JPH0355545B2 - - Google Patents

Info

Publication number
JPH0355545B2
JPH0355545B2 JP58173994A JP17399483A JPH0355545B2 JP H0355545 B2 JPH0355545 B2 JP H0355545B2 JP 58173994 A JP58173994 A JP 58173994A JP 17399483 A JP17399483 A JP 17399483A JP H0355545 B2 JPH0355545 B2 JP H0355545B2
Authority
JP
Japan
Prior art keywords
copper
aluminum
alloy
resin
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58173994A
Other languages
Japanese (ja)
Other versions
JPS6067652A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17399483A priority Critical patent/JPS6067652A/en
Publication of JPS6067652A publication Critical patent/JPS6067652A/en
Publication of JPH0355545B2 publication Critical patent/JPH0355545B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/30Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes using a layer of powder or paste on the surface

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、特殊の性能を有する高分子有機化合
物とその中に分散させた塗料用アルミニウムペー
ストから成る塗膜が、アルミニウムの溶融点(約
660℃)以上に急速に加熱される時に示す従来未
知の性質を利用して銅及び銅合金の表面にアルミ
ニウム−銅系合金を形成させる新規な方法によ
り、その表面を改質強化した新規な銅合金系工業
用材料を提供しようとするものである。
Detailed Description of the Invention [Industrial Application Field] The present invention provides a coating film consisting of a high-molecular organic compound having special properties and an aluminum paste for paint dispersed therein, which has a coating film that is made of a polymeric organic compound having special properties and an aluminum paste for paints that is below the melting point of aluminum (approximately
A new type of copper whose surface has been modified and strengthened by a new method of forming an aluminum-copper alloy on the surface of copper and copper alloy by utilizing the previously unknown properties exhibited when rapidly heated to temperatures above 660°C. The purpose is to provide alloy-based industrial materials.

[従来の技術] ある基体金属の表面に合金層を形成せしめるに
は主として、その金属の表面に、()他種金属
の溶融液を接触させる、()他種金属を圧着若
しくはメツキしたものを加熱して基体金属の表面
に他種金属を拡散させる、()密閉器内で、他
種金属の蒸気若しくはイオンを基体金属表面に定
着拡散させる方法の中のどれか一つに拠つてい
る。
[Prior Art] In order to form an alloy layer on the surface of a certain base metal, the following methods are mainly used: () Contacting the surface of the metal with a molten liquid of another metal; () Pressing or plating the other metal. This method is based on one of the following methods: heating and diffusing other metals onto the surface of the base metal; and (2) fixing and diffusing the vapor or ions of the other metal onto the surface of the base metal in a sealed container.

アルミニウムの場合は、金属それ自体が極めて
酸化され易くその表面が常に酸化被膜で覆われて
いるために、その圧着が不完全になること、又ア
ルミニウムが電気的に著しく卑であることから水
溶液中では電気メツキが出来ず、非水溶液又は低
融点溶融塩からのメツキは出来るが未だ工業的の
応用に至つていないことから()法は実用され
ず、主として溶融アルミニウム液槽中への基体金
属の浸漬による()法及び()法、若しくは
溶射法によつて吹付けたアルミニウム層を800℃
以上に加熱してその下層を溶融拡散させる方法が
実行されている。
In the case of aluminum, the metal itself is extremely easily oxidized and its surface is always covered with an oxide film, making the crimping incomplete.Also, aluminum is electrically extremely base, so it cannot be used in aqueous solutions. Since electroplating is not possible with non-aqueous solutions or low melting point molten salts, but it has not yet been applied industrially, the () method has not been put into practical use, and is mainly used to deposit the base metal into a molten aluminum liquid bath. The aluminum layer sprayed by the () method and () method by dipping or the thermal spraying method is heated to 800℃.
A method has been implemented in which the lower layer is melted and diffused by heating to a higher level.

しかし、これらはすべて大規模で高価な設備、
高額の運転経費、更に複雑精密な作業管理を必要
とし、決して企業の規模に応じて簡易に行なえる
手段とは言い得ない。
However, all of these require large-scale and expensive equipment.
It requires high operating costs and complicated and precise work management, and cannot be said to be a method that can be easily implemented depending on the size of the company.

他方、銅−アルミニウム合金は、いわゆるアル
ミニウム青銅として独特の優れた性能を持つてい
るが、これに第三成分を加えたものは、更に優秀
な性質を示し、広い用途がある。しかし、この種
の合金は、しばしば加工上、若しくは鋳造上の困
難を伴いその改良は金属材料製造業界の苦心の一
つになつている。若し、他の必要成分の加わつた
銅系金属の表面に、アルミニウム成分の加わつた
目的組織の合金層が簡易な手段によつて得られれ
ば、その工業的効果は極めて大きいが上述の技術
的理由からその実行が困難になつている。
On the other hand, copper-aluminum alloys have unique and excellent performance as so-called aluminum bronze, but those with a third component added thereto exhibit even more excellent properties and have a wide range of uses. However, this type of alloy is often difficult to process or cast, and its improvement is one of the challenges in the metal material manufacturing industry. If an alloy layer containing an aluminum component and having a desired structure can be obtained by simple means on the surface of a copper-based metal containing other necessary components, the industrial effects would be extremely large, but the above-mentioned technical problems would not be possible. This has become difficult to implement for several reasons.

