JPH0355673A - Characteristic curve comparing method and organic area extracting method for mri image - Google Patents

Characteristic curve comparing method and organic area extracting method for mri image

Info

Publication number
JPH0355673A
JPH0355673A JP1190563A JP19056389A JPH0355673A JP H0355673 A JPH0355673 A JP H0355673A JP 1190563 A JP1190563 A JP 1190563A JP 19056389 A JP19056389 A JP 19056389A JP H0355673 A JPH0355673 A JP H0355673A
Authority
JP
Japan
Prior art keywords
characteristic curve
echo
value
evaluation function
organ
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1190563A
Other languages
Japanese (ja)
Inventor
Yoshihiro Goto
良洋 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP1190563A priority Critical patent/JPH0355673A/en
Publication of JPH0355673A publication Critical patent/JPH0355673A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the influence of noises for comparison of characteristic curves and to extract an organic area of an MRI image by deciding the coincidence or discordance of two characteristic curves based on a membership function which applies the absolute value of the difference between both curves as a variable. CONSTITUTION:A memory has a function which applies the absolute value of the difference between a reference curve obtained from the characteristic curve of an echo signal presumed by a spin echo method owing to a multi-error and a reference characteristic curve of an extracted organ as a variable. At the same time, the absolute value delta is obtained for the difference between the reference curve and the actually measured reference characteristic curve of the extracted organ. Then the membership function value mu is obtained from the value delta. The measured echo signals area available to all degrees and therefore an evaluation function is obtained from the function value of all degrees. Then it is decided that the echo signal generating part is identical to the extracted organ as long as the evaluation function value is kept within a prescribed range. Thus an organ is extracted in an image, and an echo signal is extracted at each point of the relevant area. The mutual product of membership function values of all degrees or the sum total of function values of all degrees is used to the evaluation function.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,特性曲線比較方法及び抽出方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a characteristic curve comparison method and an extraction method.

〔従来の技術〕[Conventional technology]

2つの特性曲線相互が同一か否かの判断をする例は多い
。各種の入力信号が特性曲線となる場合や、ある画像処
理をして抽出して特性曲線を得る場合もある。この特性
曲線と,基準となる特性曲線との比較をして、同一か否
か、類似しているか否かを判定する例が多い。これらの
特性曲線はメモリやレジスタに格納しておき,比較は、
相互のデータ比較処理にて実行する。
There are many cases in which it is determined whether two characteristic curves are the same or not. In some cases, various input signals become characteristic curves, and in other cases, characteristic curves are obtained by performing certain image processing and extraction. In many cases, this characteristic curve is compared with a reference characteristic curve to determine whether they are the same or similar. These characteristic curves are stored in memory or registers, and comparisons can be made by
Executed by mutual data comparison processing.

さて、2つの特性曲線の従来の比較方法を第2図で説明
する。横軸は変数Xとし、縦軸はその関数F(x)とす
る。基準の特性曲線Aを与えておき,これと特性曲線B
とが同一であるか否かを判定する場合を考える。この判
定のために、従来は基準の特性曲線Aの両側に@Woな
る2つの平行曲線C,Dを設定し,特性曲線Bのすべて
の点がこのCとDとの間に存在すれば,BはAに同一、
一点でもCとDとの間に存在しなければ、BはAに同一
でないとの判定を下した。
Now, a conventional method of comparing two characteristic curves will be explained with reference to FIG. The horizontal axis is the variable X, and the vertical axis is its function F(x). A standard characteristic curve A is given, and this and characteristic curve B are
Consider the case of determining whether or not are the same. For this determination, conventionally, two parallel curves C and D called @Wo are set on both sides of the standard characteristic curve A, and if all points of the characteristic curve B exist between C and D, then B is the same as A,
If even one point does not exist between C and D, it is determined that B is not identical to A.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

然るに、例えば、B1の如く曲線CとDとの外部に特性
がはみ出していれば,BとAとは同一でないと判定する
。B,がノイズである例は多く、人間の視野の範囲では
AとBとは略同一とみるとしても、処理上は同一でない
と判定してしまうことになる。従って、前記方法によれ
ば、ノイズの影響を受やすい。
However, if the characteristic protrudes outside the curves C and D, as in B1, for example, it is determined that B and A are not the same. There are many cases in which B is noise, and even if A and B are seen to be substantially the same within the human visual field, they will be determined to be not the same in terms of processing. Therefore, the method is susceptible to noise.

MHIの分野でのエコー信号の計測方法に、マルチエコ
ーによるスピンエコー法がある。この方法は、90°パ
ルスを与えた後に、次々に180°パルスを与えておき
,各180°パルスに対するエコー信号を180°パル
スリ数だけ受信するやり方である。
A spin echo method using multi-echo is a method for measuring echo signals in the field of MHI. In this method, after applying a 90° pulse, 180° pulses are applied one after another, and echo signals corresponding to each 180° pulse are received as many times as the number of 180° pulses.

