JPH0355466B2 - - Google Patents

Info

Publication number
JPH0355466B2
JPH0355466B2 JP3734882A JP3734882A JPH0355466B2 JP H0355466 B2 JPH0355466 B2 JP H0355466B2 JP 3734882 A JP3734882 A JP 3734882A JP 3734882 A JP3734882 A JP 3734882A JP H0355466 B2 JPH0355466 B2 JP H0355466B2
Authority
JP
Japan
Prior art keywords
hydrogen sulfide
compounds
reaction
mercaptans
under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3734882A
Other languages
Japanese (ja)
Other versions
JPS57167959A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of JPS57167959A publication Critical patent/JPS57167959A/en
Publication of JPH0355466B2 publication Critical patent/JPH0355466B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/02Preparation of thiols, sulfides, hydropolysulfides or polysulfides of thiols
    • C07C319/04Preparation of thiols, sulfides, hydropolysulfides or polysulfides of thiols by addition of hydrogen sulfide or its salts to unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/16Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by addition of hydrogen sulfide or its salts to unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/52Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はオレフイン系化合物と硫化水素との反
応による、オレフイン系化合物から出発するメル
カプタンの改良された製造方法に関する。より詳
細には本発明は新規な一群の開始剤に関し、この
開始剤は紫外線放射下に反応を進行せしめるもの
である。 種々のメルカプタンが工業的用途に富んでいる
ことから、これらメルカプタンの製造方法につい
て多くの研究がなされてきた。 工業的に興味ある結果をもたらす一つの製造方
法は、エチレン系化合物に硫化水素を紫外線放射
下に直接作用させることからなる。 この方法を実施するにあたつては、通常、反応
媒体中に促進剤、特にたとえば米国特許第
3052452に記載のように亜リン酸有機エステルが
添加される。短波長の紫外線放射の利用によつて
SHラジカルが光化学的に発生し、この結果、エ
チレン系化合物の二重結合へのH2Sの付加がもた
らされるが、いくつかの欠点も生ずる。 すなわち、実際には特別に純粋で、かつ透明な
反応剤や溶媒を使用する必要があり、一方、硫化
水素の極めて高い分子吸光係数のために反応器に
おける光透過が弱く、かつ、製造されたメルカプ
タン自身が紫外線を吸収し、この結果、反応が著
るしく延滞してわずかの程度にしか反応が進行せ
ず、かつエチレン系化合物の二重結合へのメルカ
プタン自身の付加によりイオウを形成する。 この製造方法の改良法としていくつかの提案が
なされており、より長波長範囲で励起可能な光開
始剤、または光増感剤が見出された。すなわち、
米国特許第4052283号明細書に記載された方法で
は、一つまたは二つのカルボニル置換基を含む有
機光増感剤が用いられる。 一方、米国特許第4140604号明細書には、アセ
トフエノン誘導体によつて構成された反応活性化
剤が記載されている。 フランス特許第2424907号明細書記載の方法に
よれば、更により重要な進歩がなされている。 すなわち、この方法によれば、より好収率がも
たらされ、広い波長帯の使用が可能になつた。こ
の方法では通常の反応媒体に促進剤として周期律
表VA族の元素の有機誘導体を加え、同時にベン
ゾフエノンおよび/またはチオベンゾフエノン、
またはこれらアリールケトンの一つまたはそれ以
上の誘導体からなる開始剤を用いる。これらケト
ンは光化学促進剤として単独でも用いられるもの
であり、他の既知の添加物よりも良好な結果を与
えることができる。 この結果、米国特許第3050452号明細書に記載
のように、たとえば亜リン酸トリアルキルまたは
亜リン酸トリアリール単独では得ることが不可能
であつたメルカプタンを有利に製造することがで
きるようになつた。また、この米国特許によれ
ば、300mmより短波長の紫外線を用いることが必
要であつたが、ベンゾまたはチオベンゾフエノン
を用いれば300mmより長波長の利用も可能になつ
た。すなわち、ベンゾフエノンおよび/またはチ
オベンゾフエノンを亜リン酸エステルまたは周期
律表VA族元素の他の有機誘導体と共に使用する
ことによつて、結果は著るしく改善された。 本発明はこれら公知のすべての製造方法の顕著
な改良を提供するものであり、オレフイン系化合
物から出発するメルカプタン製造の収率を大巾に
増大せしめるものである。 本発明は有機硫化物、炭化水素、またはエーテ
ルのような溶媒を用いずに、または溶媒中で実施
することができる利点がある。有機硫化物を用い
る場合には、硫化物として反応自体の副生成物と
して得られるものを用いることができるので特に
著るしい利点がある。 本発明によるメルカプタンの新規な製造方法
は、紫外線放射の影響下に、不飽和化合物とH2S
とから出発するメルカプタン生成の開始剤として
作用するキサンテン型の誘導体を反応媒体中に含
むことを特徴とするものである。 本発明によるキサンテンは>C=Oまたは>C
=S架橋によつて連結された二つのベンゼン環か
らなる化合物によつて構成された下記式()に
相当する。 ただし式()中、YはOまたはSであり、X
はO、S、−CH2−、−CH2CH2−、COである。
好ましい波長範囲は300〜400mmである。 オレフイン系化合物のメルカプタンへの変換率
は、キサンテン誘導体と共に当該光化学反応の開
示剤としてそれ自体知られている周期律表第VA
族の元素の有機化合物を添加すれば更に上昇す
る。開示剤の添加量は少量であり十分であり、キ
サンテン誘導体は第VA族の有機化合物との協同
作用を発揮する。特に亜リン酸アルキルまたはア
リール、およびホスフインは、商業的に入手可能
であることから現在一般に用いられているが、本
発明によるキサンテン型の添加物は、ビスマス、
ヒ素、またはアンチモンの相当する有機化合物と
