JPH035560B2 - - Google Patents

Info

Publication number
JPH035560B2
JPH035560B2 JP19925883A JP19925883A JPH035560B2 JP H035560 B2 JPH035560 B2 JP H035560B2 JP 19925883 A JP19925883 A JP 19925883A JP 19925883 A JP19925883 A JP 19925883A JP H035560 B2 JPH035560 B2 JP H035560B2
Authority
JP
Japan
Prior art keywords
waste liquid
acid
citrox
decontamination agent
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19925883A
Other languages
Japanese (ja)
Other versions
JPS6091297A (en
Inventor
Seiichi Wada
Takayuki Mihara
Ichiro Kyoshin
Kunyoshi Oooka
Yoichi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP19925883A priority Critical patent/JPS6091297A/en
Publication of JPS6091297A publication Critical patent/JPS6091297A/en
Publication of JPH035560B2 publication Critical patent/JPH035560B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野) 本発明は除染剤の廃液処理方法に関する。 従来技術 従来原子炉1次冷却系、浄化系、燃料取扱貯蔵
系、放射性廃棄物処理系等の機器、配管、弁の汚
染除去(以下「除染」と云う)には数々の提案が
なされており、化学的除染としてはSingle Step
法、Multi Step法、Dilute Solvent法に区分出来
る。かかるMulti Step法としては、AP−Citrox
法が代表的な例である。これは、アルカリ性酸化
剤であるAP液(アルカリ過マンガン酸カリウム
を主成分とする)によつてステンレス鋼表面に付
着したクラツド(CRUD;鉄、ニツケル、クロ
ム、マンガンおよびコバルトの酸化物を主成分と
する)中のクロム等を酸化し、アルカリ溶液中に
溶解させる働きをし、リンス後第2段の酸性薬液
であるCitrox液(クエン酸およびシユウ酸または
これらの有機酸塩を主成分とする)の通液によつ
て鉄酸化物、ニツケル酸化物などを溶解除去する
ものである。 しかしてAP−Citrox法における廃液処理方法
としては、従来2つの方法が提案されている。 AP廃液をそのままコンクリート固化し、
一方Citrox廃液は中和後そのままコンクリ
ート固化する。 AP廃液および第1回水洗液を混ぜる Citrox廃液および第1回水洗液を混ぜる とを混合中和処理後ホルマリンで過マ
ンガン酸カリウムを還元処理し、その後カル
シウム塩を添加し、不溶のクエン酸塩、シユ
ウ酸塩をつくる。 上澄水ならびに第2回のAP液および
Citrox液の水洗液を蒸発缶で減容処理する一
方、スラツジはセメントまたはアスフアルト
固化する。 しかしながら、)および)の廃液処理方法
では、Citrox液中のシユウ酸およびクエン酸成分
が分解されることなく残存するため廃棄固化物の
容量が大きく保管スペースを広く確保せねばなら
ず、また)の方法では、クロムイオンなどの有
害物質が沈澱せず蒸発缶を損傷し、缶体腐食の要
因に繋がるなどの難点を有する。 発明の目的 本発明は、前記技術的課題を背景になされたも
ので、除染剤主成分を分解もしくは沈澱させると
ともにクラツドを構成する金属イオンを沈澱させ
ることによつて、スラツジの発生が少なく、しか
も処理液中に残留するクロムなどの有害物質を大
巾に低減させ、かつ処理工程が容易に実施可能な
AP系除染剤およびCitrox系除染剤の廃液処理方
法を提供することを目的とする。 発明の構成 即ち、本発明は、アルカリ性過マンガン酸塩を
主成分とするAP系除染剤の廃液と、シユウ酸お
よびクエン酸またはこれらの有機酸塩を主成分と
するCitrox系除染剤の廃液とを処理するに際し、
下記(イ)〜(ニ)の工程を組合せたことを特徴とする除
染剤の廃液処理方法である。 (イ) AP系除染剤の廃液とCitrox系除染剤の廃液
とを混合・中和する第1工程。 (ロ) 酸を添加しPH7以下となして過マンガン酸塩
ならびにシユウ酸およびクエン酸またはこれら
の有機酸塩を分解する第2工程。 (ハ) アルカリを添加しPH7以上となして廃液中に
含有されるマンガン、鉄、ニツケル、コバル
ト、ウランおよびルテニウムなどの群からなる
少なくとも1種の金属イオンを水酸化物、酸化
物または塩として沈澱させる第3工程。 (ニ) 金属塩を添加することにより廃液中に含有さ
れるクロムイオンを塩として沈澱させる第4工
程(A)。 また、本発明は、前記(イ)〜(ハ)と下記(ニ)′の工程
を組み合わせたことを特徴とする除染剤の廃液処
理方法である。 (ニ)′ 過し沈澱物を除去した液に酸を添加し
PHを1〜4となし次いで還元剤を加えることに
よつて廃液中に含まれるクロムイオンを還元
し、さらにアルカリを添加してPH7〜11となし
還元されたクロムイオンを水酸化物または酸化
物として沈澱させる第4工程(B)。 以下工程別に本発明を詳細に説明する。 (イ) 第1工程 通常AP系除染剤は過マンガン酸カリウムなど
の過マンガン酸塩および水酸化ナトリウムなどの
アルカリ金属水酸化物を主成分とするアルカリ性
水溶液であり、一方Citrox系除染剤はシユウ酸お
よびクエン酸またはこれらの有機酸塩を主成分と
する酸性水溶液である。 従つてAP系除染剤およびCitrox系除染剤の各
廃液(以下「AP系廃液」または「Citrox系廃液」
と云うことがある)は、これら2種の廃液を混
合・中和する。この際の好ましい手段としては、
AP系廃液および第1回水洗水を混ぜ、他方
Citrox系廃液および第1回水洗水を混ぜ、と
を混合・中和処理するとよい。 また混合・中和処理温度は、常温〜100℃で行
なえばよい。 かくてAP系廃液とCitrox系廃液とを混合・中
和することにより、過マンガン酸塩ならびにシユ
ウ酸およびクエン酸またはこれらの有機酸塩は部
分的に反応し、過マンガン酸塩は還元されて1部
二酸化マンガンとなり、シユウ酸、クエン酸など
は1部酸化されて二酸化炭素に分解する。 (ロ) 第2工程 第1工程での混合・中和後の処理液(沈澱物を
含む)は、AP系廃液自体が組成上強アルカリ性
であるため、未だ完全な中和は行なわれておらず
アルカリ性である。 そこで第2工程では、硝酸、硫酸、塩酸、酢酸
などの酸、好ましくは硝酸を前記第1工程で得ら
れた処理液中に添加し、PHを7以下、好ましくは
3〜7、さらに好ましくは5.5以下とする。かく
て残存する過マンガン酸塩ならびにシユウ酸およ
びクエン酸またはこれらの有機酸塩は分解し二酸
化炭素を発生するとともに廃液中に含有されてい
たクロム成分は酸化されて6価のクロムイオンと
なる。かかる第2工程での酸添加による分解反応
は発泡を伴なう発熱反応であるが、反応温度常温
〜100℃、反応時間5分以上、好ましくは5〜120
分程度で実施するとよい。 第2工程における代表的な反応例を、添加する
酸として硝酸を例にとれば、次の通りである。 5H2C2O4+2KMnO4+6HNO3 →10CO2+2Mn(NO32+2KNO3+8H2O 5C6H8O7+18KMnO4+54HNO3 →30CO2+18Mn(NO32+18KNO3+47H2O 5(NH42C2O4+2KMnO4+6HNO3 →10CO2+2Mn(NO32+2KNO3+10NH3
8H2O (ハ) 第3工程 第2工程は二酸化炭素の発生を伴なう分解反応
であるため、発泡終了が該分解反応終結の目安で
ある。そこで発泡終了後第2工程で得られた処理
液(沈澱物を含む)に水酸化ナトリウム、水酸化
カリウム、アンモニア水などのアルカリを添加し
PHを7以上、好ましくは7〜13、さらに好ましく
はPH9.5以上のアルカリ性となすことにより、廃
液中に含有されていたマンガン(AP系除染剤成
分を含む)、鉄、ニツケル、コバルト、ウランお
よびルテニウムなどの群からなる少なくとも1種
の金属イオンを水酸化物、酸化物または塩として
沈澱させる。 第3工程における代表的な反応例は次の通りで
ある。 Mn2++2OH-→Mn(OH)2 (白色沈澱) Fe3++3OH-→Fe(OH)3 (赤かつ色沈澱) Co2++NO3 -+OH-→Co(OH)NO3(青色沈澱) Co2++2OH-→Co(OH)2 (桃色沈澱) UO2(NO3)+2NH4OH→(NH42U2O7(黄色沈
澱) 2UO2 2++6OH-+2Na+→Na2U2O7・3H2O (黄色沈澱) Ru3++3OH-→Ru(OH)3 (黒色沈澱) (ニ),(ニ)′ 第4工程 第3工程ではアルカリ性下で沈澱反応を生起さ
せるため、廃液中に含まれるクロムイオンが亜ク
ロム酸イオンをつくつて溶け沈澱しない。そこで
第4工程では、前記(A)または(B)の工程を採用する
ことによりクロムイオンを沈澱させる。 〈第4工程(A)〉 第3工程で得られた沈澱物を含む処理液に鉛、
カルシウム、バリウム、ストロンチウムまたはマ
グネシウムなどの硝酸塩、硫酸塩、塩酸塩、酢酸
塩などで代表される金属塩、好ましくは硝酸バリ
ウムを過剰気味に添加することにより溶解してい
る6価などのクロムイオンをクロム酸塩として沈
澱させ、過し、全沈澱物と液に別する。 代表的な反応例は次の通りである。 K2CrO4+Ba(NO32 →BaCrO4+2KNO3 K2CrO4+Pb(CH3COO)2 →PbCrO4+2CH3COOK なお、第4工程(A)で得られた液には添加した
金属塩のイオン(前記鉛、カルシウム、バリウ
ム、ストロンチウム、マグネシウムなど)が一部
余剰として溶存しているため、該液中にさらに
硝酸、硫酸、塩酸、酢酸などを添加し、該イオン
を不溶性塩として沈澱させ、再度沈澱物を過除
去することにより清澄な液を得、該液を中和し
て最終的な処理液とすればよい。 〈第4工程(B)〉 第3工程で得られた沈澱物を含む処理液を過
し、沈澱物と液に別する。次いでこの液に
硝酸、硫酸、塩酸、または酢酸などの酸、好まし
くは硝酸を添加しPHを1〜4、好ましくは2〜3
となし、次いで亜硫酸ソーダ、重亜硫酸ソーダ、
過酸化水素、硫酸第1鉄、亜硫酸ガスなどの還元
剤を加えて廃液中より溶存していた6価などのク
ロムイオンを還元し、さらに水酸化ナトリウム、