即ち、1個の90°パルスを与えて複数のエコー信号を
次々に得る方法であり、被検体部位の効率的な判定法と
して利用されている。
That is, it is a method of applying one 90° pulse to obtain a plurality of echo signals one after another, and is used as an efficient method for determining the region of a subject.

かかるマルチエコーによるスピンエコー法では、次々に
得るエコー信号を、最初のエコー信号から順次.1次エ
コー,2次エコー,3次エコー・・・と呼ぶ.また,そ
の1次,2次,3次,・・・を一括して次数と呼ぶ。(
1次エコーの振幅)〉(2次エコーの振幅)〉(3次エ
コーの振幅)〉・・・の如く、次数が大きくなるに従っ
て、エコー振幅は減少する. さて、マルチエコーによるスピンエコー法のエコーの計
測例を第3図に示す。横軸はエコー次数、縦軸はエコー
信号(画素濃度と考えてもよい)を示す。今、特性曲線
Eがある部位の特性曲線とし,この部位に組織上近い部
位(正確にはその部位の画像)を見つけたいとする.そ
こで,ある部位についての計測特性がFであったとして
、この特性Fが特性Eと同一か否かを判断したい.この
特性EとFとの比較にあっても、第2図の如き比較法を
とる。そして同一であるとの判定であれば,特性Fの部
位を特性Eの部位と同一組織体であるとし認定し、この
特性Eの部位を臓器として抽出する。
In the multi-echo spin echo method, successive echo signals are obtained one after another, starting from the first echo signal. They are called primary echo, secondary echo, tertiary echo, etc. Moreover, the first, second, third, etc. are collectively called the order. (
The echo amplitude decreases as the order increases, as follows: (amplitude of first-order echo) (amplitude of second-order echo) (amplitude of third-order echo) Now, FIG. 3 shows an example of echo measurement using the spin echo method using multi-echo. The horizontal axis shows the echo order, and the vertical axis shows the echo signal (which may be considered as pixel density). Now let us assume that the characteristic curve E is a characteristic curve for a certain region, and that we want to find a region that is histologically close to this region (more precisely, an image of that region). Therefore, assuming that the measured characteristic of a certain part is F, we would like to determine whether this characteristic F is the same as characteristic E. In comparing the characteristics E and F, a comparison method as shown in FIG. 2 is used. If it is determined that they are the same, the site with characteristic F is recognized as being the same tissue as the site with characteristic E, and the site with characteristic E is extracted as an organ.

ここで、m器抽出とは.MHIで計数した全次数分のメ
モリが存在し、このメモリ゜の内容をCRT上に表示さ
せておき,その表示内容をみて操作者が臓器を指定し、
この臓器に属する全画素を抽出するとのことを意味する
。ここで、臓器内にあっては,同一組織体である故に、
エコー信号(メモリ内のデータのこと)は、同一特性を
描く。そこで、同一特性のエコー信号が存在すれば、そ
の部位は抽出すべき臓器として特定できることになる.
なお,この他に、計測したデータから臓器画像を得る場
合も含めてよい。
Here, what is m-device extraction? There is a memory for all the orders counted by the MHI, and the contents of this memory are displayed on the CRT, and the operator specifies the organ by looking at the displayed contents.
This means that all pixels belonging to this organ are extracted. Here, within the organ, since they are the same tissue,
The echo signals (referring to the data in memory) describe the same characteristics. Therefore, if echo signals with the same characteristics exist, that part can be identified as the organ to be extracted.
Note that in addition to this, a case where an organ image is obtained from measured data may also be included.

本発明の目的は、ノイズの影響の受けにくい特性曲線比
較方法及び臓器抽出方法を提供するものである。
An object of the present invention is to provide a characteristic curve comparison method and an organ extraction method that are less susceptible to the influence of noise.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、2つの特性曲線の差分の絶対値を変数とする
メンバシップ関数を用いて、この2つの特性曲線が同一
か否かを判定するようにした。
The present invention uses a membership function whose variable is the absolute value of the difference between two characteristic curves to determine whether these two characteristic curves are the same.

更に、本発明は、MHIでの臓器抽出のために,このメ
ンバシップ関数を使用した。
Furthermore, the present invention used this membership function for organ extraction in MHI.