用いることができ、たとえば亜ヒ酸アルキル、亜
ヒ酸アリール、またはアルキルアルジン或はアリ
ールアルジンが添加物として好適である。 これらキサンテン型誘導体は既知の開始剤、特
に上述した亜リン酸エステルの開始剤結果を増大
せしめ、2次的な反応によつて形成される硫化物
が目的とするメルカプタンの生成に及ぼす抑制作
用を制限する。 この後者の作用によつて、本発明ではメルカプ
タンと硫化物の同時製造が可能となり、このこと
はいくつかの場合に極めて有用である。 本発明にもとづき反応媒体中に添加されるキサ
ンテン誘導体の割合いは種々の要因、特に処理さ
れる反応剤の特性、媒体中におけるこれらの濃
度、溶媒の存在または非存在などに依存する。こ
れらの割合いは、0.0001〜0.10モル/反応媒体
の程度が最もしばしば用いられ、特に0.0003〜
0.001モル/反応媒体の範囲が好ましい。第VA
族の元素の化合物の割合いも同様な程度である。 操作条件に関して云えば、特に温度および
H2S/オレフイン比率は公知の刊行物ですでに知
られている相当する技術の場合と同様である。そ
れ故、これらについては詳細にはここに記述しな
いが、好ましいH2S/オレフインモル比は約2〜
10で、温度は−10℃〜+20℃の間に保持されるこ
とのみが注目されるべきである。−10℃〜−5℃
および+20℃〜+35℃の温度範囲は使用可能では
あるが、好都合ではない。 反応は大気圧下において行なうことができる
が、メルカプタンへの転換を促進するために3〜
30バールの圧力計圧力下で行なうのが好ましい。 本発明の方法によつてメルカプタンへの変換が
改良されるオレフインの性質については、下記の
非限定的な例を参考とすることができる。 エチレン、プロピレン、1−ブテン、2−ブテ
ン、イソブテン、1−ペンテン、2−ペンテン、
1−ヘキセン、1−ヘプテン、1−オクテン、1
−デセン、1−ウンデセン、1−ドデセン、1−
テトラデセン、1−ヘキサデセン、1−オクタデ
セン、1−アイコセン、1−イソペンテン、4−
メチル−1−ペンテン、3,6−ジメチル−1−
ヘプテン、4−メチル−5−ブチル−4−デセ
ン、1,4−ジフエニル−2−ブテン、3−シク
ロヘキシル−6−アイコセン、4−メチル−2−
ペンテン、2,4,4−トリメチル−2−ペンテ
ン、シクロペンテン、2,5−ジエチルシクロペ
ンテン、シクロヘキセン、3−エチルシクロヘキ
セン、シクロヘプテン、シクロオクテン、4−ビ
ニルシクロヘキセン、アクリル酸、メタクリル
酸、クロトン酸、アリル酢酸(ペンテン酸)、オ
クテン酸、ウンデセン酸、ドデセン酸、オクタデ
セン酸などのアルキルエステル。 ここで上記エステルは、詳細にはC1〜C30アル
キルを含み、より詳細にはC1〜C8アルキルであ
る。オレフイン系化合物は、たとえばブタジエン
や2,4−ヘキサジエンのように複数の二重結合
を含むことができる。 本発明の方法は、ハライド、ヒドロキシル、ア
ルコキシ、カルボキシル基などのような置換基を
有する不飽和化合物にも同様であてはまり、アリ
ルクロリド、アリルアルコール、マレイン酸また
はフマール酸のアルキルまたはアリールエステル
および類似化合物のような化合物にも適用するこ
とができる。 本発明の方法においては、不飽和三重結合化合
物も使用可能であり、詳細にはアセチレンのよう
なアルキンの場合にはビニルメルカプタンを生ず
る。 本発明による特に有用な化合物については、前
記式()の中のXおよびYの位置がたとえば下
記のような化合物、
The present invention relates to an improved process for the production of mercaptans starting from olefinic compounds by reaction of the olefinic compounds with hydrogen sulfide. More particularly, the present invention relates to a novel class of initiators which allow the reaction to proceed under ultraviolet radiation. Since various mercaptans have many industrial uses, much research has been conducted on methods for producing these mercaptans. One method of production which yields industrially interesting results consists in the direct action of ethylene-based compounds with hydrogen sulfide under ultraviolet radiation. In carrying out this process, promoters are usually present in the reaction medium, especially as described in US Pat.
Phosphite organic ester is added as described in 3052452. By utilizing short wavelength ultraviolet radiation
SH radicals are generated photochemically, resulting in the addition of H 2 S to the double bonds of ethylene-based compounds, but some drawbacks also occur. That is, in practice it is necessary to use particularly pure and transparent reactants and solvents, whereas hydrogen sulfide has weak light transmission in the reactor due to its extremely high molecular extinction coefficient, and The mercaptan itself absorbs ultraviolet radiation, with the result that the reaction is significantly delayed and proceeds only to a small extent, and sulfur is formed by addition of the mercaptan itself to the double bond of the ethylene compound. Several proposals have been made to improve this production method, and photoinitiators or photosensitizers that can be excited in a longer wavelength range have been discovered. That is,