水酸化カリウム、アンモニア水などのアルカリを
添加してPHを7〜11となし還元されたクロムイオ
ンを水酸化物または酸化物として沈澱させ過し
沈澱物と液に別する。 第4工程(B)における代表的な反応例は次の通り
である。 Cr2O7 2-+3SO3 2-+8H+ →2Cr3++3SO4 2-+4H2O Cr2O7 2-+6Fe2++14H+ →2Cr3++6Fe3++7H2O Cr3++3OH-→Cr(OH)3 (暗緑色沈澱) なお第4工程(B)で得られた液はさらに中和し
て最終的な処理液とすればよい。 このようにして本発明ではAP系廃液および
Citrox系廃液を沈澱物と清澄な最終処理液とに分
けることが出来、しかも後者は通常の蒸発缶など
の蒸発手段を採用することにより大巾に減容でき
る。 なお、本発明は主として放射能をおびた機器の
除染について説明してきたが、これに限定される
ものでなく、通常のボイラー、熱交換器などのス
ケール除去の際発生するAP系およびCitrox系廃
液にも適用できることは論を待たない。 実施例 以下実施例を挙げ、本発明をさらに具体的に説
明する。 実施例 1 AP系除染剤(組成;水酸化ナトリウム105g/
、過マンガン酸カリウム32g/)とCitrox系
除染剤(組成;シユウ酸25g/、クエン酸二ア
ンモニウム50g/、硝酸第2鉄2g/、ジエ
チルチオ尿素1g/)を各々130g/、80
g/溶解した水溶液を1ずつ調整し、これに
除染対象物からの溶出クロムをクロム酸カリウム
として2gずつ加え(計4g)、これらを擬似廃
液とした(以下「AP系廃液」、「Citrox系廃液」
という)。このAP系廃液とCitrox系廃液を混合中
和し(第1工程)、次いでこの混合液に濃硝酸を
加えてPHを5.5とし、温度50℃、60分間分解反応
させた(第2工程)。分解反応に伴なう二酸化炭
素発泡が完結したことを確認し、次いでこの液に
10規定水酸化ナトリウム水溶液を加えPHを9.5に
調整したところ廃液中に溶存するマンガンイオン
および鉄イオンの沈澱が生成した(第3工程)。
得られた沈澱物を含む処理液に8g/100mlの硝
酸バリウム水溶液を500ml加え処理液中に溶存す
るクロムイオンをクロム酸バリウムとして沈澱さ
せた〔第4工程(A)〕。 得られた沈澱物を含む処理液を過し、沈澱物
と液に別した後、この液に濃硫酸を12ml加
え余剰のバリウムイオンを沈澱させた後、10規定
の水酸化ナトリウム水溶液を加えPH8.0に調整し、
さらにこの処理液を過し、沈澱物と液に別
した。この液は、最終処理液であり、該処理液
の分析結果を第1表に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a decontamination agent waste liquid treatment method. PRIOR ART Numerous proposals have been made for the decontamination (hereinafter referred to as "decontamination") of equipment, piping, and valves in conventional nuclear reactor primary cooling systems, purification systems, fuel handling and storage systems, radioactive waste processing systems, etc. Single Step for chemical decontamination
It can be divided into method, Multi Step method, and Dilute Solvent method. As such Multi Step method, AP-Citrox
Law is a typical example. This is caused by CRUD (mainly composed of oxides of iron, nickel, chromium, manganese and cobalt) attached to the stainless steel surface by the alkaline oxidizing agent AP liquid (mainly composed of alkaline potassium permanganate). After rinsing, Citrox liquid (mainly composed of citric acid and oxalic acid or their organic acid salts) is an acidic chemical solution used in the second stage after rinsing. ) to dissolve and remove iron oxides, nickel oxides, etc. However, two methods have been conventionally proposed as waste liquid treatment methods in the AP-Citrox method. AP waste liquid is solidified into concrete as it is,
On the other hand, Citrox waste liquid is directly solidified into concrete after being neutralized. Mix the AP waste liquid and the first washing liquid. Mix the Citrox waste liquid and the first washing liquid. After neutralization, potassium permanganate is reduced with formalin, and then calcium salt is added, and the insoluble citrate is , produces oxalate. Supernatant water and second AP solution and
The volume of the Citrox washing solution is reduced in an evaporator, while the sludge is solidified with cement or asphalt. However, in the waste liquid treatment methods of ) and ), the oxalic acid and citric acid components in the Citrox liquid remain without being decomposed, so the volume of solidified waste is large and a large storage space must be secured. This method has disadvantages in that harmful substances such as chromium ions do not precipitate and can damage the evaporator, leading to corrosion of the can body. Purpose of the Invention The present invention was made against the background of the above-mentioned technical problem, and by decomposing or precipitating the main component of the decontamination agent and precipitating the metal ions constituting the cladding, the present invention reduces the generation of sludge. Furthermore, harmful substances such as chromium remaining in the processing solution are greatly reduced, and the processing process can be easily carried out.
The purpose of this paper is to provide a method for treating waste liquid from AP-based decontamination agents and Citrox-based decontamination agents. Components of the Invention That is, the present invention provides waste liquid of an AP decontamination agent whose main component is alkaline permanganate and a Citrox decontamination agent whose main components are oxalic acid and citric acid or their organic acid salts. When processing waste liquid,
This is a decontamination agent waste liquid treatment method characterized by combining the following steps (a) to (d). (b) The first step of mixing and neutralizing the waste liquid of AP-based decontamination agent and the waste liquid of Citrox-based decontamination agent. (b) A second step in which permanganate, oxalic acid, citric acid, or their organic acid salts are decomposed by adding acid to make the pH 7 or lower. (c) At least one metal ion from the group such as manganese, iron, nickel, cobalt, uranium, and ruthenium contained in the waste liquid is converted into a hydroxide, oxide, or salt by adding an alkali to make the pH 7 or higher. The third step is precipitation. (d) A fourth step (A) in which chromium ions contained in the waste liquid are precipitated as a salt by adding a metal salt. Further, the present invention is a decontamination agent waste liquid treatment method characterized by combining the steps (a) to (c) above and the steps (d)' below. (d) Add acid to the filtered solution to remove the precipitate.