[本発明が解決しようとする問題点] 発明者らはこの従来簡易の実行不可能であつた
銅及び銅系合金の表面にアルミニウム成分を添加
拡散されるためには、 (1) アルミニウムを可及的に新鮮な状態で銅又は
銅合金の表面に近接密着させること、 (2) そのアルミニウムを還元性雰囲気中で溶融す
ること、 (3) 銅若しくは銅合金の表面にある酸化物被膜を
除去し、銅又は銅合金面に対するアルミニウム
溶融液の濡れを良くすること、 (4) 更に、アルミニウム及び銅は、特に高温に於
いて極めて酸化され易いから(2)と(3)は同時に実
行される必要があること、 以上の4点を解決しなければならないと想定し
た。
[Problems to be Solved by the Present Invention] In order to add and diffuse aluminum components onto the surface of copper and copper-based alloys, which has conventionally been impossible to do simply, the inventors have found that: (2) Melting the aluminum in a reducing atmosphere; (3) Removing the oxide film on the surface of the copper or copper alloy. (4) Furthermore, since aluminum and copper are extremely susceptible to oxidation, especially at high temperatures, (2) and (3) are carried out at the same time. We assumed that the above four points had to be solved.

[問題点を解決するための手段] 発明者らは上記の一見極めて実現困難と思われ
る4点を次の事実の発見と確認によつて解決し
た。
[Means for Solving the Problems] The inventors solved the above four points, which at first glance seemed to be extremely difficult to realize, by discovering and confirming the following facts.

すなわち本発明者の一人は、新規な構想に基づ
く耐熱性塗料の研究中、特定の化学構造を有する
造膜性有機高分子化合物の有機溶剤液若しくはそ
の水性エマルジヨンに塗料用アルミニウムペース
トを加えた原液を、磨き銅板上に塗布し、室温に
於いて自然乾燥後、これを電気炉中で700〜800℃
に加熱したところ、塗膜中の樹脂成分な完全に揮
散消失し、後に残つたアルミニウム−銅合金層は
金属研磨剤で研磨すれば平滑なアルミニウム−銅
合金輝面が得られるという全く予想し得なかつた
新事実を確認した。
That is, one of the inventors of the present invention, while researching a heat-resistant paint based on a new concept, developed a stock solution in which an aluminum paste for paint was added to an organic solvent solution of a film-forming organic polymer compound having a specific chemical structure or an aqueous emulsion thereof. was applied onto a polished copper plate, air-dried at room temperature, and then heated in an electric furnace at 700-800°C.
When heated to a temperature of I confirmed a new fact that was missing.

本発明者はこの新事実を次のように理解した:
即ち、現在市販されている塗料用アルミニウムペ
ーストは、業界では周知のように、金属アルミニ
ウム粉末若しくは箔をステアリン酸及びミネラル
スピリツト(沸点140〜180℃の石油成分)と共に
ボールミルあるいはスタンプミル中で摩砕して製
造させる。アルミニウムは元来、非常に酸化され
やすく、従つてミル中での摩砕によつて生成した
新鮮な金属面は直ちに完全に酸化被膜で覆われる
筈であるが、この場合生成と同時に、共存するス
テアリン酸及びミネラルスピリツトに包まれ、新
鮮なまま市販ペースト中に保存されている。この
ことは市販塗料用アルミニウムペーストをステア
リン酸及びミネラルスピリツトを溶解する親水性
有機溶剤で処理し、直ちに水中に投入すれば、発
熱しつつ水と反応して水素ガスが発生することか
らも明らかである。次に樹脂液中にペーストとし
て配合された新鮮なアルミニウム粒子の表面は乾
燥塗膜中でも樹脂層に包まれて保護されている
が、配合された樹脂の熱分解点以上の加熱によつ
て樹脂層が熱分解される瞬間に初めて外界に露出
する。しかし、その時は周囲に充満している還元
性の樹脂分解ガスのために直ぐには酸化されず、
研磨されたまま同じく新鮮に保たれていた基体金
属面に直接に接触し、合金を形成して固定したも
のと推定した。
The inventor understood this new fact as follows:
That is, currently commercially available aluminum pastes for paints are produced by grinding metallic aluminum powder or foil with stearic acid and mineral spirits (petroleum components with a boiling point of 140 to 180°C) in a ball mill or stamp mill, as is well known in the industry. Crush and manufacture. Aluminum is naturally very susceptible to oxidation, so a fresh metal surface produced by grinding in a mill should immediately be completely covered with an oxide film, but in this case, at the same time as it is produced, the coexisting Encased in stearic acid and mineral spirits, it is preserved fresh in commercial pastes. This is clear from the fact that if a commercially available aluminum paste for paint is treated with a hydrophilic organic solvent that dissolves stearic acid and mineral spirits and then immediately poured into water, it will react with water while generating heat and generate hydrogen gas. It is. Next, the surface of the fresh aluminum particles blended as a paste in the resin solution is protected by being wrapped in a resin layer even during dry coating, but the resin layer is heated above the thermal decomposition point of the blended resin. is exposed to the outside world for the first time at the moment it is thermally decomposed. However, at that time, it was not oxidized immediately due to the reducing resin decomposition gas that filled the surrounding area.
It is presumed that the polished surface came into direct contact with the base metal surface, which had also been kept fresh, forming an alloy and fixing it.