In the method described in US Pat. No. 4,052,283, organic photosensitizers containing one or two carbonyl substituents are used. On the other hand, US Pat. No. 4,140,604 describes a reaction activator composed of an acetophenone derivative. An even more important advance has been made with the method described in French Patent No. 2,424,907. That is, this method provides a better yield and allows use of a wider wavelength range. In this method, an organic derivative of an element of group V A of the periodic table is added as a promoter to the usual reaction medium, and at the same time benzophenone and/or thiobenzophenone,
Alternatively, an initiator consisting of one or more derivatives of these aryl ketones is used. These ketones can be used alone as photochemical accelerators and give better results than other known additives. As a result, as described in U.S. Pat. No. 3,050,452, it has become possible to advantageously produce mercaptans that could not be obtained using, for example, trialkyl phosphites or triaryl phosphites alone. Ta. Also, according to this US patent, it was necessary to use ultraviolet light with a wavelength shorter than 300 mm, but it became possible to use wavelengths longer than 300 mm by using benzo or thiobenzophenone. Thus, by using benzophenones and/or thiobenzophenones together with phosphites or other organic derivatives of Group V A elements of the periodic table, the results were significantly improved. The present invention provides a significant improvement over all these known production methods and significantly increases the yield of mercaptan production starting from olefinic compounds. The invention has the advantage that it can be practiced without or in solvents such as organic sulfides, hydrocarbons, or ethers. When an organic sulfide is used, there is a particularly significant advantage in that the sulfide obtained as a by-product of the reaction itself can be used. The novel method for the production of mercaptans according to the invention consists in the production of unsaturated compounds and H2S under the influence of ultraviolet radiation.
It is characterized in that it contains in the reaction medium a derivative of the xanthene type which acts as an initiator for the production of mercaptans starting from. The xanthenes according to the invention are >C=O or >C
It corresponds to the following formula () composed of a compound consisting of two benzene rings connected by a =S bridge. However, in formula (), Y is O or S, and
are O, S , -CH2- , -CH2CH2- , CO.
The preferred wavelength range is 300-400 mm. The conversion rate of olefinic compounds to mercaptans is determined by the periodic table V
If an organic compound of a group element is added, the value will further increase. A small amount of the disclosing agent is sufficient, and the xanthene derivative exhibits a cooperative effect with the Group V A organic compound. While alkyl or aryl phosphites and phosphines, in particular, are currently commonly used due to their commercial availability, xanthene type additives according to the present invention are suitable for bismuth,