更に本発明は、MRIでのメンバシップ関数とは、マル
チエコーによるスピンエコー法のもとでの想定されるエ
コー信号データの特性曲線より得た参考曲線と抽出臓器
の基準特性曲線との差分の絶対値を変数とする関数であ
り、この関数をメモリに用意しておき、一方、実際のマ
ルチエコーによるスピンエコー法で計測したエコー信号
と抽出臓器の基準特性曲線との差分の絶対値を求め、こ
の絶対値から前記メモリ上のメンバシップ関数値を求め
る.更に,計測したエコー信号は全次数分存在する故に
,メンパシップ関数値もこの全次数分存在する.そこで
、全次数分の関数値から抽出臓器か否かを判定する評価
関数を作り,この評価関数値が所定範囲であれば、該エ
コー信号発生部位は抽出臓器と同一であるとして画像上
の臓器抽出する.臓器抽出部位は広がりを持つ例が多い
ため、その部位内の各点でのエコー信号について上記の
如き抽出処理を行う。
Furthermore, in the present invention, the membership function in MRI is defined as the difference between a reference curve obtained from a characteristic curve of echo signal data assumed under the multi-echo spin echo method and a reference characteristic curve of the extracted organ. This is a function that uses an absolute value as a variable. This function is prepared in memory, and on the other hand, the absolute value of the difference between the echo signal measured by the spin echo method using actual multi-echo and the reference characteristic curve of the extracted organ is calculated. , calculate the membership function value on the memory from this absolute value. Furthermore, since the measured echo signals exist for all orders, the membership function values also exist for all orders. Therefore, we created an evaluation function that determines whether the organ is extracted from the function values of all orders, and if this evaluation function value is within a predetermined range, the echo signal generation site is considered to be the same as the extracted organ, and the organ in the image is Extract. Since the organ extraction site is often spread out, the extraction process described above is performed on the echo signals at each point within the site.

更に、本発明は、評価関数として、全次数分のメンバシ
ップ関数値の相互積又は全次数分のメンバシップ関数値
の総加算を用いる。
Furthermore, the present invention uses the mutual product of membership function values for all orders or the total addition of membership function values for all orders as an evaluation function.

〔作用〕[Effect]

本発明では、2つの特性曲線相互の同一か否かの判定式
としてその差分の絶対値を変数とするメンパシップ関数
を使用する. 更に,本発明は、MHIでの臓器抽出にメンバシップ関
数を利用する. 更に本発明は、このメンバシップ関数として、エコー信
号と基準特性曲線の差分の絶対値を求め、この絶対値か
らメモリ上にメンバシップ関数値を予め求めておく。そ
して実際の差分の絶対値から関数値を次数毎に求め、こ
れらの全次数から評価関数を求め,この評価関数をもと
にして臓器抽出を行う. 更に、本発明の評価関数は、全積、又は総和の形で与え
られる. 〔実施例〕 第4図は,本発明のMRI利用でのメンバシップ関数を
示す。横軸δは差分の絶対値、樅軸μはメンバシップ関
数値を示す。このメンバシップ関数値とは、基準特性曲
線ともう1つの特性曲線との2つの特性曲線が同一か否
かの判定曲線であり、メンバシップ関数値μ=1とは完
全同一の特性曲線であることを意味し、δが大、即ち2
つの特性曲線の差分が大となる程,メンバシップ関数値
μは小さくなり、両特性は,異なったものであることを
示すことになる.この関数は、もうlつの特性曲線の取
りうる範囲の参考曲線と基準特性曲線とから得たもので
ある. 第4図のメンバシップ関数は、次数毎に得る。
In the present invention, a membership function whose variable is the absolute value of the difference is used as an expression for determining whether two characteristic curves are the same or not. Furthermore, the present invention utilizes membership functions for organ extraction in MHI. Further, in the present invention, the absolute value of the difference between the echo signal and the reference characteristic curve is determined as the membership function, and the membership function value is previously determined on the memory from this absolute value. Then, calculate the function value for each order from the absolute value of the actual difference, calculate the evaluation function from all these orders, and perform organ extraction based on this evaluation function. Furthermore, the evaluation function of the present invention is given in the form of a total product or a sum. [Example] FIG. 4 shows membership functions in MRI use of the present invention. The horizontal axis δ indicates the absolute value of the difference, and the axis μ indicates the membership function value. This membership function value is a judgment curve for determining whether or not two characteristic curves, a reference characteristic curve and another characteristic curve, are the same, and a membership function value μ=1 means that the characteristic curves are completely the same. This means that δ is large, that is, 2
The larger the difference between the two characteristic curves, the smaller the membership function value μ, indicating that the two characteristics are different. This function is obtained from a reference curve and a standard characteristic curve within the possible range of the other characteristic curve. The membership functions in FIG. 4 are obtained for each degree.

従って、次数の数が4であれば、メンバシップ関数μは
、μS,μ2,μ3,μ4の4個となる。μ直〜μ4は
、同一関数の例もあるが、MRIではμ1〜μ4はそれ
ぞれ異なることが多い。例えば,μ4〉μlとなってい
るのは、第4次数は第1次数に比べて得られるエコー信
号の大きさが小さく、従って、δが大になるに従ってあ
いまいさを増すためである。
Therefore, if the number of degrees is 4, there are four membership functions μ, μS, μ2, μ3, and μ4. Although there are examples of the functions μ1 to μ4 being the same, in MRI, μ1 to μ4 are often different. For example, μ4>μl because the magnitude of the echo signal obtained in the fourth order is smaller than that in the first order, and therefore the ambiguity increases as δ increases.