この際最も必要な条件は両金属面間に異物の存
在しないことで、このことは、加熱後に未分解固
形分の残留するポリ塩化ビニルその他の樹脂を用
いた場合には、このアルミニウム−銅合金が均一
に形成されなかつたことからも明らかになつた。
The most necessary condition in this case is the absence of foreign matter between the two metal surfaces. This became clear from the fact that it was not formed uniformly.

発明者の属する塗料業界に於いては、上記の塗
料用アルミニウムペーストは長年に亙る研究によ
つて改良され、その優秀な隠蔽力により、特に金
属面の銀色塗装用塗料中に多用されている。しか
し、この、いわゆる「銀ペン」を剥がすにはトー
チランプによる加熱が定法とされていることから
も判るように、塗料用アルミニウムペーストと高
温加熱時に於ける上記特性は従来全く認められて
いなかつた。
In the paint industry to which the inventor belongs, the above-mentioned aluminum paste for paints has been improved through many years of research, and due to its excellent hiding power, it is often used in paints, especially for silver painting on metal surfaces. However, as can be seen from the fact that heating with a torch lamp is the standard method for peeling off this so-called "silver pen", the above characteristics of aluminum paste for paint and heating at high temperatures have not been recognized at all in the past. .

ただし、この塗料用アルミニウムペースト中の
アルミニウムが、700〜800℃で基体金属面と均一
な合金層を形成するためには、それと共存する有
機高分子化合物の選択が極めて重要であつた。そ
の最重要点は、それらが熱分解時に実質的に完全
に消失することであり、発明者らは多数の造膜性
有機高分子化合物を、特にその窒素気流中に於け
る熱分析曲線(TGA曲線)を用いて解析し、各
化合物がその分解温度域に於いて95%以上分解消
失するものを選別した。その結果、本発明の目的
に適合するものとして選出したものは次の有機高
分子化合物である: (a) アクリル酸のメチル−、エチル−、イソプロ
ピル−、n−ブチル−、2−エチルヘキシル
−、2−ヒドロキシエチル−、ヒドロキシプロ
ピル−エステル、メタアクリル酸のメチル−、
エチル−、イソプロピル−、n−ブチル−、n
−ヘキシル−、ラウリル−2−ヒドロキシエチ
ル−、ヒドロキシプロピル−エステルのような
アクリル酸及びメタアクリル酸のエステル類の
中から選ばれた1種の化合物の重合物、若しく
は2種又はそれ以上の化合物の共重合物(350
〜450℃)と (b) アルキル化変性メラミン樹脂(400℃)との
混合物。
However, in order for the aluminum in this paint aluminum paste to form a uniform alloy layer with the base metal surface at 700 to 800°C, the selection of the organic polymer compound that coexists with the aluminum was extremely important. The most important point is that they disappear virtually completely during thermal decomposition, and the inventors have investigated a number of film-forming organic polymer compounds, particularly by analyzing their thermal analysis curves (TGA) in a nitrogen stream. (curve) to select compounds in which 95% or more of each compound decomposed and disappeared in its decomposition temperature range. As a result, the following organic polymer compounds were selected as suitable for the purpose of the present invention: (a) methyl, ethyl, isopropyl, n-butyl, 2-ethylhexyl acrylate; 2-hydroxyethyl-, hydroxypropyl-ester, methyl methacrylate,
Ethyl, isopropyl, n-butyl, n
A polymer of one compound selected from esters of acrylic acid and methacrylic acid, such as -hexyl-, lauryl-2-hydroxyethyl-, and hydroxypropyl-ester, or a polymer of two or more compounds. Copolymer of (350
~450°C) and (b) alkylated modified melamine resin (400°C).

上記の有機高分子化合物はそれぞれ、アルコー
ル類、ケトン類、エステル類、セロソルブ類、カ
ルビトール類、ジメチルホルムアミド、ジメチル
アセトアミド、ジメチルスルホキシドなどの溶剤
の1種若しくは、それらの混合物に可溶で、その
溶液は溶剤の揮発後、金属の表面で造膜し、それ
ぞれ上記( )の温度で熱分解して、被膜系から
実質的に消失する。これに反し同じく有機溶剤に
可溶で造膜性のあるポリ塩化ビニル、ウレタン結
合を含まないエポキシ樹脂、繊維素系樹脂は窒素
気流中での加熱では700℃に達しても、20〜65%
ど残留分があり、空気中で加熱すれば酸化燃焼を
伴うので残留分は減少するが、特に耐熱性材料が
共存する被膜中では完全に燃焼せず、相当量の炭
素分その他が残留するので本発明実施の材料とし
ては不適当である。
Each of the above organic polymer compounds is soluble in one or a mixture of solvents such as alcohols, ketones, esters, cellosolves, carbitols, dimethylformamide, dimethylacetamide, dimethylsulfoxide, etc. After the solvent evaporates, the solution forms a film on the surface of the metal, is thermally decomposed at the temperature ( ) above, and substantially disappears from the coating system. On the other hand, polyvinyl chloride, which is also soluble in organic solvents and has film-forming properties, epoxy resins that do not contain urethane bonds, and cellulose resins lose 20 to 65% of
When heated in air, oxidative combustion occurs and the residual amount decreases, but it does not completely burn, especially in the coating where heat-resistant materials coexist, and a considerable amount of carbon and other components remain. It is unsuitable as a material for implementing the present invention.