The pH is adjusted to 1 to 4, then a reducing agent is added to reduce the chromium ions contained in the waste liquid, and an alkali is added to adjust the pH to 7 to 11.The reduced chromium ions are converted into hydroxide or oxide. The fourth step (B) is precipitation. The present invention will be explained in detail below step by step. (b) First step AP-based decontamination agents are usually alkaline aqueous solutions containing permanganates such as potassium permanganate and alkali metal hydroxides such as sodium hydroxide, while Citrox-based decontamination agents is an acidic aqueous solution containing oxalic acid and citric acid or their organic acid salts as main components. Therefore, each waste liquid of AP type decontamination agent and Citrox type decontamination agent (hereinafter referred to as “AP type waste liquid” or “Citrox type waste liquid”)
) mixes and neutralizes these two types of waste liquids. The preferred means in this case is:
Mix the AP waste liquid and the first washing water, and
It is recommended to mix the Citrox waste liquid and the first washing water, and then mix and neutralize the two. Further, the temperature of the mixing/neutralization treatment may be from room temperature to 100°C. By mixing and neutralizing AP-based waste liquid and Citrox-based waste liquid, permanganate, oxalic acid, citric acid, or their organic acid salts partially react, and permanganate is reduced. One part becomes manganese dioxide, and one part of oxalic acid, citric acid, etc. is oxidized and decomposed into carbon dioxide. (b) 2nd step The treated solution (including sediment) after mixing and neutralization in the 1st step has not been completely neutralized yet because the AP waste solution itself is strongly alkaline in composition. It is alkaline. Therefore, in the second step, an acid such as nitric acid, sulfuric acid, hydrochloric acid, or acetic acid, preferably nitric acid, is added to the treatment liquid obtained in the first step to adjust the pH to 7 or less, preferably 3 to 7, more preferably Must be 5.5 or less. Thus, the remaining permanganate, oxalic acid, citric acid, or their organic acid salts are decomposed to generate carbon dioxide, and the chromium component contained in the waste liquid is oxidized to become hexavalent chromium ions. The decomposition reaction by addition of acid in the second step is an exothermic reaction accompanied by foaming, but the reaction temperature is room temperature to 100°C and the reaction time is 5 minutes or more, preferably 5 to 120°C.
It is best to do this in about a minute. A typical reaction example in the second step is as follows, using nitric acid as the acid to be added. 5H 2 C 2 O 4 +2KMnO 4 +6HNO 3 →10CO 2 +2Mn(NO 3 ) 2 +2KNO 3 +8H 2 O 5C 6 H 8 O 7 +18KMnO 4 +54HNO 3 →30CO 2 +18Mn(NO 3 ) 2 +18KNO 3 +47H 2 O 5( NH 4 ) 2 C 2 O 4 +2KMnO 4 +6HNO 3 →10CO 2 +2Mn(NO 3 ) 2 +2KNO 3 +10NH 3 +
8H 2 O (c) Third step Since the second step is a decomposition reaction accompanied by the generation of carbon dioxide, the completion of foaming is a measure of the end of the decomposition reaction. Therefore, after the completion of foaming, an alkali such as sodium hydroxide, potassium hydroxide, or aqueous ammonia is added to the treated liquid (including the precipitate) obtained in the second step.
By making the pH pH 7 or higher, preferably 7 to 13, and more preferably 9.5 or higher, the manganese (including AP decontamination agent components), iron, nickel, cobalt, At least one metal ion from the group such as uranium and ruthenium is precipitated as a hydroxide, oxide or salt. Typical reaction examples in the third step are as follows. Mn 2+ +2OH - →Mn(OH) 2 (white precipitate) Fe 3+ +3OH - →Fe(OH) 3 (red and colored precipitate) Co 2+ +NO 3 - +OH - →Co(OH)NO 3 (blue precipitate) ) Co 2+ +2OH - →Co(OH) 2 (pink precipitate) UO 2 (NO 3 ) +2NH 4 OH→(NH 4 ) 2 U 2 O 7 (yellow precipitate) 2UO 2 2+ +6OH - +2Na + →Na 2 U 2 O 7・3H 2 O (yellow precipitate) Ru 3+ +3OH - →Ru(OH) 3 (black precipitate) (d), (d)′ 4th step In the 3rd step, precipitation reaction occurs under alkaline conditions Therefore, the chromium ions contained in the waste liquid do not dissolve and precipitate by forming chromite ions. Therefore, in the fourth step, chromium ions are precipitated by employing the step (A) or (B). <Fourth step (A)> Add lead to the treatment solution containing the precipitate obtained in the third step.