メンバシップ関数を次数毎としたのは、次数毎に同一性
判断のメンバシップ関数が作れるためである。即ち、例
えば、第1次数の関数μ直でみるに、第1次数にあって
も完全同一(δ′=0)から両者は相当に異なるとのδ
が大になる例もある。
The reason why the membership function is set for each degree is that a membership function for determining identity can be created for each degree. That is, for example, if we look directly at the function μ of the first order, we can say that even in the first order, they are completely identical (δ' = 0), so that the two are quite different.
In some cases, it becomes large.

そこから、これらの同一から相当異なるとの関係を差分
δを変数として表呪したのが関数μ重なのである。他の
次数でも同じである。
From this, the function μ weight is expressed by using the difference δ as a variable to express the relationship between these same and considerably different values. The same holds true for other orders.

尚,メンバシップ関数を求めるには、抽出臓器を意味す
る基準特性曲線を知っておく必要がある。
Note that in order to obtain the membership function, it is necessary to know the reference characteristic curve representing the extracted organ.

この基準特性曲線からどの程度偏差(差分)があれば同
一性の範囲とみるかを示す関数μ一〜μ4が得られるの
である。
Functions μ1 to μ4 are obtained that indicate how much deviation (difference) from this reference characteristic curve is considered to be the range of identity.

第5図は、任意の部位が抽出臓器の一部であるか否かを
抽出するための事例を示す。特性Gが抽出臓器で定まる
基準特性曲線であり、特性Hが走査部位である。特性H
は走査部位によって異なる故に、第4図のメンバシップ
関数を用いて同一性の範囲か否かを比較する。
FIG. 5 shows an example for extracting whether an arbitrary part is part of an extracted organ. The characteristic G is a reference characteristic curve determined by the extracted organ, and the characteristic H is the scanned region. Characteristic H
Since this differs depending on the scanned region, the membership function shown in FIG. 4 is used to compare whether or not there is a range of identity.

そのために,第1次数での基準特性曲線の値R1と走査
部位での特性曲線の値XIとの差分の絶対値δ1を求め
る。
For this purpose, the absolute value δ1 of the difference between the value R1 of the reference characteristic curve at the first order and the value XI of the characteristic curve at the scanning region is determined.

δr= l R+  x+ l     −−(1)一
方,第4図によれば第1次数のメンバシップ関数はμ1
であり、この関数から,δ=δ一なる関数値μ目を求め
る。
δr= l R+ x+ l --(1) On the other hand, according to Figure 4, the first-order membership function is μ1
From this function, find the μth function value where δ=δ1.

この第1次数の関数値μI1のみから同一か否かを判断
することもできる。しかし、判断データ数が余りに少な
いために、本実施例では、評価関数を導入する。
It is also possible to determine whether they are the same or not only from this first-order function value μI1. However, since the number of judgment data is too small, an evaluation function is introduced in this embodiment.

そのために、第2次数から第4次数までの差分の絶対値
δ2,δ3,δ4をも求める。
For this purpose, the absolute values δ2, δ3, and δ4 of the differences from the second order to the fourth order are also determined.

この絶対値δ2,δ3,δ4から,メンバシップ関数値
μ21,μ3、μ引を第4図から求める。
From these absolute values δ2, δ3, δ4, membership function values μ21, μ3, μ subtraction are determined from FIG.

評価関数は以下となる。The evaluation function is as follows.

(イ)、積の場合、 評価関数Jとして、μ目〜μ4Iの積算結果を使う。(a) In the case of the product, As the evaluation function J, the integration results of μth to μ4I are used.

J=μ■0μ21 ’μ31 ’μ4I゜゜”゜(3)
この評価関数Jに基準値を設けておき、(J>基準値)
であれば、走査部位の点は,基準特性曲線と同一であり
と判定し,抽出臓器の1点であるとして抽出する。
J=μ■0μ21 'μ31 'μ4I゜゜”゜(3)
A reference value is set for this evaluation function J, and (J>reference value)
If so, the point of the scanned region is determined to be the same as the reference characteristic curve, and is extracted as one point of the extracted organ.

(口),和の場合 評価関数として、μ■〜μ引の総加算結果を使う。(mouth), in the case of sum The total addition result of μ■ to μ subtraction is used as the evaluation function.

J = μ+t + pz+ + μ31 + μa+
    −<4)この評価関数Jに基準値を設けておき
、(J>基準値)であれば、走査部位の点は、基準特性
曲線と同一であると判定し、抽出臓器の1点であるとし
て抽出する。
J = μ+t + pz+ + μ31 + μa+
-<4) A reference value is set for this evaluation function J, and if (J > reference value), the point of the scanned region is determined to be the same as the reference characteristic curve, and it is determined that it is one point of the extracted organ. Extract as.