以上の新事実について更に言えば、上記の樹脂
を銅又は銅系合金の表面で、それらの熱分解点以
上である700〜800℃で急速に加熱すると、その分
解ガスの還元力は著しく高まつて、その雰囲気中
にあるアルミニウム溶融液の酸化を防ぐばかりで
なく、それに接する銅又は銅合金表面の酸化物被
膜を還元することを新しく確認した。即ち、発明
者の選出した上記の樹脂類は700〜800℃に於ける
急速な加熱によつて銅系金属表面の酸化物被膜を
除去する、いわゆる「フラツクス」的効力を持つ
ていることを発見したのである。
To further explain the above new facts, when the above resin is rapidly heated on the surface of copper or copper-based alloy at 700-800℃, which is above the thermal decomposition point of the resin, the reducing power of the decomposed gas increases significantly. It was newly confirmed that this method not only prevents the oxidation of the aluminum melt in the atmosphere, but also reduces the oxide film on the surface of the copper or copper alloy that comes into contact with it. In other words, it was discovered that the above-mentioned resins selected by the inventors have a so-called "flux" effect that removes the oxide film on the surface of copper-based metals by rapid heating at 700 to 800 degrees Celsius. That's what I did.

従来塩化亜鉛、ほう砂などの無機化合物の外に
松脂(ロジン)と主成分であるアビエチン酸など
の有機化合物が銅系金属用フラツクスとして用い
られることは周知であるが、主として塗料用樹脂
として用いられる上記の有機高分子化合物に、
700〜800℃に於いて少なくとも銅又は銅系合金に
対してフラツクス的効力があることは全く未知で
あつた。
It is well known that in addition to inorganic compounds such as zinc chloride and borax, organic compounds such as rosin and abietic acid, which is the main component, are used as fluxes for copper-based metals, but they are mainly used as resins for paints. In the above organic polymer compound,
It was completely unknown that there is a flux effect on at least copper or copper-based alloys at 700-800°C.

即ち、銅又は銅系合金面上に、塗料用アルミニ
ウムペーストと、発明者が特定の規格によつて選
定した樹脂の溶液を混合した塗液を用いて塗膜を
形成させ(第一工程)、これを急速に700〜800℃
に加熱して、アルミニウムの溶融と特定樹脂の熱
分解を同時に起させれば、両成分の上記特定が合
併して発揮される(第二工程)。その結果、その
実現はほとんど不可能と思われていた前記4条件
が満たされ、ここに、銅又は銅系合金の表面にア
ルミニウム−銅系合金を形成させる本発明の方法
が目的通りに達成されたものである。
That is, a coating film is formed on a copper or copper-based alloy surface using a coating liquid that is a mixture of aluminum paste for paint and a solution of a resin selected by the inventor according to specific standards (first step); Rapidly heat this to 700-800℃
If the aluminum is melted and the specific resin is thermally decomposed at the same time, the specific properties of both components will be combined (second step). As a result, the above-mentioned four conditions, which were thought to be almost impossible to realize, were satisfied, and the method of the present invention for forming an aluminum-copper alloy on the surface of copper or a copper alloy has been achieved as intended. It is something that

[発明の作用と効果] 本発明の実施によつて、銅系金属材料ならびに
機器製造業界に及ぼす作用と主要効果は次の通り
である: (1) アルミニウム青銅系合金層を有する原材料又
は製品を、加工又は鋳造の容易な、銅又はアル
ミニウムを含まないか又は少量を含む銅合金を
用いて製造した後、その表面からアルミニウム
成分を追加拡散させて、その表面に外部からの
機械的又は化学的損傷に耐えるアルミニウム青
銅系合金層を有する原材料又は最終製品が得ら
れる。
[Operations and Effects of the Invention] The operations and main effects of the present invention on the copper-based metal materials and equipment manufacturing industry are as follows: (1) Raw materials or products having an aluminum-bronze alloy layer can be After manufacturing using a copper alloy that does not contain copper or aluminum or contains a small amount of copper or aluminum, which is easy to process or cast, the aluminum component is additionally diffused from the surface, and the surface is not exposed to external mechanical or chemical A raw material or a finished product is obtained with a damage-resistant aluminum-bronze alloy layer.

(2) それに必要な機器は、操業規模に合わせた一
般金属塗料用塗装装置、乾燥装置、最高800℃
の解放型加熱炉及び廃ガス処理装置で十分であ
り、極めて単純な操作だけで高度の性能を有す
る製品を経済的に製造出来る。
(2) The equipment required for this is a coating equipment for general metal paints, a drying equipment, and a maximum temperature of 800℃ according to the scale of operation.
An open heating furnace and waste gas treatment equipment are sufficient, and products with high performance can be manufactured economically with extremely simple operations.