By adding an excessive amount of metal salts such as nitrates, sulfates, hydrochlorides, and acetates such as calcium, barium, strontium, or magnesium, preferably barium nitrate, dissolved chromium ions such as hexavalent ions can be removed. Precipitate as chromate, filter, and separate into total precipitate and liquid. Typical reaction examples are as follows. K 2 CrO 4 +Ba(NO 3 ) 2 →BaCrO 4 +2KNO 3 K 2 CrO 4 +Pb(CH 3 COO) 2 →PbCrO 4 +2CH 3 COOK Note that the liquid obtained in the fourth step (A) contains the added metal. Since some salt ions (lead, calcium, barium, strontium, magnesium, etc.) are dissolved as surplus, nitric acid, sulfuric acid, hydrochloric acid, acetic acid, etc. are further added to the solution to convert the ions into insoluble salts. A clear liquid may be obtained by precipitating and removing the precipitate again, and this liquid may be neutralized to obtain the final treatment liquid. <Fourth step (B)> The treatment solution containing the precipitate obtained in the third step is filtered to separate the precipitate and the liquid. Next, an acid such as nitric acid, sulfuric acid, hydrochloric acid, or acetic acid, preferably nitric acid, is added to this liquid to adjust the pH to 1-4, preferably 2-3.
and pear, followed by sodium sulfite, sodium bisulfite,
By adding reducing agents such as hydrogen peroxide, ferrous sulfate, and sulfur dioxide gas, chromium ions such as hexavalent ions dissolved in the waste liquid are reduced, and then sodium hydroxide,
Add an alkali such as potassium hydroxide or aqueous ammonia to adjust the pH to 7 to 11, precipitate the reduced chromium ion as a hydroxide or oxide, and separate it into a precipitate and a liquid. A typical reaction example in the fourth step (B) is as follows. Cr 2 O 7 2- +3SO 3 2- +8H +2Cr 3+ +3SO 4 2- +4H 2 O Cr 2 O 7 2- +6Fe 2+ +14H + →2Cr 3+ +6Fe 3+ +7H 2 O Cr 3+ +3OH - → Cr(OH) 3 (dark green precipitate) The liquid obtained in the fourth step (B) may be further neutralized to obtain the final treatment liquid. In this way, in the present invention, AP system waste liquid and
Citrox waste liquid can be separated into a precipitate and a clear final treated liquid, and the latter can be greatly reduced in volume by using evaporation means such as an ordinary evaporator. Although the present invention has mainly been described with respect to the decontamination of radioactive equipment, it is not limited thereto, and is not limited to decontamination of equipment contaminated with radioactivity. It goes without saying that it can also be applied to waste liquid. EXAMPLES The present invention will be explained in more detail with reference to Examples below. Example 1 AP-based decontamination agent (composition: sodium hydroxide 105g/
, potassium permanganate 32g/) and Citrox decontamination agent (composition: oxalic acid 25g/, diammonium citrate 50g/, ferric nitrate 2g/, diethylthiourea 1g/) each at 130g/, 80
g/dissolved aqueous solution was prepared one by one, and 2 g of eluted chromium from the object to be decontaminated was added as potassium chromate (4 g in total), and these were used as pseudo waste liquids (hereinafter referred to as "AP waste liquid", "Citrox waste liquid"). system waste liquid”
). The AP waste liquid and the Citrox waste liquid were mixed and neutralized (first step), then concentrated nitric acid was added to the mixed liquid to adjust the pH to 5.5, and a decomposition reaction was carried out at a temperature of 50° C. for 60 minutes (second step). After confirming that the carbon dioxide foaming associated with the decomposition reaction has been completed, the liquid is
When a 10N aqueous sodium hydroxide solution was added to adjust the pH to 9.5, precipitates of manganese ions and iron ions dissolved in the waste liquid were formed (third step).
500 ml of an 8 g/100 ml barium nitrate aqueous solution was added to the treatment solution containing the obtained precipitate to precipitate the chromium ions dissolved in the treatment solution as barium chromate [4th step (A)]. After filtering the obtained treatment solution containing the precipitate and separating it into the precipitate and the liquid, 12 ml of concentrated sulfuric acid was added to this solution to precipitate excess barium ions, and then a 10N aqueous sodium hydroxide solution was added to adjust the pH to 8. Adjust to .0,
The treated solution was further filtered to separate the precipitate and the solution. This solution is the final treatment solution, and the analysis results of this treatment solution are shown in Table 1.