以上の(イ)と(口)の積及び和の評価関数は、抽出部
位によっても使いわけてもよい.積の場合は、比較的μ
相互の大小の関係が値Jに現われてくる特徴を持つから
、μ相互に比較的大小関係がない場合に同一と判定でき
る如き特性曲線の比較に都合がよい.和の場合は、μ相
互の大小関係が結果にそれ程大きく反映しないことから
、μ相互の大小関係が大きい特性曲線にあっても同一と
判定できる如き特性曲線の比較に都合がよい。
The above evaluation functions of the product and sum of (a) and (guchi) may be used depending on the extraction site. In the case of the product, relatively μ
Since the mutual magnitude relationship appears in the value J, it is convenient for comparing characteristic curves that can be determined to be the same when there is relatively no mutual magnitude relationship. In the case of a sum, since the mutual magnitude relationship between μ is not so greatly reflected in the result, it is convenient for comparing characteristic curves that can be determined to be the same even if the characteristic curves have a large mutual magnitude relationship between μ.

第6図は本発明の処理装置の実施例を示す。この処理装
置は、バス10と、このバスIOに接続されたCPUI
,主メモリ2,トラックボール3、高速演算回路(専用
ハードウェア)4、演算用メモリ5,表示メモリ6、C
RT7、記録媒体(ファイル)8より成る. CPUIは、バス制御及び一般的な画像処理,及びマン
マシン処理を行う.主メモリ2は、プログラム及び各種
データを格納する。トラックボール3は、CRT7上の
表示画面の指示用に使う。
FIG. 6 shows an embodiment of the processing apparatus of the present invention. This processing device has a bus 10 and a CPU connected to this bus IO.
, main memory 2, trackball 3, high-speed calculation circuit (dedicated hardware) 4, calculation memory 5, display memory 6, C
It consists of 7 RTs and 8 recording media (files). The CPUI performs bus control, general image processing, and man-machine processing. Main memory 2 stores programs and various data. The trackball 3 is used for instructions on the display screen on the CRT 7.

高速演算回路4は、本実施例の処理(差分を求めること
、その絶対値からのメンバシップ関数値を求めること、
評価関数を作ること、判定すること、臓器抽出を行うこ
と)を専用に行う。演算用メモリ5は、この処理のため
の中間的な各種のデータの格納に使う。
The high-speed arithmetic circuit 4 performs the processing of this embodiment (determining the difference, determining the membership function value from its absolute value,
(Creating evaluation functions, making judgments, and extracting organs) is performed exclusively for this purpose. The calculation memory 5 is used to store various intermediate data for this processing.

表示メモリ6は、MHI表示画像を格納するものであり
、それをCRT7に表示させる。
The display memory 6 stores an MHI display image and causes the CRT 7 to display it.

記録媒体8は、各種のデータ及び画像データを格納する
.MRI画像はこの媒体8の中に存在しており、処理時
には、CPUIや高速専用回路4がそれを読み出して使
い.その結果は再び媒体8の中に格納する。
The recording medium 8 stores various data and image data. The MRI image exists in this medium 8, and during processing, the CPU and high-speed dedicated circuit 4 read and use it. The result is stored again in the medium 8.

第7図は、演算用メモリ5でのMRI画像の格納の様子
を示す。4枚のメモリ50〜53中には、第1エコー画
像〜第4エコー画像を格納してある.これらのエコー画
像は、記録媒体8から読出したものである。
FIG. 7 shows how MRI images are stored in the calculation memory 5. The first to fourth echo images are stored in the four memories 50 to 53. These echo images are those read from the recording medium 8.

一方、4枚のうちの1枚の画像がCRT7に表示されて
いる。操作者は、その表示画面をみながら、臓器抽出操
作を行う。
On the other hand, one of the four images is being displayed on the CRT 7. The operator performs an organ extraction operation while looking at the display screen.

この臓器抽出操作は以下となる。この操作時には,抽出
臓器用のメンバシップ関数はすでに作られて、メモリ8
の一部にテーブルの形で格納されているものとする。
This organ extraction operation is as follows. At the time of this operation, the membership function for the extracted organ has already been created and the memory 8
Assume that it is stored in the form of a table in a part of .

画面を見て、操作者は、抽出したい臓器を指示する.こ
れがPI点とする.CPUIはこのP,点を読み取り、
III器抽出処理との前提のもとに、媒体8から、PI
点に属するメンバシップ関数μ1〜μ4を読み出し、こ
れをメモリ5の中に格納する。
Looking at the screen, the operator indicates the organ he wants to extract. This is the PI point. The CPUI reads this P, point,
Based on the premise that the PI is extracted from medium 8,
The membership functions μ1 to μ4 belonging to the points are read out and stored in the memory 5.

次に、画面をみながら、操作者は、抽出臓器と思われる
個所を次々に指定する(走査)。例えば、q1点e q
2点,・・・・・・と次々に指定する。各指定毎に、専
用回路5はメモリ50〜53をアクセスして、その指定
点での各次数毎の差の絶対値δ,,δ2,δ3,δ4を
求める。
Next, while looking at the screen, the operator successively specifies (scans) the locations that are believed to be the extracted organs. For example, q1 point e q
Specify 2 points, etc. one after another. For each designation, the dedicated circuit 5 accesses the memories 50 to 53 to obtain the absolute values δ, δ2, δ3, and δ4 of the differences for each order at the designated point.