(3) 本発明の第一工程で使用する塗液には、冷間
圧延加工などの際に使用する圧延油、或いは防
錆油などを溶解浮上させる溶剤が含まれている
から、塗液塗布に先立つて銅又は銅系合金面の
特に厳密な前処理を必要としない。この、表面
合金化処理の場合一般に必須とされる脱脂、洗
浄、研磨などの厳重な前処理工程が省かれる利
益は大きい。
(3) The coating liquid used in the first step of the present invention contains a solvent that dissolves and floats rolling oil used in cold rolling or rust preventive oil. No particularly rigorous pretreatment of the copper or copper-based alloy surface is required prior to the process. There is a great benefit in that the strict pretreatment steps such as degreasing, cleaning, and polishing, which are generally essential in the case of surface alloying treatment, are omitted.

(4) 本発明の第一工程の第一段階は、一般金属用
塗料とほとんど変わらぬ塗装性を持つた特殊塗
液によつて行われるから塗装の方法及び塗装さ
れる原材の大小、形状は全く自由である。
(4) The first step of the first process of the present invention is carried out using a special coating liquid that has almost the same coating properties as general metal coatings, so the coating method and the size and shape of the raw materials to be coated are is completely free.

(5) 第一工程で得られる塗膜は十分なたわみ性を
持つているから、塗装しやすい形状で塗装後、
自由に巻取り、折曲げなどの成型を行なつてか
ら第二工程に移ることが出来る。
(5) The coating film obtained in the first step has sufficient flexibility, so it can be easily painted after painting.
After freely winding, bending, and other shaping, it is possible to move on to the second process.

(6) 形成したアルミニウム−青銅系合金層の優秀
性は余りにも周知なので省略するが、本発明の
方法によつて、黄銅の原材又は成型品の表面に
薄いアルミニウム青銅の被膜を形成させれば、
その後の熱加工の際に避け難い「脱亜鉛現象」
による製品の変色、変形または表面性能を低下
を防止し得ることは特記に値する。
(6) The superiority of the formed aluminum-bronze alloy layer is well known, so it will be omitted here, but by the method of the present invention, a thin aluminum-bronze coating can be formed on the surface of a brass raw material or a molded product. Ba,
"Dezincification phenomenon" that is difficult to avoid during subsequent heat processing
It is worth mentioning that it can prevent discoloration, deformation or deterioration of surface properties of products due to

以下本発明の実施態様を具体的に示すために若
干の実施例を掲げるが、以下に開示する材料、数
量若しくは実施態様によつて何等の制限を受ける
ものではない。実施例中に示された「部」は特別
に摘記しないかぎり重量部である。
Some examples are listed below to specifically illustrate the embodiments of the present invention, but the materials, quantities, or embodiments disclosed below are not intended to be limiting in any way. "Parts" shown in the examples are parts by weight unless otherwise specified.

実施例 1 メタアクリル酸樹脂原液(加熱残分60%)58
部、n−ブチル化変性メラミン樹脂原液(加熱残
分60%)36部、エチルセロソルブ328部、塗料用
アルミニウムペースト(加熱残分65%)324部を
均一に混合した「アルミニウム合金形成用塗液」
を前記「テスト用処理銅板」上に、のせ塗り法に
よつて塗布し、室温で自然乾燥した。同品を750
℃の電気炉中で30分間加熱し、取出し、放冷、水
中で前記ナイロン研磨布で研研すれば、やや黒味
のある黄銅色合金層が現われ、この合金層は引続
いての700℃、30分間の加熱によつても僅かに暗
色を呈するだけであつた。更に同表面を市販液状
金属研磨剤[日本磨料工業株式会社製品「ピカー
ル金属磨」]で研磨して黄金色光沢面を得た。な
お、本例と全く同様に処理して得た黄銅色合金面
を前記「銅面洗浄液」で洗浄後、再び上記「アル
ミニウム合金形成用塗液」を、のせ塗りし、室温
で自然乾燥後、750℃の電気炉中で30分間加熱し
た。これを取出し、放冷後前記ナイロン研磨布で
研磨すれば、再び黄銅色合金面が得られ、同時に
その合金層の厚みが僅かながら増加した。
Example 1 Methacrylic acid resin stock solution (heating residue 60%) 58
Coating liquid for forming aluminum alloys, which is a uniform mixture of 36 parts of n-butylated modified melamine resin stock solution (heating residue: 60%), 328 parts of ethyl cellosolve, and 324 parts of aluminum paste for paint (heating residue: 65%). ”
was applied onto the above-mentioned "treated copper plate for test" by the overlay coating method and air-dried at room temperature. 750 for the same item
When heated for 30 minutes in an electric furnace at 700°C, taken out, allowed to cool, and polished in water with the nylon polishing cloth, a slightly blackish brass-colored alloy layer appears, and this alloy layer is subsequently heated at 700°C. Even after heating for 30 minutes, the color only slightly darkened. Further, the same surface was polished with a commercially available liquid metal polishing agent [Picard Metal Polishing, manufactured by Nippon Hiryo Kogyo Co., Ltd.] to obtain a golden glossy surface. In addition, after cleaning the brass-colored alloy surface obtained by processing in exactly the same manner as in this example with the above-mentioned "copper surface cleaning liquid", the above-mentioned "coating liquid for aluminum alloy formation" was applied again, and after air drying at room temperature, It was heated for 30 minutes in an electric furnace at 750°C. When this was taken out, left to cool, and polished with the nylon polishing cloth, a brass-colored alloy surface was obtained again, and at the same time, the thickness of the alloy layer increased slightly.