【表】 得られた最終処理液を用いて常法に従い、蒸発
缶の操作条件と同一の常圧、沸点状態における腐
食テストを行なつた結果、腐食は全面腐食のみで
0.1mm/g以下であり、通常許容される範囲にあ
ることが確認された。 実施例 2 実施例1,第3工程で得られた沈澱物を含む処
理液を過し、沈澱物と液に別した後、この
液に濃硝酸を加えPHを3に調整し、次いで亜硫
酸ソーダ200g/の水溶液を100ml加え硝酸でPH
3とし、クロムイオンを6価から3価に還元し、
さらに10規定の水酸化ナトリウム水溶液を加えて
PHを9.5としたところ水酸化クロムの沈澱が生成
した〔第4工程(B)〕。得られた沈澱物を含む処理
液を過し沈澱物と液に別し、該液を濃硫
酸でPH8に中和し最終処理液を得た。この最終処
理液の分析結果を第2表に示す。
[Table] Corrosion tests were carried out using the obtained final treated liquid according to conventional methods under normal pressure and boiling point conditions, which are the same as the operating conditions of the evaporator, and the results showed that the corrosion was only general corrosion.
It was confirmed that it was 0.1 mm/g or less, which was within the normally acceptable range. Example 2 The treated solution containing the precipitate obtained in the third step of Example 1 was filtered and separated into the precipitate and the liquid. Concentrated nitric acid was added to this solution to adjust the pH to 3, and then sodium sulfite was added to the solution. Add 100ml of 200g/water solution and pH with nitric acid.
3 and reduce the chromium ion from hexavalent to trivalent,
Furthermore, add 10N aqueous sodium hydroxide solution.
When the pH was set to 9.5, a precipitate of chromium hydroxide was formed [4th step (B)]. The resulting treatment liquid containing the precipitate was filtered to separate the precipitate and liquid, and the liquid was neutralized to pH 8 with concentrated sulfuric acid to obtain a final treatment liquid. The analysis results of this final treatment solution are shown in Table 2.