It is possible to use corresponding organic compounds of arsenic or antimony, such as alkyl arsenites, aryl arsenites, or alkylardines or arylardines being suitable as additives. These xanthene-type derivatives enhance the initiator effect of known initiators, especially the phosphites mentioned above, and reduce the inhibitory effect that sulfides formed by secondary reactions have on the formation of the desired mercaptan. Restrict. This latter effect allows the present invention to simultaneously produce mercaptans and sulfides, which is extremely useful in some cases. The proportion of xanthene derivatives added to the reaction medium according to the invention depends on various factors, in particular the properties of the reactants to be treated, their concentration in the medium, the presence or absence of a solvent, etc. These proportions are most often of the order of 0.0001-0.10 mol/reaction medium, especially 0.0003-0.10 mol/reaction medium.
A range of 0.001 mol/reaction medium is preferred. Chapter V A
The proportions of compounds of group elements are of similar magnitude. When it comes to operating conditions, especially temperature and
The H 2 S/olefin ratio is the same as in the corresponding technology already known from known publications. Therefore, although they will not be described in detail here, the preferred H 2 S/olefin molar ratio is about 2 to
It should only be noted that at 10, the temperature is kept between -10°C and +20°C. -10℃~-5℃
A temperature range of +20°C to +35°C is usable but not convenient. Although the reaction can be carried out at atmospheric pressure, 3-
Preferably it is carried out under a gage pressure of 30 bar. Regarding the properties of olefins whose conversion to mercaptans is improved by the process of the invention, reference may be made to the following non-limiting examples. Ethylene, propylene, 1-butene, 2-butene, isobutene, 1-pentene, 2-pentene,
1-hexene, 1-heptene, 1-octene, 1
-decene, 1-undecene, 1-dodecene, 1-
Tetradecene, 1-hexadecene, 1-octadecene, 1-icosene, 1-isopentene, 4-
Methyl-1-pentene, 3,6-dimethyl-1-
Heptene, 4-methyl-5-butyl-4-decene, 1,4-diphenyl-2-butene, 3-cyclohexyl-6-icosene, 4-methyl-2-
Pentene, 2,4,4-trimethyl-2-pentene, cyclopentene, 2,5-diethylcyclopentene, cyclohexene, 3-ethylcyclohexene, cycloheptene, cyclooctene, 4-vinylcyclohexene, acrylic acid, methacrylic acid, crotonic acid, allyl Alkyl esters such as acetic acid (pentenoic acid), octenoic acid, undecenoic acid, dodecenoic acid, and octadecenoic acid. The ester here specifically comprises C1 - C30 alkyl, more particularly C1 - C8 alkyl. The olefin compound can contain multiple double bonds, such as butadiene and 2,4-hexadiene. The process of the invention applies equally to unsaturated compounds bearing substituents such as halides, hydroxyl, alkoxy, carboxyl groups, etc., allyl chloride, allyl alcohol, alkyl or aryl esters of maleic or fumaric acid and similar compounds. It can also be applied to compounds such as. Unsaturated triple bond compounds can also be used in the process of the invention, particularly in the case of alkynes such as acetylene, resulting in vinyl mercaptans. Particularly useful compounds according to the invention include compounds in which the positions of X and Y in formula () are as follows:

【表】 およびこれら化合物のベンゼン環誘導体、特にア
ルキル、アルコキシルまたはハロゲン誘導体を参
考にすることができる。 上記のように、キサンテン環の中央環は6また
は7の元素を含み、後者はXが−CH2CH2−の場
合に相当する。ここでもしYが酸素であれば、こ
の化合物はジベンゾスベロンとなり、液状で生成
され、従つて扱いが容易であり、かつ容易に入手
可能である。同様なことがYがイオウでXが−
CH2CH2−のチオジベンゾスベロンについてもあ
てはまる。 本発明による開始剤の著名な利点は、もしも必
要ならば大気圧下で用いることができることであ
る。かかる条件下では、オレフインの変化率およ
び時間あたりのメルカプタンの生成は数バールの
加圧下の場合に比較して劣るが、亜リン酸有機エ
ステル単独、または同一条件下で用いたアセトフ
エノンのような既知の開始剤よりも明らかに有効
である。相当する硫化物以外の2次生成物が存在
しないことは生成したメルカプタンの分離と、オ
レフインおよび硫化水素の循環を容易にする。 本発明を下記の非限定的な実施例にもとづき説
明する。 実施例1、2および比較例1〜3 紫外線ランプを内装した石英管を同軸線上に備
えた、円筒状の245mlステンレス鋼反応器中で反
応を行なつた。このランプの紫外線の最高放出は
350mmの波長に相当した。反応媒体の冷却と撹拌
は循環ポンプと交換器とで構成された外部回路に
よつて行ない、反応媒体の温度を約10℃に保持し
た。一連の試験を行なつたが、下記のパラメータ
を一定に保つた。 硫化水素供給量 240/h、 1−ドデセン供給量 336g/h、 圧 力 12バール 各試験の詳細な条件および得られた結果を下記
第1表に示す。
Reference may be made to the benzene ring derivatives of these compounds, especially the alkyl, alkoxyl or halogen derivatives. As mentioned above, the central ring of the xanthene ring contains 6 or 7 elements, the latter corresponding when X is -CH2CH2- . If Y here is oxygen, the compound is dibenzosuberone, which is produced in liquid form and is therefore easy to handle and readily available. Similarly, Y is sulfur and X is -
This also applies to thiodibenzosuberone in CH 2 CH 2 −. A notable advantage of the initiator according to the invention is that, if necessary, it can be used under atmospheric pressure. Under such conditions, the rate of conversion of olefins and the formation of mercaptans per hour are inferior compared to under pressure of several bars, but compared to known organic phosphorous esters alone or acetophenones used under the same conditions. is clearly more effective than the initiator. The absence of secondary products other than the corresponding sulfides facilitates the separation of the mercaptans formed and the recycling of olefins and hydrogen sulfide. The invention will be illustrated based on the following non-limiting examples. Examples 1, 2 and Comparative Examples 1-3 Reactions were carried out in a cylindrical 245 ml stainless steel reactor coaxially equipped with a quartz tube containing an ultraviolet lamp. The maximum UV emission of this lamp is
It corresponded to a wavelength of 350mm. Cooling and stirring of the reaction medium was carried out by an external circuit consisting of a circulation pump and an exchanger, maintaining the temperature of the reaction medium at approximately 10°C. A series of tests were conducted while keeping the following parameters constant. Hydrogen sulfide feed rate: 240/h, 1-dodecene feed rate: 336 g/h, pressure: 12 bar The detailed conditions of each test and the results obtained are shown in Table 1 below.