実施例 2 実施例1と全く同一処理によつてその両面をア
ルミニウム青銅層を形成させた「テスト用処理銅
板」を750℃の電気炉中で115時間加熱したとこ
ろ、アルミニウム青銅を形成させずに残した部分
は全域酸化崩壊したのに対しアルミニウム青銅形
成部分はその表面が褐色化しただけで完全に残存
し、これを#250カーボランダム研磨紙で強力に
研磨したところ、純銅より著しく硬度の高い、や
や赤味を帯びたアルミニウム青銅層の輝面となつ
た。
Example 2 When a "test treated copper plate" on which aluminum bronze layers were formed on both sides by the same process as in Example 1 was heated in an electric furnace at 750°C for 115 hours, no aluminum bronze was formed. The remaining part was completely oxidized and disintegrated, whereas the aluminum bronze forming part remained completely with only a browned surface.When this was strongly polished with #250 carborundum abrasive paper, it was found that the hardness was significantly higher than that of pure copper. , resulting in a bright surface with a slightly reddish aluminum bronze layer.

実施例 3 メタアクリル酸樹脂原液(加熱残分60%)110
部、n−ブチル化変性メラミン樹脂原液(加熱残
分60%)60部、エチルセロソルブ870部、塗料用
アルミニウムペースト(加熱残分65%)560部を
均一に混合した分散液を「テスト用処理銅原板」
にはけ塗りをした。同品を室温で乾燥後、800℃
の電気炉中で30分加熱、取出し、放冷すれば、そ
の全面は灰色の膜で覆われていたが、これを水中
で前記ナイロン研磨剤で研磨して得た黒色面は、
#250カーボランダム研磨紙によつてもほとんど
研磨されない硬度を有し、また更に800℃、2時
間の炉中加熱によつても変色剥離せず、高い耐高
温酸化性を示した。
Example 3 Methacrylic acid resin stock solution (heated residue 60%) 110
A dispersion of 60 parts of n-butylated modified melamine resin stock solution (heating residue: 60%), 870 parts of ethyl cellosolve, and 560 parts of aluminum paste for paint (heating residue: 65%) was subjected to "test treatment". "Copper original plate"
I brushed it on. After drying the same product at room temperature, 800℃
When heated for 30 minutes in an electric furnace, taken out, and allowed to cool, the entire surface was covered with a gray film, but when this was polished in water with the nylon abrasive, the black surface obtained was
It had a hardness that could hardly be polished by #250 carborundum abrasive paper, and it did not discolor or peel off even when heated in a furnace at 800°C for 2 hours, showing high high-temperature oxidation resistance.

実施例 4 その表面に精密な文字、模様の圧刻された95/
5黄銅(同95:亜鉛5の合金)製メダルの表面を
前記「銅面洗浄液」で洗浄、水洗、乾燥して得た
鮮銅赤色面に実施例1で用いた「アルミニウム合
金形成用塗液」を浸し塗り法によつて塗布した。
同品を温風で強制乾燥した後、800℃の電気炉中
で30分間加熱、取出し、放冷すれば、その表面は
褐黒色に変化していたが、これを水中で前記ナイ
ロン研磨布で研磨すれば黄銅色が現われ、更に前
記市販液状研磨剤で研磨したところ、美しいアル
ミニウム青銅の金属光沢面となつた。しかも同表
面上の精密な文字、模様は全く原型が保持されて
いて、本発明の合金形成が全く均一に進行するこ
とを示し、本発明の方法がその実施の容易さと相
まつて、装飾品製造への応用が可能であることが
判明した。なお、ここに得たアルミニウム青銅面
は600℃の電気炉中で15時間加熱しても、僅かに
褐変するに止まり、研磨剤による軽度の研磨によ
つて再び美しい金属光沢面に戻つた。更に、金属
光沢面にまで研磨した上記アルミニウム青銅面に
本実施例の操作を繰返せば、その表面の色調は次
第に白色度を増して、表面合金層中のアルミニウ
ム成分の増大が認められた。
Example 4 95/ with precise characters and patterns engraved on its surface
The surface of a medal made of 5-brass (alloy of 95:zinc 5) was washed with the above-mentioned "copper surface cleaning solution", washed with water, and dried. ” was applied by dip coating method.
After forcing the same product to dry with warm air, heating it in an electric furnace at 800°C for 30 minutes, taking it out, and leaving it to cool, the surface turned brownish black, but this was removed with the nylon polishing cloth in water. When polished, a brass color appeared, and when it was further polished with the commercially available liquid polishing agent, it became a beautiful metallic luster of aluminum bronze. Moreover, the precise characters and patterns on the same surface retain their original shape, indicating that the alloy formation of the present invention proceeds completely uniformly. It turned out that it can be applied to Note that even when the aluminum bronze surface obtained here was heated in an electric furnace at 600°C for 15 hours, it only slightly browned, and by light polishing with an abrasive, it regained its beautiful metallic luster. Furthermore, when the operation of this example was repeated on the aluminum bronze surface polished to a metallic luster, the color tone of the surface gradually increased in whiteness, and an increase in the aluminum content in the surface alloy layer was observed.