【表】 発明の効果 以上の如く本発明によれば、 Citrox系除染剤を構成するシユウ酸、クエン
酸およびこれらの有機酸塩を二酸化炭素に分解
することが出来るから、廃液の大巾な減容を達
成できる, 廃液を沈澱物と清澄な最終処理液とに分離で
きるため、放射性物質については前者(沈澱
物)に濃縮することが可能で、後者(最終処理
液)への放射性物質の混入を大巾に減少でき
る, 最終処理液中に有害な金属イオンが実質的に
含まれないため、該液を蒸発缶によつて減容し
ても缶の損傷を生起しない, 本発明の処理工程自体が、操作上極めて簡便
で容易である, 廃液処理によつて発生するスラツジ(沈澱
物)の量が極めて少ない, などの数々の利点を有し、その工業的意義は極め
て大である。
[Table] Effects of the Invention As described above, according to the present invention, oxalic acid, citric acid, and their organic acid salts, which constitute the Citrox decontamination agent, can be decomposed into carbon dioxide. Volume reduction can be achieved, and the waste liquid can be separated into a precipitate and a clear final treated liquid, so radioactive substances can be concentrated in the former (precipitate) and radioactive substances can be concentrated in the latter (final treated liquid). The treatment of the present invention can greatly reduce contamination, and since the final treatment liquid does not substantially contain harmful metal ions, the volume of the liquid can be reduced in an evaporator without causing damage to the can. The process itself has many advantages, such as being extremely simple and easy to operate, and the amount of sludge (precipitate) generated during waste liquid treatment is extremely small, and its industrial significance is extremely large.

