 1. A combustion chamber having a combustor, a group of evaporator tubes arranged in a staggered manner on the downstream side of the combustion chamber, a liquid chamber surrounding the combustion chamber, and an air chamber provided above the liquid chamber. In the generator consisting of a liquid separation chamber, the center of the second row of evaporation tubes facing the gap is offset with respect to the center line of the gap between adjacent evaporation tubes in the first row in the evaporation tube group. This is an absorption type water chiller/heater generator that is characterized by: 2. Let S be the gap between adjacent evaporator tubes in the first row in the evaporator tube group, D be the diameter of the evaporator tube in the second row, and a be the distance between the center of this evaporator tube and the center line of the gap. , the distance a is set to satisfy S/2<a<D-S/2, The generator for an absorption type water chiller/heater according to claim 1.
JP8140582A 1982-05-17 1982-05-17 Generator for absorption type cold and hot water machine Granted JPS58198661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8140582A JPS58198661A (en) 1982-05-17 1982-05-17 Generator for absorption type cold and hot water machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8140582A JPS58198661A (en) 1982-05-17 1982-05-17 Generator for absorption type cold and hot water machine

Publications (2)

Publication Number Publication Date
JPS58198661A JPS58198661A (en) 1983-11-18
JPH0355753B2 true JPH0355753B2 (en) 1991-08-26

Family

ID=13745410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8140582A Granted JPS58198661A (en) 1982-05-17 1982-05-17 Generator for absorption type cold and hot water machine

Country Status (1)

Country Link
JP (1) JPS58198661A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824649B2 (en) * 1975-04-08 1983-05-23 エヌ テ− エヌトウヨウベアリング カブシキガイシヤ Tensoumennokoshiyokuseitai

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851578Y2 (en) * 1978-12-07 1983-11-24 株式会社荏原製作所 evaporator
JPS5824649U (en) * 1981-08-10 1983-02-16 バブコツク日立株式会社 liquid heating device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824649B2 (en) * 1975-04-08 1983-05-23 エヌ テ− エヌトウヨウベアリング カブシキガイシヤ Tensoumennokoshiyokuseitai

Also Published As

Publication number Publication date
JPS58198661A (en) 1983-11-18

Similar Documents

Publication Publication Date Title
WO2020020349A1 (en) Condenser
JPH0355753B2 (en)
JPH0271096A (en) Heat exchanger with fin
US5915468A (en) High-temperature generator
JPS58214793A (en) Heat exchanger
JPH04186070A (en) Heat exchanger
JPH0684876B2 (en) Heat exchanger with fins
JPH027415Y2 (en)
JPS616590A (en) Finned heat exchanger
JPS58158496A (en) Finned-tube type heat exchanger
JPS58140597A (en) Flat pipe for heat exchanger
JPS6232395B2 (en)
JPS58213192A (en) Finned heat exchanger
JPS593264Y2 (en) Evaporative heat exchanger
JP3300083B2 (en) Water tube evaporator with vertical drum
JP3992833B2 (en) Absorption heat exchanger heat exchanger tube
JPS58158497A (en) Finned-tube type heat exchanger
JPS59210297A (en) Heat exchanger with fin
JP3848750B2 (en) Horizontal heat exchanger
JP2877420B2 (en) Absorption refrigerator
JPH071156B2 (en) Heat transfer fins and heat exchangers
JPH0666458A (en) Refrigerator evaporator
JPS58217196A (en) Heat exchanger
JPH09196507A (en) Heat exchanger for air conditioning
JPS63201496A (en) Finned heat exchanger