実施例 5 厚さ0.8mm、総表面積52cm2の60/40黄銅(銅
60:亜鉛40の合金)板を前記「銅面洗浄液」洗
浄、水洗、乾燥したものの全表面に実施例1で使
用したと同じ「アルミニウム合金形成用塗液」を
はけ塗りした。同品を室温で自然乾燥後、800℃
の電気炉中で30分間加熱、取出し、室温(28℃)
まで放冷した後、水中で前記ナイロン研磨布で研
磨し、再び前記「銅面洗浄液」で洗浄、水洗、乾
燥したものの表面は再び黄銅色の金属光沢面に戻
つたが、60/40黄銅原板より僅かに赤味を帯びて
いた。これを試料(甲)とした。次に試料(甲)
の原板と全く同質、同形、同寸法の60/40黄銅板
を同じく「前記銅面洗浄液」で洗浄、水洗、乾燥
しただけのものを試料(乙)とした。試料(甲)
と(乙)を同時に、800℃の電気炉中で2時間加
熱後、取出し、室温(28℃)まで放冷したそのま
まの試料(甲)′及び試料(乙)′の重量増加
(甲)′−(甲)、(乙)′−(乙)の比は、試料(甲

の100に対し、試料(乙)のそれは255、又続いて
試料(甲)′及び(乙)′を同一時間、前記「銅面
洗浄液」中に浸した後、洗浄、乾燥したものを試
料(甲)″及び試料(乙)″とすれば、重量減少
(甲)′−(甲)″、(乙)′−(乙)″の比は100:
3590であり、又(乙)″の寸法は(乙)のそれよ
りも明らかに増大し、その比(乙)″/(乙)は
縦横ともほぼ102%であつた。この結果は、試料
(甲)の表面にはアルミニウム青銅系合金が形成
され、その耐高温酸化性が著しく向上したことを
明瞭に示したものであり、これに対し、60/40黄
銅原板(試料(乙))は銅60/亜鉛40の組成をも
つ黄銅の特性として、外見上、加熱時における酸
化増量は比較的少ないが、酸洗い(前記「銅面洗
浄液」は5.2%の硝酸液)後の著しい原料によつ
て、実質的には高温加熱によつて脱亜鉛及びサブ
スケールの生成が起こり、その表面層及び実質の
金属学的構造が著しく変質していたことを明示し
たものである。
Example 5 60/40 brass (copper) with a thickness of 0.8 mm and a total surface area of 52 cm 2
A 60:zinc 40 alloy) plate was washed with the above-mentioned "copper surface cleaning solution," rinsed with water, and dried, and then the same "coating solution for forming an aluminum alloy" as used in Example 1 was brushed onto the entire surface. After drying the same product naturally at room temperature, 800℃
Heat in an electric furnace for 30 minutes, remove and leave at room temperature (28℃).
After being allowed to cool to 100%, the surface was polished with the nylon polishing cloth in water, washed again with the "copper surface cleaning solution", rinsed with water, and dried. The surface returned to a brass-colored metallic luster, but the 60/40 brass original plate It was slightly more reddish. This was used as the sample (A). Next, the sample (A)
A 60/40 brass plate of exactly the same quality, shape, and size as the original plate was also cleaned with the above-mentioned copper surface cleaning solution, rinsed with water, and dried as a sample (B). Sample (Part A)
and (B) at the same time in an electric furnace at 800℃ for 2 hours, then taken out and left to cool to room temperature (28℃). - (A), (B)' - (B) ratio is sample (A)
100, that of sample (B) was 255.Subsequently, samples (A)' and (B)' were immersed in the above-mentioned "copper surface cleaning solution" for the same amount of time, and then washed and dried. If A)'' and sample (Otsu)'', the ratio of weight loss (A)' - (A)'', (Otsu)' - (Otsu)'' is 100:
3590, and the dimensions of (B)'' were clearly larger than those of (B), and the ratio (B)''/(B) was approximately 102% in both length and width. This result clearly shows that an aluminum-bronze alloy was formed on the surface of the sample (A), and its high-temperature oxidation resistance was significantly improved. (B)) As a characteristic of brass with a composition of 60% copper and 40% zinc, it appears that the weight increase due to oxidation during heating is relatively small. This clearly shows that dezincing and subscale formation occurred due to the extremely high temperature heating of the raw material, and that the surface layer and the metallurgical structure of the substance were significantly altered.

アルミニウム青銅の薄膜による表面被膜によつ
て黄銅の熱加工の際の脱亜鉛の防止、脱亜鉛の結
果起こる製品寸法の変化の抑制効果は、船舶用黄
銅鋳造表面への本発明の応用によつて期待される
キヤヴイテイシヨンエロージヨン抑制効果と共に
本発明の方法の工業的利用の可能性を示すもので
ある。
The effect of preventing dezincification during heat processing of brass and suppressing changes in product dimensions caused by dezincing by the surface coating of a thin film of aluminum bronze can be achieved by applying the present invention to the surface of brass castings for ships. This shows the expected effect of suppressing cavitation erosion as well as the possibility of industrial application of the method of the present invention.