次に、専用回路5は絶対値61〜δ4からメンバシップ
関数値μ1−,μ2.,μ3.,μ4+を求め、評価関
数Jを作り、基準値と比較する。基準値以上であれば、
この指定点qは抽出臓器と認め、抽出を行う。
Next, the dedicated circuit 5 calculates the membership function values μ1−, μ2 . ,μ3. , μ4+, create an evaluation function J, and compare it with the reference value. If it is above the standard value,
This designated point q is recognized as an extracted organ, and extraction is performed.

第l図は、本実施例の抽出処理のフローチャートを示す
。先ず,位iflP+を指定する(ステップ20)。次
に、次数毎の差分の絶対値δiを求める(ステップ2l
). δ+=IRt  !,1      ・・・・・・(5
)但し,iは次数であり、本実施例ではi==1〜4で
ある。
FIG. 1 shows a flowchart of the extraction process of this embodiment. First, the position iflP+ is specified (step 20). Next, find the absolute value δi of the difference for each order (step 2l
). δ+=IRt! ,1...(5
) However, i is the order, and in this embodiment, i==1 to 4.

次に,テーブルからδ,を変数としてメンバシツプ関数
値μ■,μ2I・μ別,μ4Iを求め、且つ積を求め、
この積の値が基準値1より大きいか否かを判定する(ス
テップ22). 基準値より大であれば、抽出臓器用メモリ(メモリ5の
一部)のP,点に″1”を書込み,基準値より小であれ
ばPi点に“O″″を書込む(ステップ23. 24)
.指示点全部について以上の処理をすれば、抽出臓器用
メモリには、抽出臓器の大きさに沿った領域のみが“1
″となるデータが得られ,かくして抽出臓器が特定され
たことになる。臓器抽出とは、この臓器の特定までを云
ってもよいが、このメモリ上の値は“1”であり、臓器
領域を示したものにすぎない。そこで、このメモリを利
用して第6図のメモリ上から11 1 1+対応の画像
を取出す処理をしてもよい。かくして取出した画像は真
の意味での抽出臓器となる。
Next, from the table, use δ as a variable to find the membership function values μ■, μ2I・μ, μ4I, and find the product.
It is determined whether the value of this product is greater than the reference value 1 (step 22). If it is larger than the reference value, "1" is written in the point P of the extracted organ memory (part of the memory 5), and if it is smaller than the reference value, "O" is written in the point Pi (step 23 .24)
.. If the above processing is performed for all indicated points, only the area along the size of the extracted organ will be stored as “1” in the extracted organ memory.
'' is obtained, and the extracted organ is thus identified. Organ extraction can also be referred to as specifying this organ, but the value in this memory is "1", and the organ area is Therefore, this memory may be used to extract the image corresponding to 11 1 1+ from the memory shown in Fig. 6.The image extracted in this way is an extracted organ in the true sense. becomes.

抽出臓器の利用法には、3次元表示のデータとしての利
用法がある。
Extracted organs can be used as three-dimensional display data.

尚、MHI以外の事例でも、特性曲線が出現する例は多
く、2つの特性曲線の同一か否かの判定法として,本実
施例のメンバシップ関数がそのまま適用できる.評価関
数の考え方もそのまま適用できる, 〔発明の効果〕 本発明によれば、2つの特性曲線の差分の絶対値を変数
とするメンバシップ関数を利用してこの特性曲線が同一
か否かを判定することができる。
Note that there are many cases in which characteristic curves appear in cases other than MHI, and the membership function of this embodiment can be applied as is as a method for determining whether two characteristic curves are the same. The concept of the evaluation function can also be applied as is. [Effects of the Invention] According to the present invention, it is possible to determine whether or not two characteristic curves are the same by using a membership function whose variable is the absolute value of the difference between two characteristic curves. can do.

更に、本発明によれば、MRIの画像に対して特にマル
チエコーによるピンエコー法のもとで計測した画像デー
タに対して、臓器の抽出がノイズに影響されることなく
,精度よく可能になった。
Furthermore, according to the present invention, organs can be extracted with high accuracy without being affected by noise, especially from image data measured under the pin-echo method using multi-echo for MRI images. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の処理フローの実施例図、第2図は従来
の比較法を示す図、第3図はMRI画像とスピンエコー
法での次数との関係図、第4図は本発明の次数1〜4で
のメンバシップ関数を示す図,第5図はメンバシップ関
数値を求めるための差分の絶対値変数の説明図、第6図
は本発明の処理装置の実施例図,第7図は次数画像メモ
リを示す図である。 ■・・・CPU、4・・・高速演算回路(専用ハードウ
ェア)、5・・・演算用メモリ.
Figure 1 is an example diagram of the processing flow of the present invention, Figure 2 is a diagram showing a conventional comparison method, Figure 3 is a diagram of the relationship between MRI images and orders in the spin echo method, and Figure 4 is a diagram of the present invention. FIG. 5 is an explanatory diagram of the absolute value variable of the difference for determining the membership function value. FIG. 6 is a diagram showing an embodiment of the processing device of the present invention. FIG. 7 is a diagram showing the order image memory. ■...CPU, 4...High-speed calculation circuit (dedicated hardware), 5...Memory for calculation.