Claims (1)

【特許請求の範囲】 1 アルカリ性過マンガン酸塩を主成分とする
AP系除染剤の廃液と、クエン酸およびシユウ酸
またはこれらの有機酸塩を主成分とするCitrox系
除染剤の廃液とを処理するに際し、下記(イ)〜(ニ)の
工程を組合せたことを特徴とする除染剤の廃液処
理方法。 (イ) AP系除染剤の廃液とCitrox系除染剤の廃液
とを混合・中和する第1工程。 (ロ) 酸を添加しPH7以下となして過マンガン酸塩
ならびにクエン酸およびシユウ酸またはこれら
の有機酸塩を分解する第2工程。 (ハ) アルカリを添加しPH7以上となして廃液中に
含有されるマンガン、鉄、ニツケル、コバル
ト、ウランおよびルテニウム等の群からなる少
なくとも1種の金属イオンを水酸化物、酸化物
または塩として沈澱させる第3工程。 (ニ) 金属塩を添加することにより廃液中に含有さ
れるクロムイオンを塩として沈澱させる第4工
程(A)。 2 アルカリ性過マンガン酸塩を主成分とする
AP系除染剤の廃液と、クエン酸およびシユウ酸
またはこれらの有機酸塩を主成分とするCitrox系
除染剤の廃液とを処理するに際し、下記(イ)〜(ニ)′
の工程を組合せたことを特徴とする除染剤の廃液
処理方法。 (イ) AP系除染剤の廃液とCitrox系除染剤の廃液
とを混合・中和する第1工程。 (ロ) 酸を添加しPH7以下となして過マンガン酸塩
ならびにクエン酸およびシユウ酸またはこれら
の有機酸塩を分解する第2工程。 (ハ) アルカリを添加しPH7以上となして廃液中に
含有されるマンガン、鉄、ニツケル、コバル
ト、ウランおよびルテニウム等の群からなる少
なくとも1種の金属イオンを水酸化物、酸化物
または塩として沈澱させる第3工程。 (ニ)′ 濾過し沈澱物を除去した濾液に酸を添加し
PHを1〜4となし次いで還元剤を加えることに
よつて廃液中に含有されるクロムイオンを還元
し、さらにアルカリを添加してPH7〜11となし
還元されたクロムイオンを水酸化物または酸化
物として沈澱させる第4工程(B)。
[Claims] 1. Main component is alkaline permanganate
When treating the waste liquid of AP-based decontamination agent and the waste liquid of Citrox-based decontamination agent whose main components are citric acid and oxalic acid or their organic acid salts, the following steps (a) to (d) are combined. A decontamination agent waste liquid treatment method characterized by the following. (b) The first step of mixing and neutralizing the waste liquid of AP-based decontamination agent and the waste liquid of Citrox-based decontamination agent. (b) A second step in which permanganate and citric acid and oxalic acid or their organic acid salts are decomposed by adding acid to make the pH 7 or lower. (c) At least one metal ion from the group such as manganese, iron, nickel, cobalt, uranium, and ruthenium contained in the waste liquid is converted into a hydroxide, oxide, or salt by adding an alkali to make the pH 7 or higher. The third step is precipitation. (d) A fourth step (A) in which chromium ions contained in the waste liquid are precipitated as a salt by adding a metal salt. 2 Main ingredient is alkaline permanganate
When treating waste liquid from AP decontamination agents and waste liquid from Citrox decontamination agents whose main components are citric acid and oxalic acid or their organic acid salts, the following (a) to (d)'
A decontamination agent waste liquid treatment method characterized by combining the following steps. (b) The first step of mixing and neutralizing the waste liquid of AP-based decontamination agent and the waste liquid of Citrox-based decontamination agent. (b) A second step in which permanganate and citric acid and oxalic acid or their organic acid salts are decomposed by adding acid to make the pH 7 or lower. (c) At least one metal ion from the group such as manganese, iron, nickel, cobalt, uranium, and ruthenium contained in the waste liquid is converted into a hydroxide, oxide, or salt by adding an alkali to make the pH 7 or higher. The third step is precipitation. (d)′ Add acid to the filtrate that has been filtered to remove precipitates.
Adjust the pH to 1 to 4, then add a reducing agent to reduce the chromium ions contained in the waste liquid, and then add an alkali to adjust the pH to 7 to 11. The fourth step (B) is to precipitate the product as a solid.
JP19925883A 1983-10-26 1983-10-26 Method of treating waste liquor of decontaminating agent Granted JPS6091297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19925883A JPS6091297A (en) 1983-10-26 1983-10-26 Method of treating waste liquor of decontaminating agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19925883A JPS6091297A (en) 1983-10-26 1983-10-26 Method of treating waste liquor of decontaminating agent