Claims (1)

【特許請求の範囲】 1 (イ) 加熱によつてそれ自体が実質的に分解消
失しうる、ポリアクリル酸エステル樹脂とアル
キル化変成メラミン樹脂との混合物、ポリメタ
クリル酸エステル樹脂とアルキル化変成メラミ
ン樹脂との混合物及びポリアクリル酸エステル
−ポリメタクリル酸エステル共重合物とアルキ
ル化変成メラミン樹脂との混合物から成る群よ
り選ばれる高分子化合物と塗料用アルミニウム
ペーストとを含有する分散液を銅若しくは銅合
金材料面に塗布して第一次塗膜を形成させる第
一工程 と、 (ロ) これを700〜800℃に加熱して銅若しくは銅合
金材料面上にアルミニウム−銅系合金を形成さ
せる第二工程 とから成るアルミニウム−銅系合金層の形成方
法。
[Scope of Claims] 1 (a) A mixture of a polyacrylic acid ester resin and an alkylated modified melamine resin, a polymethacrylic acid ester resin and an alkylated modified melamine resin, which can be substantially decomposed and disappeared by heating. A dispersion containing an aluminum paste for paint and a polymer compound selected from the group consisting of a mixture with a resin and a mixture of a polyacrylic acid ester-polymethacrylic acid ester copolymer and an alkylated modified melamine resin is prepared using copper or copper. A first step of coating the alloy material surface to form a primary coating film; (b) A second step of heating this to 700 to 800°C to form an aluminum-copper alloy on the copper or copper alloy material surface. A method for forming an aluminum-copper alloy layer comprising two steps.
JP17399483A 1983-09-20 1983-09-20 Formation of alloy layer Granted JPS6067652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17399483A JPS6067652A (en) 1983-09-20 1983-09-20 Formation of alloy layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17399483A JPS6067652A (en) 1983-09-20 1983-09-20 Formation of alloy layer

Publications (2)

Publication Number Publication Date
JPS6067652A JPS6067652A (en) 1985-04-18
JPH0355545B2 true JPH0355545B2 (en) 1991-08-23

Family

ID=15970786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17399483A Granted JPS6067652A (en) 1983-09-20 1983-09-20 Formation of alloy layer

Country Status (1)

Country Link
JP (1) JPS6067652A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621340B2 (en) * 1986-03-04 1994-03-23 亜細亜工業株式会社 Method for producing copper material for wiring board having improved adhesion to resin material
DE19824792B4 (en) 1998-06-03 2005-06-30 Mtu Aero Engines Gmbh Method for producing an adhesive layer for a thermal barrier coating
US6258461B1 (en) * 1999-03-12 2001-07-10 Alloy Surfaces Co., Inc. Activated nickel screens and foils
WO2002070617A1 (en) * 2001-03-08 2002-09-12 Liburdi Engineering Limited Method of application of a protective coating to a substrate
US7332024B2 (en) * 2004-04-29 2008-02-19 General Electric Company Aluminizing composition and method for application within internal passages

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4961034A (en) * 1972-10-16 1974-06-13
JPS5182184A (en) * 1975-01-14 1976-07-19 Shibuya Kogyo Co Ltd YOKIHANNYUSOCHI

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4961034A (en) * 1972-10-16 1974-06-13
JPS5182184A (en) * 1975-01-14 1976-07-19 Shibuya Kogyo Co Ltd YOKIHANNYUSOCHI

Also Published As

Publication number Publication date
JPS6067652A (en) 1985-04-18

Similar Documents

Publication Publication Date Title
CA1172525A (en) Copper-containing articles with a corrosion inhibitor coating and method of producing the coating
JP3228936B2 (en) Involved article coating method
JP2502243B2 (en) Treatment method for simultaneously improving the corrosion resistance and friction properties of ferrous metal parts
US1988012A (en) Metal deposites in oxide coatings
JPH0355545B2 (en)
CN102154638B (en) Brass part blackening solution and preparation method and application thereof
JPS5877567A (en) Salt bath for nitrogenating steel or iron structural member
CN100383284C (en) Acidwash solution for copper and copper alloy
CA2141710C (en) Alkaline nitrates bath salts composition used for oxidizing ferrous metal and thus improving its resistance to corrosion
US2305669A (en) Method for manufacturing hard and compact protective layers on magnesium and magnesium alloys
US3183588A (en) Production of alloy-clad articles
CN1846007A (en) Silver ternary alloy
CN103266291A (en) Aluminum-manganese alloy layer hot-dip process
JPS6213563A (en) Method for coloring stainless steel
US4361445A (en) Copper alloy cleaning process
WO2003000948A1 (en) Improved magnesium materials and their production
JP4644765B2 (en) Silver diffused copper powder, process for producing the same, and conductive paste using the same
JPH02145794A (en) Copper or copper alloy material plated with tin or solder reflowed and excellent in thermal peeling resistance
CN109023323A (en) The method of automobile engine surface anticorrosion processing
JPS61213381A (en) Formation of alloy layer
JP4903476B2 (en) Colored surface-treated metal sheet for soldering
GB2031468A (en) Copper alloy cleaning process
JPS6230886A (en) Formation of alloy layer
Shaigan et al. A highly stabilized–inhibited nitric acid/ferric nitrate-based solder stripping solution
Pravallika et al. Understanding Chemistry of Black Coating in Ancient Bidriware and Attempt to Obtain Similar Coats on Pure Copper and Yellow Brass