【表】 実施例3および比較例4 実施例1、2に記した反応器を用いて、120
/hの硫化水素および60/hのプロピレンを
ガス状で連続的に8〜10バールの加圧下に供給
し、また液状でジエチレングリコールのジメチル
エーテル100mlを加えた。光開始剤の濃度は反応
器に吸収された紫外線強度の最適条件に相当す
る。反応媒体の温度は約0℃に維持した。これら
条件下に行なつた種々の試験結果を下記第2表に
示す。
[Table] Example 3 and Comparative Example 4 Using the reactor described in Examples 1 and 2, 120
/h of hydrogen sulfide and 60/h of propylene were fed continuously in gaseous form under a pressure of 8-10 bar, and in liquid form 100 ml of dimethyl ether of diethylene glycol were added. The concentration of the photoinitiator corresponds to an optimum for the intensity of UV radiation absorbed in the reactor. The temperature of the reaction medium was maintained at approximately 0°C. The results of various tests conducted under these conditions are shown in Table 2 below.

【表】 実施例4〜6および比較例5 実施例3および比較例5と同一の条件下でベン
ゾフエノンまたはチオキサントンを亜リン酸エス
テルと共に使用した。亜リン酸エステル使用量は
19×10-4モル/h、ベンゾフエノンは33×10-4
ル/h、チオキサントンは1×10-4モル/であ
つた。試験結果を下記第3表に示す。
Table: Examples 4-6 and Comparative Example 5 Benzophenone or thioxanthone was used with phosphite under the same conditions as in Example 3 and Comparative Example 5. The amount of phosphite used is
The amount of benzophenone was 33× 10 −4 mol/h, and the amount of thioxanthone was 1×10 −4 mol/h. The test results are shown in Table 3 below.

【表】 実施例 7 実施例4〜6と同様の装置で、同様にチオキサ
ントンを用い、の装置を約−3℃の温度および9
〜10バールの圧力で使用した。100ml/hのジプ
ロピルスルフイド、10×10-4モル/hの亜リン酸
トリブチルを連続的に供給し、同様にガス状で
120/hの硫化水素および60/hのプロピレ
ンを供給した。プロピレン変換率74.8%とn−プ
ロピルメルカプタン生成量70.3g/hが得られ
た。硫化水素の供給率を300/hとしたことを
除いて同一条件で行なつた第2の試験では、プロ
ピレンの変換率76.9%、n−プロピルメルカプタ
ンの生成量93.7g/hを得た。 実施例8および比較例7 前述した実施例と同一の装置を用い、下記パラ
メータを一定にして二つの試験を行なつた。 硫化水素供給量 275/h 1−オクテン供給量 257g/h 温 度 0℃ 圧 力 9バール 各試験の詳細な条件および得られた結果を下記
第4表に示す。
[Table] Example 7 Using the same apparatus as in Examples 4 to 6, using thioxanthone in the same manner, the apparatus was heated at a temperature of about -3°C and 90°C.
A pressure of ~10 bar was used. Continuously supply 100 ml/h of dipropylsulfide and 10×10 -4 mol/h of tributyl phosphite, and similarly in gaseous form.
120/h of hydrogen sulfide and 60/h of propylene were fed. A propylene conversion rate of 74.8% and a yield of n-propyl mercaptan of 70.3 g/h were obtained. In a second test conducted under the same conditions except that the hydrogen sulfide feed rate was 300/h, a propylene conversion rate of 76.9% and an amount of n-propyl mercaptan produced of 93.7 g/h were obtained. Example 8 and Comparative Example 7 Two tests were conducted using the same apparatus as in the previous example and keeping the following parameters constant. Hydrogen sulfide feed rate 275/h 1-octene feed rate 257 g/h Temperature 0°C Pressure 9 bar The detailed conditions of each test and the results obtained are shown in Table 4 below.

【表】 他のオレフイン、すなわちエチレン、1−ブテ
ン、1−ヘキセンおよびシクロヘキセンについて
も同程度の結果が得られた。 実施例9および比較例8 前記実施例と同様の反応器に、225cm3のメチラ
ール、75cm3のマレイン酸ジブチル、6×10-3モル
のベゾフエノン、および3.5×10-3モルのトリブ
チルホスフイン、ならびに80の硫化水素を導入
した。この混合物を4時間照射したのち、反応混
合物を分析した。次に、ベンゾフエノンを2×
10-4モルのチオキサントで置換し、同一条件で第
2の試験を行なつた。反応は同様にして行なつ
た。下記第5表はマレイン酸の変換率と、下記反
応によつて形成されたメルカプトコハク酸ジプチ
ルの生成量を示す。
Table Comparable results were obtained for other olefins, namely ethylene, 1-butene, 1-hexene and cyclohexene. Example 9 and Comparative Example 8 In a reactor similar to the previous example, 225 cm 3 of methylal, 75 cm 3 of dibutyl maleate, 6×10 −3 mol of bezophenone, and 3.5×10 −3 mol of tributylphosphine, and introduced 80% hydrogen sulfide. After irradiating the mixture for 4 hours, the reaction mixture was analyzed. Next, add benzophenone 2x
A second test was carried out under the same conditions with substitution of 10 -4 moles of thioxant. The reaction was carried out in the same manner. Table 5 below shows the conversion of maleic acid and the yield of diptyl mercaptosuccinate formed by the reaction described below.