Claims (1)

【特許請求の範囲】 1、基準特性曲線ともう1つの特性曲線とが同一形か否
かを判定する特性曲線比較方法において、(イ)、基準
特性曲線ともう1つの特性曲線の種々の取りうる範囲の
参考曲線とから、該特性曲線と参考曲線との複数点での
2曲線の高さの差の絶対値を変数とするメンバシップ関
数を求めてテーブル化しておき、(ロ)実際のもう1つ
の特性曲線と基準特性曲線との差分の絶対値を求め、こ
の絶対値から上記テーブル化したメンバシップ関数値を
求め、(ハ)該関数値から上記2曲線が同一か否かを判
定する、 ことを特徴とする特性曲線比較方法。 2、基準特性曲線ともう1つの特性曲線とが同一形か否
かを判定する特性曲線比較方法において、(イ)基準特
性曲線ともう1つの特性曲線の種々の取りうる範囲の参
考曲線との複数点での2曲線の高さの差の絶対値を変数
とするメンバシップ関数を求めてテーブル化しておき、
(ロ)実際のもう1つの特性曲線と基準特性曲線との複
数点での差分を求め、該複数点の差分の絶対値から上記
テーブル化した複数点でのメンバシップ関数値を求め、
(ハ)該複数点でのメンバシップ関数値から評価関数に
従って評価関数値を求め、この評価関数値と基準値との
大小関係から2曲線が同一か否かを判定する、 ことを特徴とする特性曲線比較方法。 3、上記評価関数は、複数点でのメンバシップ関数値の
積とする請求項2記載の特性曲線比較方法。 4、上記評価関数は、複数点でのメンバシップ関数値の
和とする請求項2記載の特性曲線比較方法。 5、上記特性曲線は、マルチエコーによるスピンエコー
法で得たMRI画像上のエコー次数と画素濃度との関係
曲線とする請求項1又は2又は3又は4記載の特性曲線
比較方法。 6、マルチエコーによるスピンエコー法で得たMRI画
像より特定臓器を抽出するMRI画像の臓器領域抽出方
法において、(イ)エコー次数をパラメータとしてMR
I画像を格納するメモリと、(ロ)抽出すべき臓器につ
いてのエコー次数とMRI画素濃度との関係の基準とな
る基準特性曲線と、種々の取りうる範囲のエコー次数で
の、抽出すべき臓器についてのMRI画素濃度のバラツ
キの程度から複数点での2曲線の高さの差の絶対値を変
数とするメンバシップ関数を求めてテーブル化しておき
、(ハ)実際に計測で得た上記メモリ上の任意の臓器位
置のMRI画像の特性曲線と上記基準特性曲線との複数
のエコー次数点での差分の絶対値を求め、この複数の次
数点での絶対値から上記テーブル化した複数の次数点で
のメンバシップ関数値を求め、(ニ)該複数の次数点で
のメンバシップ関数値から評価関数に従って評価関数値
を求め、この評価関数値と基準値との大小関係から2曲
線が同一か否かを判定し、(ホ)同一と判定された該任
意の臓器位置を抽出臓器位置として抽出する、 ことを特徴とするMRI画像の臓器領域抽出方法。 7、上記評価関数は、複数のエコー次数点の評価関数値
の積とする請求項6記載のMRI画像の臓器領域抽出方
法。 8、上記評価関数は、複数のエコー次数点の評価関数値
の和とする請求項6記載のMRI画像の臓器領域抽出方
法。
[Claims] 1. A characteristic curve comparison method for determining whether a reference characteristic curve and another characteristic curve have the same shape, (b) various arrangements of the reference characteristic curve and another characteristic curve; From a range of reference curves that can be used, find a membership function whose variable is the absolute value of the difference in height between the two curves at multiple points between the characteristic curve and the reference curve, and create a table. Find the absolute value of the difference between another characteristic curve and the reference characteristic curve, find the membership function value tabulated above from this absolute value, and (c) determine whether the two curves are the same from the function value. A characteristic curve comparison method characterized by: 2. In a characteristic curve comparison method for determining whether a standard characteristic curve and another characteristic curve have the same shape, (a) comparing the standard characteristic curve and another characteristic curve with reference curves in various possible ranges; Find a membership function whose variable is the absolute value of the difference in height between two curves at multiple points, and create a table.
(b) Find the differences at multiple points between another actual characteristic curve and the reference characteristic curve, and determine the membership function values at the multiple points tabulated above from the absolute values of the differences at the multiple points;
(c) An evaluation function value is determined according to the evaluation function from the membership function values at the plurality of points, and it is determined whether the two curves are the same based on the magnitude relationship between the evaluation function value and a reference value. Characteristic curve comparison method. 3. The characteristic curve comparison method according to claim 2, wherein the evaluation function is a product of membership function values at a plurality of points. 4. The characteristic curve comparison method according to claim 2, wherein the evaluation function is a sum of membership function values at a plurality of points. 5. The characteristic curve comparison method according to claim 1, 2, 3, or 4, wherein the characteristic curve is a relationship curve between echo order and pixel density on an MRI image obtained by a multi-echo spin echo method. 6. In an MRI image organ region extraction method that extracts a specific organ from an MRI image obtained by spin echo method using multi-echo, (a) MR using the echo order as a parameter;
(b) A reference characteristic curve that serves as a reference for the relationship between echo orders and MRI pixel densities for organs to be extracted, and organs to be extracted at various possible ranges of echo orders. Based on the degree of variation in MRI pixel density for , a membership function with the absolute value of the difference in height of two curves at multiple points as a variable is calculated and created in a table. Obtain the absolute value of the difference at a plurality of echo order points between the characteristic curve of the MRI image at any organ position above and the reference characteristic curve, and calculate the plurality of orders tabulated above from the absolute values at the plurality of order points. Find the membership function value at a point, (d) find the evaluation function value from the membership function value at the plurality of degree points according to the evaluation function, and determine whether the two curves are the same from the magnitude relationship between this evaluation function value and the reference value. A method for extracting an organ region from an MRI image, comprising: determining whether or not the two are the same, and (e) extracting the arbitrary organ position determined to be the same as an extracted organ position. 7. The method for extracting an organ region from an MRI image according to claim 6, wherein the evaluation function is a product of evaluation function values of a plurality of echo order points. 8. The method for extracting an organ region from an MRI image according to claim 6, wherein the evaluation function is a sum of evaluation function values of a plurality of echo order points.
JP1190563A 1989-07-25 1989-07-25 Characteristic curve comparing method and organic area extracting method for mri image Pending JPH0355673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1190563A JPH0355673A (en) 1989-07-25 1989-07-25 Characteristic curve comparing method and organic area extracting method for mri image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1190563A JPH0355673A (en) 1989-07-25 1989-07-25 Characteristic curve comparing method and organic area extracting method for mri image