Publications (2)

Publication Number Publication Date
JPS6091297A JPS6091297A (en) 1985-05-22
JPH035560B2 true JPH035560B2 (en) 1991-01-25

Family

ID=16404793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19925883A Granted JPS6091297A (en) 1983-10-26 1983-10-26 Method of treating waste liquor of decontaminating agent

Country Status (1)

Country Link
JP (1) JPS6091297A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3665802B2 (en) * 1998-06-09 2005-06-29 大機エンジニアリング株式会社 Treatment method of chemical decontamination waste liquid
JP3656602B2 (en) * 2002-01-08 2005-06-08 九州電力株式会社 Treatment method of chemical decontamination waste liquid
JP4083607B2 (en) * 2003-03-19 2008-04-30 株式会社東芝 Radioactive chemical decontamination method and apparatus
JP2010248573A (en) * 2009-04-16 2010-11-04 Ihi Corp Method and apparatus for treating metal residue
JP5445123B2 (en) * 2009-12-25 2014-03-19 株式会社Ihi Method and apparatus for treating metal residue
JP6049403B2 (en) * 2012-11-02 2016-12-21 三菱重工業株式会社 Decontamination waste liquid treatment method
JP6049404B2 (en) * 2012-11-02 2016-12-21 三菱重工業株式会社 Decontamination waste liquid treatment method
JP7090003B2 (en) * 2018-09-28 2022-06-23 三菱重工業株式会社 How to treat excess water
JP7169915B2 (en) * 2019-03-15 2022-11-11 三菱重工業株式会社 Surplus water treatment method

Also Published As

Publication number Publication date
JPS6091297A (en) 1985-05-22

Similar Documents

Publication Publication Date Title
Tiwari et al. Ferrate (VI) in the treatment of wastewaters: a new generation green chemical
JPS5848900A (en) Chemical dissolution of oxide adhesion
US4321149A (en) Process for removing multivalent metals from waste effluents
JPH035560B2 (en)
EP2787509A1 (en) Method for decomposing an oxide layer
KR102400299B1 (en) Method for removing Mn in solution and SP-HyBRID decontamination comprising the same
JPS60206481A (en) Recovery treatment of waste stainless steel pickling solution
JPH0378699A (en) Removal of pollution for pressurized water type nuclear reactor system
KR20190023972A (en) Treatment method of the process waste from the chemical decontamination of nuclear facilities by using redox and precipitation reaction
US10056163B2 (en) Method for dissolving an oxide layer
RU2514823C1 (en) Method of treating radioactive solution
JPH02502759A (en) Decontamination method
JPS5834195B2 (en) Method for removing arsenic and silicic acid contained in industrial wastewater
JP3866402B2 (en) Chemical decontamination method
Beheir et al. Chemical precipitation of cesium from waste solutions with iron (II) hexacyanocobaltate (III) and triphenylcyanoborate
JP2001179266A (en) Method for treating selenium-containing water
RU2465664C1 (en) Method of processing radioactive solution
JPS5687427A (en) Adsorption and ion exchange material of cesium in aqueous solution and fixing method of cesium
WO1982003722A1 (en) Process for treating liquid radioactive waste
JPH1194993A (en) Method for treating radioactive material containing waste liquid
JPS5948763B2 (en) Manufacturing method of ammonium nitrate mother liquor
EP0121702B1 (en) Process for the precipitation of americium oxalate from a primary nitric acid solution containing americium nitrate
EP3607562B1 (en) Dosing of zinc for decontamination of light water reactors
JPS5939368B2 (en) Direct treatment method for chromium-containing powder
JPS642917B2 (en)