【表】 実施例10〜13および比較例9 実施例1、2の装置および操作条件で、ジベン
ゾスベロン(前記()式においてXが−
CH2CH2−、Yが酸素の場合)およびチオジベン
ゾスベロン(Xが上記同様であり、YがSの場
合)を開始剤としてドデシルトルカプタンを製造
した。結果を下記第6表に示す。
[Table] Examples 10 to 13 and Comparative Example 9 Using the apparatus and operating conditions of Examples 1 and 2, dibenzosuberone (in the above formula (), X is -
Dodecyltorcaptan was produced using CH2CH2- , when Y is oxygen) and thiodibenzosuberone (when X is as above and Y is S) as an initiator. The results are shown in Table 6 below.

【表】 この第6表から、ジベンゾスベロンは前記実施
例のすべてのキサンテン系誘導体のように、既知
の開始剤よりも添加量が著るしく少ないにもかか
わらず、より優れた結果を示すことが明白であ
る。 実施例14〜18および比較例10、11 光化学パイレツクス(Pyrex)反応器は、反応
液中に沈下した同一軸線上のランプを有し、すで
に知られていて硫化水素とプロピレンガスの良好
な分散を確保するために底部にガラスの導入管が
設けられている。放射容積は90mlである。この反
応器は外部二重被覆によつて自動温度調節されて
おり、大気下で非連続的に操作されるものであ
り、ガスの導入は全試験を通じて一定に保持し
た。すなわち硫化水素30/hおよびプロピレン
30/hである。 溶媒はジエチレングリコールのジエチルエーテ
ルであり、10℃の温度で硫化水素およびプロピレ
ンにより飽和された。光増感剤の濃度は反応器に
おいて吸収された強度の最適条件に相当する。 光源は350mmに放出中心を有する低圧水銀ラン
プである。このランプの消費電力は8ワツトであ
つた。30分後の生成したメルカプタンの量および
プロピレン転化率を下記第7表に示す。
[Table] From this Table 6, it can be seen that dibenzosuberone, like all the xanthene derivatives of the previous examples, shows better results than the known initiators despite being added in significantly lower amounts. That is clear. Examples 14-18 and Comparative Examples 10, 11 A photochemical Pyrex reactor with coaxial lamps submerged in the reaction liquid is already known and provides good dispersion of hydrogen sulfide and propylene gas. A glass inlet tube is provided at the bottom to ensure safety. The radial volume is 90ml. The reactor was thermostatted by means of an external double jacket, operated batchwise under atmospheric conditions, and the gas introduction was kept constant throughout the entire experiment. i.e. hydrogen sulfide 30/h and propylene
30/h. The solvent was diethyl ether of diethylene glycol, saturated with hydrogen sulfide and propylene at a temperature of 10°C. The concentration of photosensitizer corresponds to the optimum for the absorbed intensity in the reactor. The light source is a low pressure mercury lamp with an emission center at 350 mm. The power consumption of this lamp was 8 watts. The amount of mercaptan produced and the propylene conversion after 30 minutes are shown in Table 7 below.

【表】 これら第7表の結果から、本発明による開始剤
は、反応を大気圧下で行ないオレフインに対して
硫化水素を過剰に用いなくても優れた利点を有す
ることが明らかである。
Table 7 It is clear from the results in Table 7 that the initiator according to the invention has the advantage of carrying out the reaction under atmospheric pressure and without using an excess of hydrogen sulfide relative to the olefin.