Publications (1)

Publication Number Publication Date
JPH0355673A true JPH0355673A (en) 1991-03-11

Family

ID=16260148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1190563A Pending JPH0355673A (en) 1989-07-25 1989-07-25 Characteristic curve comparing method and organic area extracting method for mri image

Country Status (1)

Country Link
JP (1) JPH0355673A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111639411A (en) * 2020-04-17 2020-09-08 温州大学 Electromagnet multi-quality characteristic decision method based on ELECTRE and VIKOR method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111639411A (en) * 2020-04-17 2020-09-08 温州大学 Electromagnet multi-quality characteristic decision method based on ELECTRE and VIKOR method
CN111639411B (en) * 2020-04-17 2023-08-22 温州大学 Electromagnet multi-quality characteristic decision method based on ELECTRE and VIKOR methods

Similar Documents

Publication Publication Date Title
US6040835A (en) System for depicting surfaces using volumetric distance maps
JPS62125481A (en) Pattern recognition equipment
JP2002350127A (en) Method and system for measuring pattern with use of display microscope image
JPH04346182A (en) Method, program product and system for identifying polygon
JPH01161481A (en) Display
JP2873883B2 (en) Line width detection method for line images
Colquitt et al. Single systemic right ventricle longitudinal strain: intravendor reproducibility and intervendor agreement in children
JPH0355673A (en) Characteristic curve comparing method and organic area extracting method for mri image
US6879719B1 (en) Method for measurement of full-two dimensional submicron shapes
TWI569778B (en) Image enhancement method and imaging acceleration system for ultrasound scatterer signal
EP2372383B1 (en) Design of a gradient waveform for a k-space trajectory with an upper frequency limit due to MRI gradient hardware
US7379599B1 (en) Model based object recognition method using a texture engine
JP3228436B2 (en) How to increase the number of interference fringes
JPH11306392A (en) Method for smoothing approximate polygon surface
JP2002090345A (en) Eddy current test signal discriminating method and device using it
US20020101424A1 (en) Method of testing graphic accelerator in DOS mode
JPH0636048A (en) Volume data clipping system
JP3371307B2 (en) Image processing apparatus and image processing method
JP2877480B2 (en) High accuracy vector approximation apparatus and method
US20230401691A1 (en) Image defect detection method, electronic device and readable storage medium
JPH01274748A (en) Extraction of organ region in mri image
JP2993687B2 (en) Organ region extraction method
JP3197193B2 (en) Two-dimensional signal filtering device
JPH05277091A (en) Displaying method for magnetic resonance diagnosis image
JP2000268184A (en) Image processing device and method and recording medium