Claims (1)

【特許請求の範囲】 1 オレフイン系化合物と硫化水素を下記式
()で示す開始剤の存在下に光化学的に反応さ
せることを特徴とする光開始反応によるメルカプ
タンの改良された製造方法。 ただし式()中、YはOまたはSであり、X
はO、S、−CH2−、−CH2CH2−、COである。
[Scope of Claims] 1. An improved method for producing mercaptans by a photoinitiation reaction, which comprises photochemically reacting an olefin compound and hydrogen sulfide in the presence of an initiator represented by the following formula (). However, in formula (), Y is O or S, and
are O, S , -CH2- , -CH2CH2- , CO.
JP3734882A 1981-03-12 1982-03-11 Mercaptan improved manufacture by photoinitiation reaction Granted JPS57167959A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR8104956A FR2501679A1 (en) 1981-03-12 1981-03-12 Mercaptan prodn. from olefinic cpd. and hydrogen sulphide - using xanthene deriv. as photoinitiator catalyst

Publications (2)

Publication Number Publication Date
JPS57167959A JPS57167959A (en) 1982-10-16
JPH0355466B2 true JPH0355466B2 (en) 1991-08-23

Family

ID=9256159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3734882A Granted JPS57167959A (en) 1981-03-12 1982-03-11 Mercaptan improved manufacture by photoinitiation reaction

Country Status (3)

Country Link
JP (1) JPS57167959A (en)
BE (1) BE892480A (en)
FR (1) FR2501679A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126896A1 (en) 2007-04-10 2008-10-23 Ajinomoto Co., Inc. Method for production of organic acid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3062852B1 (en) 2017-02-13 2021-05-07 Arkema France POLYTHIOLS PREPARATION PROCESS

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2424907A1 (en) * 1978-05-05 1979-11-30 Elf Aquitaine PERFECTION IN THE SYNTHESIS OF MERCAPTANS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126896A1 (en) 2007-04-10 2008-10-23 Ajinomoto Co., Inc. Method for production of organic acid

Also Published As

Publication number Publication date
JPS57167959A (en) 1982-10-16
FR2501679A1 (en) 1982-09-17
FR2501679B1 (en) 1985-02-15
BE892480A (en) 1982-09-13

Similar Documents

Publication Publication Date Title
US4702809A (en) Process for the production of 1,2,3-trichloro-2-methylpropane
SOSNOVSKY et al. Reactions of t-Butyl Peresters. II. The Reactions of Peresters with Compounds Containing Activated Hydrogens1
JP7005651B2 (en) How to prepare bromotrichloromethane
SU971097A3 (en) Process for producing alkylmercaptanes
Bercovici et al. Photosensitized coloration of photochromic spiropyrans
JPH07206757A (en) Production of polyfluorochloro- and perfluorocarboxylic acid chlorides
Rosenthal et al. Photoalkylation of cyclic acetals
US4140604A (en) Process for preparing mercaptans
CA1336589C (en) Process for brominating an alkylarene substrate
JPH0355466B2 (en)
US4443310A (en) Photoinitiated synthesis of mercaptans
FR2489307A1 (en) PROCESS FOR PRODUCING ETHYLENE GLYCOL
CA2138943A1 (en) Process for the oxidation of aromatic methyl groups
US3696155A (en) Production of 2-methyl-3-buten-2-ol
US3878074A (en) Vinylation of aromatic compounds
JPH03184952A (en) Photochemical preparation of 3-(organothio) aldehyde
JPS5949236B2 (en) 2-Hydroxyethylphosphine
EP0627414B1 (en) Method for the preparation of alkanesulphonic acids
Cantrell Photochemical reactions of methyl benzoate
US3509210A (en) Preparation of dichloroacetyl chloride
US3637478A (en) Process for production of aliphatic acids
JPS61167635A (en) Manufacture of 3-cyclohexene-1-carboxyaldehyde
Inada et al. THE AMIDE-CLAISEN REARRANGEMENT. III. THE THERMAL REARRANGEMENT OF N-ALLYL-N-TOSYLANILINE
FR2470109A1 (en) 3-Hydroxybenzoic acid derivs. prodn. - from cresol ester by chlorination and then hydrolysis, useful as herbicide intermediates
JPH069471A (en) Photo-dehydrogenative dimerization of tert-butyl methyl ether